
Accountable Virtual Machines

Andreas Haeberlen Paarijaat Aditya Rodrigo Rodrigues Peter Druschel
University of Pennsylvania Max Planck Institute for Software Systems (MPI-SWS)

Abstract

In this paper, we introduce accountable virtual ma-
chines (AVMs). Like ordinary virtual machines, AVMs
can execute binary software images in a virtualized copy
of a computer system; in addition, they can record
non-repudiable information that allows auditors to sub-
sequently check whether the software behaved as in-
tended. AVMs provide strong accountability, which is
important, for instance, in distributed systems where dif-
ferent hosts and organizations do not necessarily trust
each other, or where software is hosted on third-party
operated platforms. AVMs can provide accountability
for unmodified binary images and do not require trusted
hardware. To demonstrate that AVMs are practical, we
have designed and implemented a prototype AVM mon-
itor based on VMware Workstation, and used it to detect
several existing cheats in Counterstrike, a popular online
multi-player game.

1 Introduction

An accountable virtual machine (AVM) provides users
with the capability to audit the execution of a software
system by obtaining a log of the execution, and compar-
ing it to a known-good execution. This capability is par-
ticularly useful when users rely on software and services
running on machines owned or operated by third par-
ties. Auditing works for any binary image that executes
inside the AVM and does not require that the user trust
either the hardware or the accountable virtual machine
monitor on which the image executes. Several classes of
systems exemplify scenarios where AVMs are useful:

• in a competitive system, such as an online game
or an auction, users may wish to verify that other
players do not cheat, and that the provider of the
service implements the stated rules faithfully;

• nodes in peer-to-peer and federated systems may
wish to verify that others follow the protocol and
contribute their fair share of resources;

• cloud computing customers may wish to verify that
the provider executes their code as intended.

In these scenarios, software and hardware faults, mis-
configurations, break-ins, and deliberate manipulation
can lead to an abnormal execution, which can be costly
to users and operators, and may be difficult to detect.
When such a malfunction occurs, it is difficult to estab-
lish who is responsible for the problem, and even more
challenging to produce evidence that proves a party’s
innocence or guilt. For example, in a cloud computing
environment, failures can be caused both by bugs in the
customer’s software and by faults or misconfiguration of
the provider’s platform. If the failure was the result of a
bug, the provider would like to be able to prove his own
innocence, and if the provider was at fault, the customer
would like to obtain proof of that fact.

AVMs address these problems by providing users
with the capability to detect faults, to identify the faulty
node, and to produce evidence that connects the fault
to the machine that caused it. These properties are
achieved by running systems inside a virtual machine
that 1) maintains a log with enough information to re-
produce the entire execution of the system, and that 2)
associates each outgoing message with a cryptographic
record that links that action to the log of the execution
that produced it. The log enables users to detect faults
by replaying segments of the execution using a known-
good copy of the system, and by cross-checking the ex-
ternally visible behavior of that copy with the previously
observed behavior. AVMs can provide this capability for
any black-box binary image that can be run inside a VM.

AVMs detect integrity violations of an execution
without requiring the audited machine to run hardware
or software components that are trusted by the auditor.
When such trusted components are available, AVMs can
be extended to detect some confidentiality violations as
well, such as private data leaking out of the AVM.

This paper makes three contributions: 1) it introduces
the concept of AVMs, 2) it presents the design of an
accountable virtual machine monitor (AVMM), and 3)
it demonstrates that AVMs are practical for a specific
application, namely the detection of cheating in multi-
player games. Cheat detection is an interesting example
application because it is a serious and well-understood
problem for which AVMs are effective: they can detect

1

a large and general class of cheats. Out of 26 existing
cheats we downloaded from the Internet, AVMs can de-
tect every single one—without prior knowledge of the
cheat’s nature or implementation.

We have built a prototype AVMM based on VMware
Workstation, and used it to detect real cheats in Coun-
terstrike, a popular multi-player game. Our evaluation
shows that the costs of accountability in this context are
moderate: the frame rate drops by 13%, from 158 fps on
bare hardware to 137 fps on our prototype, the ping time
increases by about 5 ms, and each player must store or
transmit a log that grows by about 148 MB per hour af-
ter compression. Most of this overhead is caused by log-
ging the execution; the additional cost for accountabil-
ity is comparatively small. The log can be transferred
to other players and replayed there during the game (on-
line) or after the game has finished (offline).

While our evaluation in this paper focuses on games
as an example application, AVMs are useful in other
contexts, e.g., in p2p and federated systems, or to verify
that a cloud platform is providing its services correctly
and is allocating the promised resources [18]. Our pro-
totype AVMM already supports techniques such as par-
tial audits that would be useful for such applications, but
a full evaluation is beyond the scope of this paper.

The rest of this paper is structured as follows. Sec-
tion 2 discusses related work, Section 3 explains the
AVM approach, and Section 4 presents the design of our
prototype AVMM. Sections 5 and 6 describe our imple-
mentation and report evaluation results in the context of
games. Section 7 describes other applications and pos-
sible extensions, and Section 8 concludes this paper.

2 Related work
Deterministic replay: Our prototype AVMM relies on
the ability to replay the execution of a virtual machine.
Replay techniques have been studied for more than two
decades, usually in the context of debugging, and ma-
ture solutions are available [6, 15, 16, 39]. However,
replay by itself is not sufficient to detect faults on a re-
mote machine, since the machine could record incorrect
information in such a way that the replay looks correct,
or provide inconsistent information to different auditors.

Improving the efficiency of replay is an active re-
search area. Remus [11] contributes a highly efficient
snapshotting mechanism, and many current efforts seek
to improve the efficiency of logging and replay for
multi-core systems [13, 16, 28, 29]. AVMMs can di-
rectly benefit from these innovations.
Accountability: Accountability in distributed systems
has been suggested as a means to achieve practical se-
curity [26], to create an incentive for cooperative be-
havior [14], to foster innovation and competition in the
Internet [4, 27], and even as a general design goal for

dependable networked systems [43]. Several prior sys-
tems provide accountability for specific applications, in-
cluding network storage services [44], peer-to-peer con-
tent distribution networks [31], and interdomain rout-
ing [2, 20]. Unlike these systems, AVMs are application
independent. PeerReview [21] provides accountability
for general distributed systems. However, PeerReview
must be closely integrated with the application, which
requires source code modifications and a detailed under-
standing of the application logic. It would be impracti-
cal to apply PeerReview to an entire VM image with
dozens of applications and without access to the source
code of each. AVMs do not have these limitations; they
can make software accountable ‘out of the box’.
Remote fault detection: GridCop [42] is a compiler-
based technique that can be used to monitor the progress
and execution of a remotely executing program by in-
specting periodic beacon packets. GridCop is designed
for a less hostile environment than AVMs: it assumes a
trusted platform and self-interested hosts. Also, Grid-
Cop does not work for unmodified binaries, and it can-
not produce evidence that would convince a third party
that a fault did or did not happen.

A trusted computing platform can be used to detect if
a node is running modified software [17, 30]. The ap-
proach requires trusted hardware, a trusted OS kernel,
and a software and hardware certification infrastructure.
Pioneer [36] can detect such modifications using only
software, but it relies on recognizing sub-millisecond
delay variations, which restricts its use to small net-
works. AVMs do not require any trusted hardware and
can be used in wide-area networks.
Cheat detection: Cheating in online games is an impor-
tant problem that affects game players and game oper-
ators alike [24]. Several cheat detection techniques are
available, such as scanning for known hacks [23, 35] or
defenses against specific forms of cheating [7, 32]. In
contrast to these, AVMs are generic; that is, they are ef-
fective against an entire class of cheats. Chambers et
al. [9] describe another technique to detect if players
lie about their game state. The system relies on a form
of tamper-evident logs; however, the log must be inte-
grated with the game, while AVMs work for unmodified
games.

3 Accountable Virtual Machines

3.1 Goals
Figure 1 depicts the basic scenario we are concerned
with in this paper. Alice is relying on Bob to run some
software S on a machine M , which is under Bob’s con-
trol. However, Alice cannot observe M directly, she can
only communicate with it over the network. Our goal
is to enable Alice to check whether M behaves as ex-

2

NetworkAlice Bob

Software S

Machine M

Figure 1: Basic scenario. Alice is relying on software
S, which is running on a machine that is under Bob’s
control. Alice would like to verify that the machine is
working properly, and that Bob has not modified S.

pected, without having to trust Bob, M , or any software
running on M .

To define the behavior Alice expects M to have, we
assume that Alice has some reference implementation of
M called MR, which runs S. We say that M is correct
iff MR can produce the same network output as M when
it is started in the same initial state and given precisely
the same network inputs. If M is not correct, we say
that it is faulty. This can happen if M differs from MR,
or Bob has installed software other than S. Our goal is
to provide the following properties:

• Detection: If M is faulty, Alice can detect this.

