
Fine-grained Transaction Scheduling in Replicated Databases
via Symbolic Execution

Pedro Raminhas
INESC-ID/Instituto Superior Técnico

University of Lisbon
pedro.raminhas@tecnico.ulisboa.pt

Miguel Matos
INESC-ID/Instituto Superior Técnico

University of Lisbon
mm@gsd.inesc-id.pt

Paolo Romano
INESC-ID/Instituto Superior Técnico

University of Lisbon
romano@inesc-id.pt

ABSTRACT
Nowadays, the majority of modern Internet services use databases
to store relevant data. These services tend to have strong scalabil-
ity, high availability and fault tolerance requirements that created
a strong urge for designing highly efficient database replication
techniques. However, state of the art replication schemes that offer
strong consistency guarantees introduces non-negligible costs to
ensure consistent state among all the replicas, which greatly limits
systems’ parallelism due to a coarse grained transaction scheduling.
Our goal is to leverage Symbolic Execution to obtain in an auto-
matic and fine-grained way the transactions’ data access patterns
to deterministically and efficiently schedule transactions.

KEYWORDS
Database Replication, Transaction Scheduling, State Machine Repli-
cation, Symbolic Execution, SAT Solver

1 INTRODUCTION
Nowadays, databases are the norm to store relevant data, like an
inventory of an online store. These services tend to have strong
requirements for what concerns scalability, high availability and
fault tolerance, which created a strong urge in the database commu-
nity to design efficient database replication techniques. In an ideal
scenario, replication allows tolerating crashes of individual repli-
cas while increasing the perceived system availability by placing
multiple copies of applications’ data across failure-independents
machines. However, state of the art replication schemes still incurs
non-negligible costs in order to ensure that the state maintained by
the various replicas is properly synchronized. These overheads are
even more exacerbated in strong consistency scenarios, i.e. where
applications must guarantee a consistent state among all replicas.

A typical approach to ensure consistency in replicated system
is the so-called Two-Phase Commit (2PC) [1]. 2PC encompasses,
as the name suggests, two phases: an agreement phase where the
coordinator sends the set of locks to be acquired by each replica,
followed by a confirmation phase where the coordinator sends an
acknowledgement/rollback message according to the successful
replicas’ lock acquisition. However, 2PC is notably known to in-
cur distributed deadlocks or in case of timeout usage, transaction
starvation.

State Machine Replication (SMR) was introduced to overcome
the aforementioned limitations. In a nutshell, SMR is based on an
order-then-execute approach. In each round, replicas first reach an

EuroDW’18, April 2018, Porto, Portugal
2018.

agreement using some consensus protocol, on a totally ordered set
of (deterministic) operations to be executed at all replicas. Next, the
set of operations are executed independently at each replica in an
order that is consistent with the total order established during the
agreement phase.

Since the actual order of execution may differ between two repli-
cas due to a myriad of causes, e.g. network latency, different hard-
ware or different scheduling policies, replicas’ internal state may
end up diverging. Thus, to avoid inconsistency, the system must en-
sure that transactions executing at different replicas are serialized
in the same order.

Calvin [13] ensures the same serialization order by estimating
transactions’ data access patterns through a reconaissance-phase,
i.e. a single-threaded execution of the application before actually
executing it. Using the estimation of the data access patterns, Calvin
acquires the required locks before executing transactions. Thus,
guaranteeing deterministic state changes in all replicas. However,
the reconaissance-phase implies that the application must be run
twice and does not provide any correctness guarantees: values
previously read may have changed meanwhile, which makes trans-
actions to rollback.

An alternative approach to overcome the aforementioned limita-
tions is the usage of the concept of conflict classes, as proposed by
Kemme et. al [6]. This way, transactions that conflict, i.e. belong to
the same conflict class, are serialized in the same order, whereas
transactions that belong to different conflict classes can execute in
parallel, thus delivering maximum throughput while maintaining
consistency among replicas. Unfortunately, current schemes for
devising conflict classes are far from optimal. They either rely on
the programmer input, which is both not optimal and hard to do;
or in automatic schemes that provide coarse-grained classes by
typically acquiring locks whenever a table is accessed. Thus leading
to either incorrect programs or poor parallelism degree.