• Evidence: When Alice detects a fault on M , she
can obtain evidence that would convince a third
party that M is faulty, without requiring that this
party trust Alice or Bob.

We are particularly interested in solutions that work for
any software S that can execute on M and MR. For
example, S could be a program binary that was com-
piled by someone other than Alice, it could be a complex
application whose details neither Alice nor Bob under-
stand, or it could be an entire operating system image
running a commodity OS like Linux or Windows.

In the rest of this paper, we will omit explicit refer-
ences to S when it is clear from the context which soft-
ware M is expected to run.

3.2 Approach
To detect faults on M , Alice must be able to answer
two questions: 1) which exact sequence of network mes-
sages did M send and receive, and 2) is there a correct
execution of MR that is consistent with this sequence of
messages? Answering the former is not trivial because
a faulty M—or a malicious Bob—could try to falsify
the answer. Answering the latter is difficult because the
number of possible executions for any nontrivial soft-
ware is large.

Alice can solve this problem by combining two seem-
ingly unrelated technologies: tamper-evident logs and
virtual machines. A tamper-evident log [21] requires
each node to record all the messages it has sent or re-
ceived. Whenever a message is transmitted, the sender

and the receiver must prove to each other that they have
added the message to their logs, and they must commit
to the contents of their logs by exchanging an authenti-
cator – essentially, a signed hash of the log. The authen-
ticators provide nonrepudiation, and they can be used to
detect when a node tampers with its log, e.g., by forging,
omitting, or modifying messages, or by forking the log.

Once Alice has determined that M ’s message log is
genuine, she must either find a correct execution of MR

that matches this log, or establish that there isn’t one. To
help Alice with this task, M can be required to record
additional information about nondeterministic events in
the execution of S. Given this information, Alice can
use deterministic replay [8, 15] to find the correct exe-
cution on MR, provided that one exists.

Recording the relevant nondeterministic events seems
difficult at first because we have assumed that neither
Alice nor Bob have the expertise to make modifications
to S; however, Bob can avoid this by using a virtual
machine monitor (VMM) to monitor the execution of S
and to capture inputs and nondeterministic events in a
generic, application-independent way.

3.3 AVM monitors
The above building blocks can be combined to con-
struct an accountable virtual machine monitor (AVMM),
which implements AVMs. Alice and Bob can use an
AVMM to achieve the goals from Section 3.1 as follows:

1. Bob installs an AVMM on his computer and runs
the software S inside an AVM. (From this point
forward, M refers to the entire stack consisting
of Bob’s computer, the AVMM running on Bob’s
computer, and Alice’s virtual machine image S,
which runs on the AVMM.)

2. The AVMM maintains a tamper-evident log of the
messages M sends or receives, and it also records
any nondeterministic events that affect S.

3. When Alice receives a message from M , she de-
taches the authenticator and saves it for later.

4. Alice periodically audits M as follows: she asks
the AVMM for its log, verifies it against the au-
thenticators she has collected, and then uses deter-
ministic replay to check the log for faults.

5. If replay fails or the log cannot be verified against
one of the authenticators, Alice can give MR, S,
the log, and the authenticators to a third party, who
can repeat Alice’s checks and independently verify
that a fault has occurred.

This generic methodology meets our previously stated
goals: Alice can detect faults on M , she can obtain evi-
dence, and a third party can check the evidence without
having to trust either Alice or Bob.

3

Alice Bob

Charlie

SA SB

SC

Alice Bob

Users

Software S

(a) Symmetric multi-party scenario (online game) (b) Asymmetric multi-party scenario (web service)

Figure 2: Multi-party scenarios. The scenario on the left represents a multi-player game; each player is running the
game client on his local machine and wants to know whether any other players are cheating. The scenario on the right
represents a hosted web service: Alice’s software is running on Bob’s machine, but the software typically interacts
with users other than Alice, such as Alice’s customers.

3.4 Does the AVMM have to be trusted?
A perhaps surprising consequence of this approach is
that the AVMM does not have to be trusted by Alice.
Suppose Bob is malicious and secretly tampers with Al-
ice’s software and/or the AVMM, causing M to become
faulty. Bob cannot prevent Alice from detecting this: if
he tampers with M ’s log, Alice can tell because the log
will not match the authenticators; if he does not, Alice
obtains the exact sequence of observable messages M
has sent and received, and since by our definition of a
fault there is no correct execution of MR that is consis-
tent with this sequence, deterministic replay inevitably
fails, no matter what the AVMM recorded.

3.5 Must Alice check the entire log?
For many applications, including the game we consider
in this paper, it is perfectly feasible for Alice to audit
M ’s entire log. However, for long-running, compute-
intensive applications, Alice may want to save time by
doing spot checks on a few log segments instead. The
AVMM can enable her to do this by periodically taking
a snapshot of the AVM’s state. Thus, Alice can inde-
pendently inspect any segment that begins and ends at a
snapshot.

Spot checking sacrifices the completeness of fault de-
tection for efficiency. If Alice chooses to do spot checks,
she can only detect faults that manifest as incorrect state
transitions in the segments she inspects. An incorrect
state transition in an unchecked segment, on the other
hand, could permanently modify M ’s state in a way
that is not detectable by checking subsequent segments.
Therefore, Alice must be careful when choosing an ap-
propriate policy.

Alice could inspect a random sample of segments plus
any segments in which a fault could most likely have a
long-term effect on the AVM’s state (e.g., during initial-

ization, authentication, key generation). Or, she could
inspect segments when she observes suspicious results,
starting with the most recent segment and working back-
wards in reverse chronological order. Spot-checking is
most effective in applications where the faults of interest
likely occur repeatedly and a single instance causes lim-
ited harm, where the application state is frequently re-
initialized (preventing long-term effects of a single un-
detected fault on the state), or where the threat of prob-
abilistic detection is strong enough to deter attackers.

3.6 Do AVMs work with multiple parties?

So far, we have focused on a simple two-party scenario;
however, AVMs can be used in more complex scenar-
ios. Figure 2 shows two examples. In the scenario on
the left, the players in an online multi-player game are
using AVMs to detect whether someone is cheating. Un-
like the basic scenario in Figure 1, this scenario is sym-
metric in the sense that each player is both running soft-
ware and is interested in the correctness of the software
on all the other machines. Thus, the roles of auditor
and auditee can be played by different parties at differ-
ent times. The scenario on the right represents a hosted
web service: the software is controlled and audited by
Alice, but the software typically interacts with parties
other than Alice, such as Alice’s customers.

For clarity, we will explain our system mostly in
terms of the simple two-party scenario in Figure 1. In
Section 4.6, we will describe differences for the multi-
party case.

4 AVMM design

To demonstrate that AVMs are practical, we now present
the design of a specific AVMM.

4

4.1 Assumptions
Our design relies on the following assumptions:

1. All transmitted messages are eventually received,
if retransmitted sufficiently often.

2. All parties (machines and users) have access to a
hash function that is pre-image resistant, second
pre-image resistant, and collision resistant.

3. Each party has a certified keypair, which can be
used to sign messages. Neither signatures nor cer-
tificates can be forged.

4. If a user needs to audit the log of a machine, the
user has access to a reference copy of the VM im-
age that the machine is expected to use.

The first two are common assumptions made about prac-
tical distributed systems. In particular, the first assump-
tion is required for liveness, otherwise it could be im-
possible to ever complete an audit. The third assump-
tion could be satisfied by providing each machine with a
keypair that is signed by the administrator; it is needed
to prevent faulty machines from creating fake identities.
The fourth assumption is required so that the auditor
knows which behaviors are correct.

4.2 Roadmap
Our design instantiates each of the building blocks we
have described in Section 3.2: a VMM, a tamper-evident
log, and an auditing mechanism. Here, we give a brief
overview; the rest of this section describes each building
block in more detail.

For the tamper-evident log (Section 4.3), we adapt a
technique from PeerReview [21], which already comes
with a proof of correctness [22]. We extend this log to
also include the VMM’s execution trace.

The VMM we use in this design (Section 4.4) virtual-
izes a standard commodity PC. This platform is attrac-
tive because of the vast amount of existing software that
can run on it; however, for historical reasons, it is harder
to virtualize than a more modern platform such as Java
or .NET. In addition, interactions between the software
and the virtual ‘hardware’ are much more frequent than,
e.g., in Java, resulting in a potentially higher overhead.

For auditing (Section 4.5), we provide a tool that au-
thenticates the log, then checks it for tampering, and
finally uses deterministic replay to determine whether
the contents of the log correspond to a correct execu-
tion of MR. If the tool finds any discrepancy between
the events in the log and the events that occur during
replay, this indicates a fault. Note that, while events
such as thread scheduling may appear nondeterminis-
tic to an application, they are in fact deterministic from
the VMM’s perspective. Therefore, as long as all ex-
ternal events (e.g. timer interrupts) are recorded in the

log, even race conditions are reproduced exactly during
replay and cannot result in false positives.1

4.3 Tamper-evident log

The tamper-evident log is structured as a hash chain;
each log entry is of the form ei := (si, ti, ci, hi), where
si is a monotonically increasing sequence number, t i

a type, and ci data of the specified type. hi is a hash
value that must be linked to all the previous entries in
the log, and yet efficient to create. Hence, we compute
it as hi = H(hi−1 || si || ti ||H(ci)) where h0 := 0, H
is a hash function, and || stands for concatenation.

To detect when Bob’s machine M forges incoming
messages, Alice signs each of her messages with her
own private key. The AVMM logs the signatures to-
gether with the messages, so that they can be verified
during an audit, but it removes them before passing the
messages on to the AVM. Thus, this process is transpar-
ent to the software running inside the AVM.

To ensure nonrepudiation, the AVMM attaches an
authenticator to each outgoing message m. The au-
thenticator for an entry ei is ai := (si, hi, σ(si ||hi)),
where the σ(·) operator denotes a cryptographic sig-
nature with the machine’s private key. M also in-
cludes hi−1, so that Alice can recalculate hi =
H(hi−1 || si || SEND ||H(m)) and thus verify that the
entry ei is in fact SEND(m).

To detect when M drops incoming or outgoing mes-
sages, both Alice and the AVMM send an acknowledg-
ment for each message m they receive. Analogous to the
above, M ’s authenticator in the acknowledgment con-
tains enough information for the recipient to verify that
the corresponding entry is RECV(m). Alice’s own ac-
knowledgment contains just a signed hash of the cor-
responding message, which the AVMM logs for Alice.
When an acknowledgment is not received, the original
message is retransmitted a few times. If Alice stops re-
ceiving messages from M altogether, she can only sus-
pect that M has failed.

When Alice wants to audit M , she retrieves a pair of
authenticators (e.g., the ones with the lowest and highest
sequence numbers) and challenges M to produce the log
segment that connects them. She then verifies that the
hash chain is intact. Because the hash function is second
pre-image resistant, it is computationally infeasible to
modify the log without breaking the hash chain. Thus,
if M has reordered or tampered with a log entry in that
segment, or if it has forked its log, M ’s hash chain will
no longer match its previously issued authenticators, and
Alice can detect this using this check.

1Ensuring deterministic replay on multiprocessor machines is
more difficult. We will discuss this in Section 7.4.

5

4.4 Virtual machine monitor
In addition to recording all incoming and outgoing mes-
sages to the tamper-evident log, the AVMM logs enough
information about the execution of the software to en-
able deterministic replay.
Recording nondeterministic inputs: The AVMM must
record all of the AVM’s nondeterministic inputs [8]. If
an input is asynchronous, the precise timing within the
execution must be recorded, so that the input can be re-
injected at the exact same point during replay. Hardware
interrupts, for example, fall into this category. Note that
wall-clock time is not sufficiently precise to describe the
timing of such inputs, since the instruction timing can
vary on most modern CPUs. Instead, the AVMM uses a
combination of instruction pointer, branch counter, and,
where necessary, additional registers [15].

Not all inputs are nondeterministic. For example, the
values returned by accesses to the AVM’s virtual hard-
disk need not be recorded. Alice knows the system im-
age that the machine is expected to use, and can thus
reconstruct the correct inputs during replay. Also many
inputs such as software interrupts are synchronous, that
is, they are explicitly requested by the AVM. Here, the
timing need not be recorded because the requests will be
issued again during replay.
Detecting inconsistencies: The tamper-evident log now
contains two parallel streams of information: Message
exchanges and nondeterministic inputs. Incoming mes-
sages appear in both streams: first as messages, and
then, as the AVM reads the bytes in the message, as a
sequence of inputs. If Bob is malicious, he might try to
exploit this by forging messages or by dropping or mod-
ifying a message that was received on M before it is
injected into the AVM. To detect this, the AVMM cross-
references messages and inputs in such a way that any
discrepancies can easily be detected during replay.
Snapshots: To enable spot checking and incremental
audits (Section 3.5), the AVMM periodically takes a
snapshot of the AVM’s current state. To save space,
snapshots are incremental, that is, they only contain
the state that has changed since the last snapshot. The
AVMM also maintains a hash tree over the state; af-
ter each snapshot, it updates the tree and then records
the top-level value in the log. When Alice audits a log
segment, she can either download an entire snapshot or
incrementally request the parts of the state that are ac-
cessed during replay. In either case, she can use the hash
tree to authenticate the state she has downloaded.

Taking frequent snapshots enables Alice to perform
fine-grain audits, but it also increases the overhead.
However, snapshotting techniques have become very ef-
ficient; recent work on VM replication has shown that
incremental snapshots can be taken up to 40 times per
second [11] and with only brief interruptions of the VM,

on the order of a few milliseconds. Accountability re-
quires only infrequent snapshots (once every few min-
utes or hours), so the overhead should be low.

4.5 Auditing and replay
When Alice wants to audit a machine M , she performs
the following three steps. First, Alice obtains a segment
of M ’s log and the authenticators that M produced dur-
ing the execution, so that the log’s integrity can be ver-
ified. Second, she downloads a snapshot of the AVM
at the beginning of the segment. Finally, she replays
the entire segment, starting from the snapshot, to check
whether the events in the log correspond to a correct ex-
ecution of the reference software.
Verifying the log: When Alice wants to audit a log
segment ei . . . ej , she retrieves the authenticators she
has received from M with sequence numbers in [s i, sj].
Next, Alice downloads the corresponding log segment
Lij from M , starting with the most recent snapshot be-
fore ei and ending at ej; then she verifies the segment
against the authenticators to check for tampering. If this
step succeeds, Alice is convinced that the log segment
is genuine; thus, she is left with having to establish that
the execution described by the segment is correct.

If M is faulty, Alice may not be able to download
Lij at all, or M could return a corrupted log segment
that causes verification to fail. In either case, Alice can
use the most recent authenticator aj as evidence to con-
vince a third party of the fault. Since the authenticator
is signed, the third party can use aj to verify that log
entries with sequence numbers up to sj must exist; then
it can repeat Alice’s audit. If no reply is obtained, Alice
will suspect Bob.
Verifying the snapshot: Next, Alice must obtain a
snapshot of the AVM’s state at the beginning of the log
segment Lij . If Alice is auditing the entire execution,
she can simply use the original software image S. Oth-
erwise she downloads a snapshot from M and recom-
putes the hash tree to authenticate it against the hash
value in Lij .
Verifying the execution: For the final step, Alice needs
three inputs: The log segment Lij , the VM snapshot,
and the public keys of M and any users who communi-
cated with M . The audit tool performs two checks on
Lij , a syntactic check and a semantic check. The syn-
tactic check determines whether the log itself is well-
formed, whereas the semantic check determines whether
the information in the log corresponds to a correct exe-
cution of MR.

For the syntactic check, the audit tool checks whether
all log entries have the proper format, verifies the cryp-
tographic signatures in each message and acknowledg-
ment, checks whether each message was acknowledged,
and checks whether the sequence of sent and received

6

messages corresponds to the sequence of messages that
enter and exit the AVM. If any of these tests fail, the tool
reports a fault.

For the semantic check, the tool locally instantiates a
virtual machine that implements MR, and it initializes
the machine with the snapshot, if any, or S. Next, it
reads Lij from beginning to end, replaying the inputs,
checking the outputs against the outputs in L ij , and ver-
ifying any snapshot hashes in Lij against snapshots of
the replayed execution (to be sure that the snapshot at
the end of Lij is also correct). If there is any discrep-
ancy whatsoever (for example, if the virtual machine
produces outputs that are not in the log, or if it requests
the synchronous inputs in a different order), replay ter-
minates and reports a fault. In this case, Alice can use
Lij and the authenticators as evidence to convince Bob,
or any other interested party, that M is faulty.

If the log segment Lij passes all of the above checks,
the tool reports success and then terminates. Auditing
can be performed offline (after the execution of a given
log segment is finished) or online (while the execution
is in progress).

4.6 Multi-party scenario

So far, we have described the AVMM in terms of the
simple two-party scenario. A multi-party scenario re-
quires three changes. First, when some user wants to
audit a machine M , he needs to collect authenticators
from other users that may have communicated with M .
In the gaming scenario in Figure 2(a), Alice could down-
load authenticators from Charlie before auditing Bob. In
the web-service scenario in Figure 2(b), the users could
forward any authenticators they receive to Alice.