This work addresses the aforementioned limitations of SMR-
based solutions by providing a fine-grained estimation of transac-
tions’ conflict classes in an autonomous and accurate way without
the need for executing them (unlike Calvin [13]) or any apriori
knowledge on the transactions conflict classes (unlike the solution
proposed by [6]). This is done recurring to a Symbolic Execution
(SE) engine [2, 4], such as Java Path Finder [4].With the fine-grained
information provided by SE , we are investigating mechanisms to
efficiently schedule transactions’ relying on both locking and de-
terministically scheduling mechanisms.



EuroDW’18, April 2018, Porto, Portugal Pedro Raminhas, Miguel Matos, and Paolo Romano

2 RELATEDWORK
As this work targets Database Replication, specifically SMR, a well-
known technique to build fault-tolerant systems. It clearly has
relations to works [7, 10] that totally-order conflicting requests
and avoid synchronization costs for commutative operations. Also,
works [5, 9] that optimistically deliver and execute operations be-
fore the final order provided by the consensus arrive, which reduces
latency if the final order and optimistic order match.

This work is also included in a set of works that investigate
how to avoid conflicts between operations and parallelize non-
conflicting operations. Clements et. al proposed COMMUTER [3],
a commutative rule for OS Kernels that allows developers to de-
fine an interface which states which operations do conflict, and it
provides an operation order that maximizes software scalability.
Shapiro et. al [12] defined CRDT, a data structure which can be repli-
cated across multiple computers in a network where the replicas
can be updated independently and concurrently without any coor-
dination. However, if conflicts do arise, conflicts are solved recur-
ring to costly merging mathematical operations. Finally, SYMPLE
[11], a system for performing MapReduce-style group by-aggregate
queries that automatically parallelizes Users Defined Aggregations
using Symbolic Execution. The unresolved dependencies are treated
as symbolic values and evaluated at run-time using the concrete
input.

3 APPROACH
Our goal is to fill an important gap in the literature: enhanc-
ing the parallelism of SMR-based solutions through the us-
age of fine-grained conflict classes while guaranteeing a de-
terministic transaction schedule among all the replicas.

This is done recurring to SE, a technique originally developed
for software testing (but used also in other domains, like security),
which allows for determining every possible execution branch of a
code block, based on the value of its input parameters. This is an
idea, to the best of our knowledge, still unexplored in the literature:
to use SE techniques to have a fine-grained information about
the conflict classes accessed. The information extracted, offline,
via SE will be used to build an on-line deterministic transaction
scheduler, which can be exploited in SMR-based replication schemes
to ensure that replicas execute transactions according to the same
serialization order while maximizing parallelism of non-conflicting
transactions.

Figure 1 depicts the architecture of the system that we are cur-
rently developing. Instead of having a single master that uses repli-
cas as its failover mechanism, we target a SMR system where each
replica maintains a complete copy of the data.

In a nutshell, our system is composed by 3 modules: SE engine,
Scheduler and ContentionManager. The SE engine is responsible by,
at compile-time, to analyze the application’s stored procedures and
retrieve the possible execution paths according to possible inputs.
The Scheduler is responsible to choose the best scheduling policy for
a given batch of transactions by consulting the ContentionManager
module, which is responsible to determine the existence of conflicts
based on the information of transactions currently executing.

We gather the information of the possible execution paths and
their read and write-set recurring to a module that we developed

Batch of Transactions

Consensus SE Engine

Compile-Time

Run-Time

Scheduler Contention
Manager

Conflict
Classes

Check Conflicts

Check
Executing

Transactions

Response

Executing
Transactions

Execute Enqueue

Tx 1 <inputs>
Tx 2 <inputs>

...
Tx n <inputs>

Figure 1: Architecture of System

on top of the SE engine. Its responsibility is to perform an one-
time offline analysis of the application code and assign variables
of operations that retrieve or change the underlying store, such
as a Key-Value Store (KV), as symbolic variables. Finally, still at
compile-time, the SE engine symbolically analyzes the application
code abstracting these operations by just gathering the associated
symbolic variables. The final result is that for each possible execu-
tion path, the SE engine retrieves the associated path constraints
alongside the possible reads and writes performed based on the
transactions’ inputs.