Second, with more than two parties, network prob-
lems could make the same node appear unresponsive to
some nodes and alive to others. Bob could exploit this,
for instance, to avoid responding to Alice’s request for
an incriminating log segment, while continuing to work
with other nodes. To prevent this type of attack, Al-
ice forwards the message that M does not answer as a
challenge for M to the other nodes. All nodes stop com-
municating with M until it responds to the challenge. If
M is correct but there is a network problem between M
and Alice, or M was temporarily unresponsive, it can
answer the challenge and its response is forwarded to
Alice.

Third, when one user obtains evidence of a fault, he
may need to distribute that evidence to other interested
parties. For example, in the gaming scenario, if Alice
detects that Bob is cheating, she can send the evidence
to Charlie, who can verify it independently; then both
can decide never to play with Bob again.

4.7 Guarantees
Given our assumptions from Section 4.1 and the fault
definition from Section 3.1, the AVMM offers the fol-
lowing two guarantees:

• Completeness: If the machine M is faulty, a full
audit of M will report a fault and produce evidence
against M that can be verified by a third party.

• Accuracy: If the machine M is not faulty, no audit
of M will report a fault, and there cannot exist any
valid evidence against M .

If Alice performs spot checks on a number of log seg-
ments s1, . . . , sk rather than a full audit, accuracy still
holds. However, if M is faulty, her audit will only re-
port the fault and produce evidence if there exists at least
one log segment si in which the fault manifests. These
guarantees are independent of the software S, and they
hold for any fault that manifests as a deviation from MR,
even if Alice, Bob, and/or other users are malicious. A
proof of these properties is presented in a separate tech-
nical report [19].

Since our design is based on the tamper-evident log
from PeerReview [21], the resulting AVMM inherits a
powerful property from PeerReview: in a distributed
system with multiple nodes, it is possible to audit the
execution of the entire system by auditing each node in-
dividually. For more details, please refer to [21].

4.8 Limitations
We note two limitations implied by the AVMM’s guar-
antees. First, AVMs cannot detect bugs or vulnerabili-
ties in the software S, because the expected behavior of
M is defined by MR and thus S. If S has a bug and the
bug is exercised during an execution, an audit will suc-
ceed. For instance, if S allows unauthorized software
modifications, Bob could use this feature to change or
replace S. Alice must therefore make sure that S does
not have vulnerabilities that Bob could exploit.

Second, any behavior that can be achieved by pro-
viding appropriate inputs to MR is considered correct.
When such inputs come from sources other than the net-
work, they cannot be verified during an audit. In some
applications, Bob may be able to exploit this fact by
recording local (non-network) inputs in the log that elicit
some behavior in MR he desires.

5 Application: Cheat detection in games

AVMs and AVMMs are application-independent, but for
our evaluation, we focus on one specific application,
namely cheat detection. We begin by characterizing the
class of cheats that AVMs can detect, and we discuss
how AVMs compare to the anti-cheat systems that are
in use today.

7

5.1 How are cheats detected today?

Today, many online games use anti-cheating systems
like PunkBuster [35], the Warden [23] or Valve Anti-
Cheat (VAC) [38]. These systems work by scanning the
user’s machine for known cheats [23, 24, 35]; some al-
low the game admins to request screenshots or to per-
form memory scans. In addition to privacy concerns,
this approach has led to an arms race between cheaters
and game maintainers, in which the former constantly
release new cheats or variations of existing ones, and the
latter must struggle to keep their databases up to date.

5.2 How can AVMs be used with games?

Recall that AVMs run entire VM images rather than in-
dividual programs. Hence, the players first need to agree
on a VM image that they will use. For example, one of
them could install an operating system and the game it-
self in a VM, create a snapshot of the VM, and then
distribute the snapshot to the other players. Each player
then initializes his AVM with the agreed-upon snapshot
and plays while recording a log. If a player wishes to
reassure himself that other players have not cheated, he
can request their logs (during or after the game), check
them for tampering, and replay them using his own,
trusted copy of the agreed-upon VM image.

Since many cheats involve installing additional pro-
grams or modifying existing ones, it is important to dis-
able software installation in the snapshot that is used
during the game, e.g., by revoking the necessary privi-
leges from all accounts that are accessible to the players.
Otherwise, downloading and installing a cheat would
simply be re-executed during replay without causing any
discrepancies. However, note that this restriction is only
required during the game; it does not prevent the main-
tainer of the original VM image from installing upgrades
or patches.

5.3 How do players cheat in games?

Players can cheat in many different ways – a recent tax-
onomy [41] identified no less than fifteen different types
of cheats, including collusion, denial of service, timing
cheats, and social engineering. In Section 5.4, we dis-
cuss which of these cheats AVMs are effective against,
and we illustrate our discussion with three concrete ex-
amples of cheats that are used in Counterstrike. Since
the reader may not be familiar with these cheats, we de-
scribe them here first.

The first cheat is an aimbot. Its purpose to help the
cheater with target acquisition. When the aimbot is ac-
tive, the cheater only needs to point his weapon in the
approximate direction of an opponent; the aimbot then

automatically aims the weapon exactly at that opponent.
An aimbot is an example of a cheat that works, at least
conceptually, by feeding the game with forged inputs.

The second cheat is a wallhack. Its purpose is to al-
low the cheater to see through opaque objects, such as
walls. Wallhacks work because the game usually ren-
ders a much larger part of the scenery than is actually
visible on screen. Thus, if the textures on opaque ob-
jects are made transparent or removed entirely, e.g., by
a special graphics driver [37], the objects behind them
become visible. A wallhack is an example of a cheat
that violates secrecy; it reveals information that is avail-
able to the game but is not meant to be displayed.

The third cheat is unlimited ammunition. The vari-
ant we used identifies the memory location in the Coun-
terstrike process that holds the cheater’s current amount
of ammunition, and then periodically writes a constant
value to that location. Thus, even if the cheater con-
stantly fires his weapon, he never runs out (similar
cheats exist for other resources, e.g., unlimited health).
This cheat changes the network-visible behavior of the
cheater’s machine. It is representative of a larger class
of cheats that rely on modifying local in-memory state;
other examples include teleportation, which changes the
variable that holds the player’s current position, or un-
limited health.

5.4 Which cheats can AVMs detect?

AVMs are effective against two specific, broad classes
of cheats, namely

1. cheats that need to be installed along with the game
in some way, e.g., as loadable modules, patches, or
companion programs; and

2. cheats that make the network-visible behavior of
the cheater’s machine inconsistent with any correct
execution.

Both types of cheats cause replay to fail when the
cheater’s machine is audited. In the first case, the reason
is that replay can only succeed if the VM images used
during recording and replay produce the same sequence
of events recorded in the log. If different code is exe-
cuted or different data is read at any time, replay almost
certainly diverges soon afterward. In the second case,
replay fails by definition because there exists no correct
execution that is consistent with the network traffic the
cheater’s machine has produced.

If a cheat is in the first class but not in the second,
it may be possible to re-engineer it to avoid detection.
Common examples include cheats that violate secrecy,
such as wallhacks, and cheats that rely on forged inputs,
such as aimbots. For instance, a cheater might imple-
ment an aimbot as a separate program that runs outside

8

Total number of cheats examined 26

Cheats detectable with AVMs 26
... in this specific implementation of the cheat 22
... no matter how the cheat is implemented 4

Cheats not detectable with AVMs 0

Table 1: Detectability of Counterstrike cheats from pop-
ular Counterstrike discussion forums

of the AVM and aims the player’s weapon by feeding
fake inputs to the AVM’s USB port. A particularly tech-
savvy cheater might even set up a second machine that
uses a camera to capture the game state from the first
machine’s screen and a robot arm to type commands on
the first machine’s keyboard. While such cheats are by
no means impossible, they do require substantially more
effort and expertise than a simple patch or module that
manipulates the game state directly. Thus, AVMs raise
the bar significantly for such cheats.

In contrast, cheats in the second class can be detected
by AVMs in any implementation. Examples of such
cheats include unlimited ammunition, unlimited health,
or teleportation. For instance, if a player has k rounds
of ammunition and uses a cheat of any type to fire more
than k shots, replay inevitably fails because there is no
correct execution of the game software in which a player
can fire after having run out of ammunition. AVMs are
effective against any current or future cheats that fall
into this category.

We hypothesize that the first class includes almost
all cheats that are in use today. To test this hypothe-
sis, we downloaded and examined 26 real Counterstrike
cheats from popular discussion forums on the Internet
(Table 1). We found that every single one of them had to
be installed in the game AVM to be effective, and would
therefore be detected. We also found that at least 4 of
the 26 cheats additionally belonged to the second class
and could therefore be detected not only in their current
form, but also in any future implementation.

5.5 Summary

Even though we did not specifically design AVMs for
cheat detection, they do offer three important advan-
tages over current anti-cheating solutions like VAC or
PunkBuster. First, they protect players’ privacy by sep-
arating auditable computation (the game in the AVM)
from non-auditable computation (e.g., browser or bank-
ing software running outside the AVM). Second, they
are effective against virtually all current cheats, includ-
ing novel, rare, or unknown cheats. Third, they are guar-
anteed to detect all possible cheats of a certain type, no
matter how they are implemented.

6 Evaluation

In this section, we describe our AVMM prototype, and
we report how we used it to detect cheating in Coun-
terstrike, a popular multi-player game. Our goal is to
answer the following three questions:

1. Does the AVMM work with state-of-the-art games?

2. Are AVMs effective against real cheats?

3. Is the overhead low enough to be practical?

6.1 Prototype implementation
Our prototype AVMM implementation is based on
VMware Workstation 6.5.1, a state-of-the-art virtual
machine monitor whose source code we obtained
through VMware’s Academic Program. VMware Work-
station supports a wide range of guest operating sys-
tems, including Linux and Microsoft Windows, and its
VMM already supports many features that are useful
for AVMs, such as deterministic replay and incremen-
tal snapshots. We extended the VMM to record ex-
tra information about incoming and outgoing network
packets, and we added support for tamper-evident log-
ging, for which we adapted code from PeerReview [21].
Since VMware Workstation only supports uniprocessor
replay, our prototype is limited to AVMs with a single
virtual core (see Section 7.4 for a discussion of multi-
processor replay). However, most of the logging func-
tionality is implemented in a separate daemon process
that communicates with the VMM through kernel-level
pipes, so the AVMM can take advantage of multi-core
CPUs by using one of the cores for logging, crypto-
graphic operations and auditing, while running AVMs
on the other cores at full speed.

Our audit tool implements a two-step process: Play-
ers first perform the syntactic check using a separate tool
and then run the semantic check by replaying the log in a
local AVM, using a copy of the VM image they trust. If
at least one of the two stages fails, they can give the log
and the authenticators as evidence to fellow players—
or, indeed, any third party. All steps are deterministic,
so the other party will obtain the same result.

6.2 Experimental setup
For our evaluation, we used the AVMM prototype to de-
tect cheating in Counterstrike. There are two reasons for
this choice. First, Counterstrike is played in a variety of
online leagues, as well as in worldwide championships
such as the World Cyber Games, which makes cheat-
ing a matter of serious concern. Second, there is a large
and diverse ecosystem of readily available Counterstrike
cheats, which we can use for our experiments.

Our experiments are designed to model a Counter-
strike game as it would be played at a competition or

9

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35

Lo
g

si
ze

 (
M

B
)

Time (minutes)

AVMM log
Equivalent VMware log

Figure 3: Growth of the AVMM log, and an equivalent
VMware log, while playing Counterstrike.

at a LAN party. We used three Dell Precision T1500
workstations, one for each player, with 8 GB of mem-
ory and 2.8 GHz Intel Core i7 860 CPUs. Each CPU
has four cores and two hyperthreads per core. The ma-
chines were connected to the same switch via 1 Gbps
Ethernet links, and they were running Linux 2.6.32 (De-
bian 5.0.4) as the host operating system. On each ma-
chine, we installed an AVMM binary that was based on
a VMware Workstation 6.5.1 release build. Each player
had access to an ‘official’ VM snapshot, which con-
tained Windows XP SP3 as the guest operating system,
as well as Counterstrike 1.6 at patch version 1.1.2.5.
Sound and voice were disabled in the game and in
VMware. As discussed in Section 5.2, we configured
the snapshot to disallow software installation. In the
snapshot, the OS was already booted, and the player was
logged in without administrator privileges.

All players were using 768-bit RSA keys. These keys
are not strong enough to provide long-term security, but
in our scenario the signatures only need to last until any
cheaters have been identified, i.e., at most a few days or
weeks beyond the end of the game. In December 2009,
factoring a 768-bit number took almost 2,000 Opteron-
CPU years [3], so this key length should be safe for gam-
ing purposes for some time to come.

To quantify the costs of various aspects of AVMs, we
ran experiments in five different configurations. bare-
hw is our baseline configuration in which the game
runs directly on the hardware, without virtualization.
vmware-norec adds the virtual machine monitor with-
out our modifications, and vmware-rec adds the logging
for deterministic replay. avmm-nosig uses our AVMM
implementation without signatures, and avmm-rsa768
is the full system as described.

We removed the default frame rate cap of 72 fps,
so that Counterstrike rendered frames as quickly as
the available CPU resources allow and we can use the
achieved frame rate as a performance metric. In Sec-
tion 6.5 we consider a configuration with the default

 0

 2

 4

 6

 8

 10

 12

VMware AVMM
(RSA-768)

A
ve

ra
ge

 lo
g

gr
ow

th
 (

M
B

/m
in

ut
e)

Tamper-evident logging
VMware other
VMware MAC layer
VMware TimeTracker
Total after compression

Figure 4: Average log growth for Counterstrike by con-
tent. The bars in front show the size after compression.

frame rate cap. To make sure the performance of bare-
hw and virtualized configurations can be compared, we
configured the game to run without OpenGL, which is
not supported in our version of VMware Workstation,
and we ran the game in window rather than full-screen
mode. We played each game for at least thirty minutes.

6.3 Functionality check
Recall from Section 5.4 that AVMs can detect by design
all of the 26 cheats we examined. As a sanity check to
validate our implementation, we tried four Counterstrike
cheats in our collection that do not depend on OpenGL.
For each cheat, we created a modified VM image that
had the cheat preinstalled, and we ran an experiment in
the avmm-rsa768 configuration where one of the play-
ers used the special VM image and activated the cheat.
We then audited each player; as expected, the audits of
the honest players all succeeded, while the audits of the
cheater failed due to a divergence during replay.

6.4 Log size and contents
The AVMM records a log of the AVM’s execution dur-
ing game play. To determine how fast this log grows,
we played the game in the avmm-rsa768 configuration,
and we measured the log size over time. Figure 3 shows
the results. The log grows slowly while players are join-
ing the game (until about 3 minutes into the experiment)
and then continues to grow steadily during game play,
by about 8 MB per minute. For comparison, we also
show the size of an equivalent VMware log; the differ-
ence is due to the extra information that is required to
make the log tamper-evident.

Figure 4 shows the average log growth rate about the
content. More than 70% of the AVMM log consist of
information needed for replay; tamper-evident logging
is responsible for the rest. The replay information con-
sists mainly of TimeTracker entries (59%), which
are used by the VMM to record the exact timing of
events, and MAC-layer entries (14%), such as incom-

10

ing or outgoing network packets; other entry types ac-
count for the remaining 27%. The composition of the
VMware log differs slightly because the packet payloads
are stored in the MAC-layer entries rather than in the
tamper-evident logging entries. We also show results af-
ter applying bzip2 and a lossless, VMM-specific (but
application-independent) compression algorithm we de-
veloped. This brings the average log growth rate to
2.47 MB per minute.

From these results, we can estimate that a one-hour
game session would result in a 480 MB log, or 148 MB
after compression. Thus, given that current hard disk
capacities are measured in terabytes, storage should not
be a problem, even for very long games. Also, when a
player is audited, he must upload his log to his fellow
players. If the game is played over the Internet, upload-
ing a one-hour log would take about 21 minutes over
a 1 Mbps upstream link. If the game is played over a
LAN, e.g., at a competition, the upload would complete
in a few seconds. To avoid detection delays, our pro-
totype can also perform auditing concurrently with the
game; we evaluate this feature in Section 6.11.

6.5 Low growth with the frame rate cap
Recall that Counterstrike was configured without a
frame rate cap in our experiments, so that the mea-
sured frame rate can be used as a performance met-
ric. We discovered that when the frame rate cap is en-
abled, Counterstrike appears to implement inter-frame
delays by busy-waiting in a tight loop, reading the sys-
tem clock. Since the AVMM has to log every clock ac-
cess as a nondeterministic input, this increases the log
growth considerably—by a factor of 18 when the default
cap of 72 fps is used.

To reduce the log growth for applications that exhibit
this behavior, we experimented with the following opti-
mization. Whenever the AVMM observes consecutive
clock reads from the same AVM within 5 μs of each
other, it delays the n.th consecutive read by 2n−2∗50 μs,
starting with the second read and up to a limit of 5 ms.
The exponential progression of delays limits the number
of clock reads during long waits, but does not unduly af-
fect timing accuracy during short waits.

This optimization is very effective: log growth is ac-
tually 2% lower than reported in Section 6.4, with or
without the frame-rate cap. Moreover, the uncapped
frame rate is only 3% lower than the rate without the op-
timization, which shows that the optimization has only
a mild impact on game performance.

6.6 Syntactic and semantic check
Alice can audit another player Bob by checking Bob’s
log against his authenticators (syntactic check) and by
replaying Bob’s log using a trusted copy of the VM im-

 0

 2

 4

 6

 8

 10

Bare
hardware

VMware VMware
(recording)

AVMM
(nosig)

AVMM
(RSA-768)

P
in

g
ro

un
d-

tr
ip

 ti
m

e
(m

s)

Baseline
With VMM
With AVMM

Figure 5: Median ping round-trip times. The error bars
show the 5th and the 95th percentile.

age (semantic check). We expect the syntactic check
to be relatively fast, since it is essentially a matter of
verifying signatures, whereas the replay involves repeat-
ing all the computations that were performed during the
original game and should therefore take about as long
as the game itself. Our experiments with the log of
the server machine from the avmm-rsa768 configuration
(which covers 2,216 seconds with 1,987 seconds of ac-
tual game play) confirm this. We needed 34.7 seconds
to compress the log, 13.2 seconds to decompress it, 6.9
seconds for the syntactic check, and 1,977 seconds for
the semantic check (2,031 seconds total). Replay was
actually a bit faster because the AVMM skips any time
periods in the recording during which the CPU was idle,
e.g., before the game was started.

Unlike the performance of the actual game, the speed
of auditing is not critical because it can be performed
at leisure, e.g., in the background while the machine is
used for something else.

6.7 Network traffic
The AVMM increases the amount of network traffic for
two reasons: First, it adds a cryptographic signature
to each packet, and second, it encapsulates all packets
in a TCP connection. To quantify this overhead, we
measured the raw, IP-level network traffic in the bare-
hw configuration and in the avmm-rsa768 configuration.
On average, the machine hosting the game sent 22 kbps
in bare-hw and 215.5 kbps in avmm-rsa768.

This high relative increase is partly due to the fact
that Counterstrike clients send extremely small packets
of 50–60 bytes each, at 26 packets/sec, so the AVMM’s
fixed per-packet overhead (which includes one crypto-
graphic signature for each packet and one for each ac-
knowledgment) has a much higher impact than it would
for packets of average Internet packet size. However,
in absolute terms, the traffic is still quite low and well
within the capabilities of even a slow broadband up-
stream.

11

0 %

20 %

40 %

60 %

80 %

100 %

Bare
hardware

VMware VMware
(recording)

AVMM
(nosig)

AVMM
(RSA-768)

A
ve

ra
ge

 u
til

iz
at

io
n

Hyperthreads
Average (entire CPU)
12.5%

Figure 6: Average CPU utilization in Counterstrike for
each of the eight hyperthreads, and for the entire CPU.

6.8 Latency
The AVMM adds some latency to packet transmissions
because of the logging and processing of authenticators.
To quantify this, we ran an AVM in five different con-
figurations and measured the round-trip time (RTT) of
100 ICMP Echo Request packets. Figure 5 shows the
median RTT, as well as the 5th and the 95th percentile.
Since our machines are connected to the same switch,
the RTT on bare hardware is only 192 μs; adding vir-
tualization increases it to 525 μs, VMware recording to
621 μs, and the daemon to above 2 ms. Enabling 768-bit
RSA signatures brings the total RTT to about 5 ms. Re-
call that both the ping and the pong are acknowledged,
so four signatures need to be generated and verified.
Since the critical threshold for interactive applications is
well above 100 ms [12], 5 ms seem tolerable for games.
The overhead could be reduced by using a signing al-
gorithm such as ESIGN [34], which can generate and
verify a 2046-bit signature in less than 125 μs.

6.9 CPU utilization
Compared to a Counterstrike game on bare hardware,
the AVMM requires additional CPU power for virtual-
ization and for the tamper-evident log. To quantify this
overhead, we measured the CPU utilization in five con-
figurations, ranging from bare-hw to avmm-rsa768. To
isolate the contribution from the tamper-evident log, we
pinned the daemon process to hyperthread 0 (HT 0) in
the AVMM experiments and restricted the game to the
other hyperthreads except for HT 0’s hypertwin, HT 4,
which shares a core with HT 0.2 One of the machines
in our experiments runs the Counterstrike server in ad-
dition to serving a player. To be conservative, we report
numbers for this machine, as it has the highest load.

Figure 6 shows the average utilization for each HT,
as well as the average across the entire CPU. The uti-
lization of HT 0 (below 8%) in the AVM experiments

2Nevertheless, the load on HT 4 is not exactly zero because Linux
performs kernel-level IRQ handling on lightly-loaded hyperthreads.

 0

 50

 100

 150

 200

Bare
hardware

VMware VMware
(recording)

AVMM
(nosig)

AVMM
(RSA768)

A
ve

ra
ge

 fr
am

e
ra

te

Baseline
With VMM
With AVMM

Figure 7: Frame rate in Counterstrike for each of the
three machines. The left machine was hosting the game.

shows that the overhead from the tamper-evident log is
low. The game is constantly busy rendering frames, but
because the Counterstrike rendering engine is single-
threaded, it cannot run on more than one HT at a time.
The OS/VMM will sometimes schedule it on one HT
and sometimes on another, thus we expect an average
utilization over the eight HTs of 12.5%, which our re-
sults confirm.

6.10 Frame rate
Since the game is rendering frames as fast as the avail-
able CPU cycles allow, a meaningful metric for the CPU
overhead is the achieved frame rate, which we consider
next. To measure the frame rate, we wrote an AMX
Mod X [1] script that increments a counter every time
a frame is rendered. We read out this counter at the be-
ginning and at the end of each game, and we divided
the difference by the elapsed time. Figure 7 shows our
results for each of the three machines. The results vary
over time and among players, because the frame rate de-
pends on the complexity of the scene being rendered,
and thus on the path taken by each player.

The frame rate on the AVMM is about 13% lower than
on bare hardware. The biggest overhead seems to come
from enabling recording in VMware Workstation, which
causes the average frame rate to drop by about 11%. In
absolute terms, the resulting frame rate (137 fps) is still
very high; posts in Counterstrike forums generally rec-
ommend configuring the game for about 60–80 fps.

To quantify the advantage of running some of the
AVMM logic on a different HT, we ran an additional ex-
periment with both Counterstrike and all AVMM threads
pinned to the same hyperthread. This reduced the aver-
age frame rate by another 11 fps.

6.11 Online auditing
If a game session is long or the stakes are particularly
high, players may wish to detect cheaters well before
the end of the game. In such cases, players can incre-

12

0%

20%

40%

60%

80%

100%

120%

0% 20% 40% 60% 80% 100%

T
im

e
to

 s
po

t-
ch

ec
k

th
e

ch
un

k
(c

om
pa

re
d

to
 a

 fu
ll

au
di

t)

Number of consecutive segments covered by the chunk (k)

Spot-check time
Linear (for comparison)

0%

20%

40%

60%

80%

100%

120%

0% 20% 40% 60% 80% 100%

T
ot

al
 d

at
a

tr
an

sf
er

re
d

(c
om

pa
re

d
to

 a
 fu

ll
au

di
t)

Number of consecutive segments covered by the chunk (k)

Data transferred
Linear (for comparison)

Figure 9: Efficiency of spot checking. The cost of a spot check is roughly proportional to the size of the checked
chunk, but there is a fixed cost per chunk for transferring the memory and disk snapshots and for data decompression.

 0

 50

 100

 150

 200

No online
auditing

One audit
per player

Two audits
per player

A
ve

ra
ge

 fr
am

e
ra

te

Offline auditing
Online auditing

Figure 8: Frame rate for each of the three machines with
zero, one, or two online audits per machine.

mentally audit other players’ logs while the game is still
in progress. In this configuration, which we refer to as
online auditing, cheating could be detected as soon as
the externally visible behavior of the cheater’s machine
deviates from that of the reference machine.

If a player uses the same machine to concurrently play
the game and audit other players, the higher resource
consumption can affect game performance. To quantify
this effect, we played the game in the avmm-rsa768 con-
figuration with each player auditing zero, one, or two
other players on the same machine. As before, we mea-
sured the average frame rate experienced by each player.

Figure 8 shows our results. With an increasing num-
ber of players audited, the frame rate drops somewhat,
from 137 fps with no audits to 104 fps with two audits.
However, the drop is less pronounced than expected be-
cause the audits can leverage the unused cores. If the
number of audits a is increased further, we expect the
game performance to eventually degrade with 1/a.

Since replay is slightly slower than the original exe-
cution, auditing falls behind the game by about four sec-
onds per minute of play, even when the audit executes on
an otherwise unloaded machine. To ensure quick detec-
tion even during very long game sessions, we can com-
pensate by artificially slowing down the original execu-

tion. We found that a 5% slowdown was sufficient to
allow the auditor to keep up; this reduced the frame rate
by up to 7 fps. Note that a certain lag can actually be
useful to prevent players from learning each other’s cur-
rent positions or strategies through an audit. In practice,
players may want to disallow audits of the current round
and/or the most recent moments of game play.

6.12 Spot checking

Online games are not a very interesting use case for spot
checking because complete audits are feasible. There-
fore, we set up a simple additional experiment that mod-
els a client/server system – specifically, a MySQL 5.0.51
server in one AVM and a client running MySQL’s
sql-bench benchmark in another. We ran this ex-
periment for 75 minutes in the avmm-rsa768 configura-
tion, and we recorded a snapshot every five minutes. We
found that, on average, our prototype takes 5 seconds to
record a snapshot. The incremental disk snapshots are
between 1.9 MB and 91 MB, while each memory snap-
shot occupies about 530 MB. The reason for the latter
is that VMware Workstation creates a full dump of the
AVM’s main memory (512 MB) for each snapshot. This
could probably be optimized considerably, e.g., using
techniques from Remus [11].

In the following, we refer to the part of the log be-
tween two consecutive snapshots as a segment, and to
k consecutive segments as a k-chunk. To quantify the
costs of spot checking, we audited all possible k-chunks
in our log for k ∈ {1, 3, 5, 9, 12}, and measured the
amount of data that must be transferred over the net-
work, as well as the time it takes to replay the chunk.
However, we excluded k-chunks that start at the begin-
ning of the log; these are atypical because a) they are
the only chunks for which no memory or disk snapshots
have to be transferred, and b) they have less activity be-
cause the MySQL server is not yet running at the begin-
ning. We report averages because the results for chunks
with the same value of k never varied by more than 10%.

13

Figure 9 shows the results, normalized to the cost of
a full audit. As expected, the cost grows with the chunk
size k; however, there is an additional fixed cost per
chunk for transferring the corresponding memory and
disk snapshots.

6.13 Summary
Having reported our results, we now revisit our three ini-
tial questions. We have demonstrated that our AVMM
works out-of-the-box with Counterstrike, a state-of-the-
art game, and we have shown that it is effective against
real cheats we downloaded from Counterstrike forums
on the Internet. AVMs are not free; they affect various
metrics such as latency, traffic, or CPU utilization, and
they reduce the frame rate by about 13%, compared to
the rate achieved on bare hardware. In return for this
overhead, players gain the ability to audit other players.
Auditing takes time, in some cases as much as the game
itself, but it seems time well spent because it either ex-
poses a cheater or clears an innocent player of suspicion.
AVMs provide this novel capability by combining two
seemingly unrelated technologies, tamper-evident logs
and virtualization.

7 Discussion

7.1 Other applications
AVMs are application-independent and can be used in
applications other than games.
Distributed systems: AVMs can be used to make any
distributed system accountable, simply by executing the
software on each node within an AVM. The node soft-
ware can be arbitrarily complex and available only as a
binary system image. Accountability is useful in dis-
tributed systems where principals have an interest in
monitoring the behavior of other principals’ nodes, and
where post factum detection is sufficient. Such systems
include federated systems where no single entity has
complete control or visibility of the entire system, where
different parties compete (e.g., in an online game, an
auction, or a federated system like the Internet) or where
parties are expected to cooperate but lack adequate in-
centives to do so (e.g., in a peer-to-peer system).
Network traffic accountability: AVMs could also
be useful in detecting advanced forms of malware
that could escape online detection mechanisms. An
AVM, combined with a traffic monitor that records
a machine’s network communication, can capture the
network-observable behavior of a machine, and replay it
later with expensive intrusion detection (e.g., taint track-
ing) in place.
Cloud computing: Another potential application of
AVMs is cloud computing. AVMs can enable cloud cus-
tomers to verify that their software executes in the cloud

as expected. AVM are a perfect match for infrastructure-
as-a-service (IaaS) clouds that offer customers a vir-
tual machine. However, AVMs in the cloud face addi-
tional challenges: auditors cannot easily replay the en-
tire execution for lack of resources; accountable services
must be able to interact with non-accountable clients;
and, it may not be practical to sign every single packet.
The first challenge can be addressed with spot checking
(Section 3.5). We plan to address the remaining chal-
lenges in future work.

7.2 Using trust to get stronger guarantees
One of the strengths of AVMs is that they can verify the
integrity of a remote node’s execution without relying
on trusted components. However, if trusted components
are available, we can obtain additional guarantees. We
sketch two possible extensions below.
Secure local input: AVMs cannot detect the hypothet-
ical re-engineered aimbot from Section 5.4 because ex-
isting hardware does not authenticate events from local
input devices, such as keyboards or mice. Thus, a com-
promised AVMM can forge or suppress local inputs, and
even a correct AVMM cannot know whether a given
keystroke was generated by the user or synthesized by
another program, or another machine. This limitation
can be overcome by adding crypto support to the input
devices. For example, keyboards could sign keystroke
events before reporting them to the OS, and an auditor
could verify that the keystrokes are genuine using the
keyboard’s public key. Since most peripherals gener-
ate input at relatively low rates, the necessary hardware
should not be expensive to build.
Trusted AVMM: If we can trust the AVMM that is run-
ning on a remote node, we can detect additional classes
of cheats and attacks, including certain attacks on con-
fidentiality. For example, a trusted AVMM could estab-
lish a secure channel between the AVM and Alice (even
if the software in the AVM does not support encryption)
and thus prevent Bob’s machine from leaking informa-
tion by secretly communicating with other machines. A
trusted AVMM could also prevent wallhacks (see Sec-
tion 5.3) by controlling outside access to the machine’s
graphics card. If trusted hardware, such as memory en-
cryption [40] is available on Bob’s machine, the AVMM
could even prevent Bob from reading information di-
rectly from memory. Remote attestation could be used
to make sure that a trusted AVMM is indeed running on
a remote computer, e.g., using a system like Terra [17].

7.3 Accountability versus privacy
Ideally, an accountability system should disclose to an
auditor only the information strictly required to deter-
mine that the auditee has met his obligations. By this
standard, AVM logs are rather verbose: an AVM records

14

enough information to replay the execution of the soft-
ware it is running. This is a price we pay for the gen-
erality of AVMs—they can detect a large class of faults
in complex software available only in binary form. In
practice, the amount of extra information released can
be controlled.

Let us consider how the extra information captured
in the AVM logs affect Alice and Bob’s privacy. The
log reveals information about actions of Bob’s machine,
but only about the execution inside a given AVM, and
only to approved auditors. In the web service scenario
(Figure 2b), Alice is presumably paying Bob for run-
ning her software in an AVM, so she has every right to
know about the execution of the software. Similarly, it
is not unreasonable to expect players in a game to share
information about their game execution. In either case,
the auditor cannot observe executions the auditee may
be running outside the audited AVM.

Alice and Bob’s privacy may be affected when she
uses part of the log as evidence to demonstrate a fault on
Bob’s machine to a third party. The evidence reveals ad-
ditional information about the AVM, including a snap-
shot, to that party. Therefore, Alice should release evi-
dence only to third parties that have a legitimate need to
know about faults on Bob’s machine. To limit the extra
information released to third parties, Alice can use the
hash tree (Section 4.4) to remove any part of the snap-
shot that is not necessary to replay the relevant segment.

7.4 Replay for multiprocessors
Our prototype AVMM can assign only a single CPU
core for each AVM, because VMware’s deterministic re-
play is limited to uniprocessors. SMP-ReVirt [16] has
recently demonstrated that deterministic replay is also
possible for multiprocessors, but its cost is substantially
higher than the cost of uniprocessor replay. Because
replay is a building block for many important applica-
tions, such as forensics [15], replication [11], and de-
bugging [25], there is considerable interest in develop-
ing more efficient techniques [5, 13, 16, 28, 29]. As
more efficient techniques become available, AVMMs
can directly benefit from them.

7.5 Bug detection
Recall that AVMs define faults as deviations from the
behavior of a reference implementation. If the reference
implementation has a bug and this bug is triggered dur-
ing an execution, it will behave identically during the
replay, and thus it will not be classified as a fault. If
a bug in the reference implementation permits unautho-
rized software modification (e.g., a buffer overflow bug),
then neither the modification itself nor the behavior of
the modified software will be reported as a fault.

Detecting bugs in the reference implementation is
outside the fault model AVMs were designed to detect.
However, deterministic execution replay provides an op-
portunity to use sophisticated runtime analysis tools dur-
ing auditing [10]. In particular, techniques whose run-
time costs are too high for deployment in a live system
could be used during an off-line replay. Taint track-
ing, for instance, can reliably detect the unsafe use of
data that were received from an untrusted source [33],
thus detecting buffer overwrite attacks and other forms
of unauthorized software installation. More generally,
sophisticated runtime techniques can be used during re-
play to detect bugs, vulnerabilities and attacks as part of
a normal audit.

8 Conclusion

Accountable virtual machines (AVM) allow users to au-
dit software executing on remote machines. An AVM
can detect a large and general class of faults, and it pro-
duces evidence that can be verified independently by a
third party. At the same time, an AVM allows the op-
erator of the remote machine to prove whether his ma-
chine is correct. To demonstrate that AVMs are feasi-
ble, we have designed and implemented an AVM mon-
itor based on VMware Workstation and used it to de-
tect real cheats in Counterstrike, a popular online multi-
player game. Players can record their game execution in
a tamper-evident manner at a modest cost in frame rate.
Other players can audit the execution to detect cheats,
either after the game has finished or concurrently with
the game. The system is able to detect all of 26 existing
cheats we examined.

Acknowledgments

We appreciate the detailed and helpful feedback from
Jon Howell, the anonymous OSDI reviewers, and our
shepherd, Mendel Rosenblum. We would like to thank
VMware for making the source code of VMware Work-
station available to us under the VMware Academic Pro-
gram, and our technical contact, Jim Chow, who has
been extremely helpful. Finally, we would like to thank
our many enthusiastic Counterstrike volunteers.

References
[1] AMX Mod X project. http://www.amxmodx.org/.
[2] D. Andersen, H. Balakrishnan, N. Feamster, T. Koponen,

D. Moon, and S. Shenker. Accountable Internet protocol
(AIP). In Proceedings of the ACM SIGCOMM Conference (SIG-
COMM), Aug. 2008.

[3] K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos,
P. Gaudry, A. Kruppa, P. L. Montgomery, D. A. Osvik, H. te
Riele, A. Timofeev, and P. Zimmerman. Factorization of a 768-
bit RSA modulus. http://eprint.iacr.org/2010/
006.pdf.

[4] K. Argyraki, P. Maniatis, O. Irzak, and S. Shenker. An account-
ability interface for the Internet. In Proceedings of the IEEE

15

International Conference on Network Protocols (ICNP), Oct.
2007.

[5] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-
enforced deterministic parallelism. In Proceedings of the
USENIX Symposium on Operating System Design and Imple-
mentation (OSDI), Oct. 2010.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of vir-
tualization. In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), Oct. 2003.

[7] N. E. Baughman, M. Liberatore, and B. N. Levine. Cheat-proof
playout for centralized and peer-to-peer gaming. IEEE/ACM
Transactions on Networking (ToN), 15(1):1–13, Feb. 2007.

[8] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault
tolerance. ACM Transactions on Computer Systems (TOCS),
14(1):80–107, 1996.

[9] C. Chambers, W. Feng, W. Feng, and D. Saha. Mitigating infor-
mation exposure to cheaters in real-time strategy games. In Pro-
ceedings of the ACM International Workshop on Network and
operating systems support for digital audio and video (NOSS-
DAV), June 2005.

[10] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic
program analysis from execution in virtual environments. In
Proceedings of the USENIX Annual Technical Conference, June
2008.

[11] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield. Remus: High availability via asynchronous virtual
machine replication. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), Apr.
2008.

[12] J. Dabrowski and E. V. Munson. Is 100 milliseconds too fast? In
Proceedings of the ACM SIGCHI Conference on Human Factors
in Computing Systems (CHI), Apr. 2001.

[13] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Determinis-
tic shared memory multiprocessing. In Proceedings of the ACM
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), Mar. 2009.

[14] R. Dingledine, M. J. Freedman, and D. Molnar. Peer-to-Peer:
Harnessing the Power of Disruptive Technologies, chapter Ac-
countability. O’Reilly and Associates, 2001.

[15] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M. Chen.
ReVirt: Enabling intrusion analysis through virtual-machine
logging and replay. In Proceedings of the USENIX Symposium
on Operating System Design and Implementation (OSDI), Dec.
2002.

[16] G. W. Dunlap, D. Lucchetti, P. M. Chen, and M. Fetterman. Ex-
ecution replay for multiprocessor virtual machines. In Proceed-
ings of the ACM/USENIX International Conference on Virtual
Execution Environments (VEE), Mar. 2008.

[17] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.
Terra: A virtual machine-based platform for trusted computing.
In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), Oct. 2003.

[18] A. Haeberlen. A case for the accountable cloud. In Proceedings
of the ACM SIGOPS International Workshop on Large-Scale
Distributed Systems and Middleware (LADIS), Oct. 2009.

[19] A. Haeberlen, P. Aditya, R. Rodrigues, and P. Druschel. Ac-
countable virtual machines. Technical Report 2010-3, Max
Planck Institute for Software Systems, Sept. 2010.

[20] A. Haeberlen, I. Avramopoulos, J. Rexford, and P. Druschel. Ne-
tReview: Detecting when interdomain routing goes wrong. In
Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI), Apr. 2009.

[21] A. Haeberlen, P. Kuznetsov, and P. Druschel. PeerReview: Prac-
tical accountability for distributed systems. In Proceedings of
the ACM Symposium on Operating Systems Principles (SOSP),
Oct. 2007.

[22] A. Haeberlen, P. Kuznetsov, and P. Druschel. PeerReview: Prac-
tical accountability for distributed systems. Technical Report
2007-3, Max Planck Institute for Software Systems, Oct. 2007.

[23] G. Hoglund. 4.5 million copies of EULA-compliant spyware.
http://www.rootkit.com/blog.php?newsid=358.

[24] G. Hoglund and G. McGraw. Exploiting Online Games: Cheat-

ing Massively Distributed Systems. Addison-Wesley, 2007.
[25] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating

systems with time-traveling virtual machines. In Proceedings of
the USENIX Annual Technical Conference, Apr. 2005.

[26] B. W. Lampson. Computer security in the real world. In Pro-
ceedings of the Annual Computer Security Applications Confer-
ence (ACSAC), Dec. 2000.

[27] P. Laskowski and J. Chuang. Network monitors and contract-
ing systems: competition and innovation. In Proceedings of the
ACM SIGCOMM Conference (SIGCOMM), Sept. 2006.

[28] D. Lee, M. Said, S. Narayanasamy, Z. Yang, and C. Pereira.
Offline symbolic analysis for multi-processor execution replay.
In Proceedings of the IEEE/ACM International Symposium on
Microarchitecture (MICRO), Dec. 2009.

[29] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M.
Chen, and J. Flinn. Respec: Efficient online multiprocessor re-
play via speculation and external determinism. In Proceedings
of the ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
Mar. 2010.

[30] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda. TrInc:
Small trusted hardware for large distributed systems. In Pro-
ceedings of the USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI), Apr. 2009.

[31] N. Michalakis, R. Soulé, and R. Grimm. Ensuring content in-
tegrity for untrusted peer-to-peer content distribution networks.
In Proceedings of the USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), Apr. 2007.

[32] C. Mönch, G. Grimen, and R. Midtstraum. Protecting online
games against cheating. In Proceedings of the Workshop on Net-
work and Systems Support for Games (NetGames), Oct. 2006.

[33] J. Newsome and D. Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on com-
modity software. In Proceedings of the Annual Network and
Distributed Systems Security Symposium (NDSS), Feb. 2005.

[34] T. Okamoto. A fast signature scheme based on congruential
polynomial operations. IEEE Transactions on Information The-
ory, 36(1):47–53, 1990.

[35] PunkBuster web site. http://www.evenbalance.com/.
[36] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and

P. Khosla. Pioneer: Verifying code integrity and enforcing un-
tampered code execution on legacy systems. In Proceedings of
the ACM Symposium on Operating Systems Principles (SOSP),
Oct. 2005.

[37] A. Smith. ASUS releases games cheat drivers.
http://www.theregister.co.uk/2001/05/10/
asus releases games cheat drivers/, May 2001.

[38] Valve Corporation. Valve anti-cheat system (VAC). https:
//support.steampowered.com/kb article.php?
ref=7849-RADZ-6869.

[39] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and
B. Weissman. ReTrace: Collecting execution trace with vir-
tual machine deterministic replay. In Proceedings of the Annual
Workshop on Modeling, Benchmarking, and Simulation (MoBS),
June 2007.

[40] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin.
Improving cost, performance, and security of memory encryp-
tion and authentication. ACM SIGARCH Computer Architecture
News, 34(2):179–190, 2006.

[41] J. Yan and B. Randell. A systematic classification of cheating in
online games. In Proceedings of the Workshop on Network and
Systems Support for Games (NetGames), Oct. 2005.

[42] S. Yang, A. R. Butt, Y. C. Hu, and S. P. Midkiff. Trust but
verify: Monitoring remotely executing programs for progress
and correctness. In Proceedings of the ACM SIGPLAN Annual
Symposium on Principles and Practice of Parallel Programming
(PPoPP), June 2005.

[43] A. R. Yumerefendi and J. S. Chase. Trust but verify: Account-
ability for Internet services. In Proceedings of the ACM SIGOPS
European Workshop, Sep 2004.

[44] A. R. Yumerefendi and J. S. Chase. Strong accountability for
network storage. ACM Transactions on Storage (TOS), 3(3):11,
Oct. 2007.

16