Since, the number of possible paths can be very large, and more-
over, there could be situations where paths can be compressed due
to the fact of being sub-parts of other paths or leading to the same
read/write-set. We are investigating how to model the information
provided by SE to: 1) eliminate duplicate paths or paths that lead
to the same read/write-set (in practice representing the same trans-
actional access) and 2) accelerate path exploration by modeling it
as a structure, e.g. a graph, that allows to efficiently explore paths
without re-reading previously explored paths.

Then, at run-time, all the replicas reach an agreement via a
consensus algorithm, typically a Paxos variant, in the order of
transactions to be executed by all the replicas. Then, the Scheduler
module deterministically picks a transaction from the batch of
transactions retrieved from consensus and asks the Contention
Manager module if the transaction can execute with a determined
set of inputs.

Currently, we are investigating howwe can develop a lightweight
efficient Contention Manager module recurring two different mech-
anisms, namely:

1) Solver - By using a SAT solver, e.g. Microsoft Z3, we aim to
first, transform the information provided by the SE engine into
boolean conditions that encompass each transaction’s path condi-
tions as well as the duration of each transaction. Then, at run-time,
the batch of transactions received is deterministically scheduled
by the SAT solver in order to provide the maximum parallelism
possible. The Solver-variant should use run-time information to
predict transactions’ duration and use it internally to efficiently
schedule transactions. However, we envision that different repli-
cas can perceive different transactions’ duration, thus leading to
different serialization orders. To ensure that all the replicas use the
same transaction duration, we are investigating the implications of



Fine-grained Transaction Scheduling in Replicated Databases via Symbolic Execution

EuroDW’18, April 2018, Porto, Portugal

replicas having to engage periodically in a consensus protocol to
determine transactions’ duration.

2) Lock Table - By using a Lock Table, we aim to leverage the
information provided by the SE engine to check before a transaction
executes if it can acquire all the necessary locks. Thus, efficiently
and deterministically execute transactions from the batch with the
goal of maximizing the parallelism. To achieve this, the information
provided by the SE Engine must be manipulated in a way that the
respective path conditions and the read and write-set are converted
to read and write locks in the underlying module.

We are also investigating the idea of, at run-time, use the in-
formation of the currently held locks and the transactions that
are present in the batch of transactions to deterministically choose
transactions that maximize parallelism. We will have in account not
only the necessary locks to be acquired but also the dependencies
between transactions, an idea recently proposed by Tian et. al [14].

We expect that the Solver-based solution will incur larger over-
heads than the Lock Table due to the fact that solving boolean
expressions is well known to be costly. However, we are investi-
gating how to leverage the Solver approach to deterministically
analyze and devise the best order among transactions in a batch.
We are also investigating the use of scope saving features to reduce
the time taken to solve a set of constraints.

Finally, although one expects that the Lock Table will be faster
than the Solver-based solution, we envision that in a scenario where
transactions have to acquire a large set of locks this might not be
true. We intend to further evaluate this premise in the future.

4 CONCLUSION AND FUTURE DIRECTION
This paper briefly introduces an ongoing work where we are devel-
oping a scheduling algorithm for replicated databases that leverages
SE to infer the set of path constraints and read and write-set as-
sociated with each execution. We already integrated our module
with Java Path Finder [4], thus we already are able to perform static
analysis and infer the constraints associated to each path, as well
as the read and write-sets performed according to a given set of
inputs. Currently, we are developing a prototype of the Contention
Manager based on the Solver approach, which allows to have fine-
grained conflict classes, at the cost of solving costly boolean con-
straints. We are further investigating techniques that allow solving
constraints in a lightweight and deterministic fashion. We intend to
compare it to the Lock Table approach, which we are also currently
developing, to infer the most efficient scheme.

Finally, further extension of this work seeks to understand if
this technique can be extended also to relational databases. More
precisely, we intend to investigate how to leverage SE performed at
the code level, at the Schema level or even recurring to a Symbolic
Execution engine that tests SQL code [8] to achieve a fine-grained
conflict detection than the one present in today’s systems, i.e., at
the table level.

ACKNOWLEDGMENTS
This work was supported by Portuguese funds through Fundação
para a Ciência e Tecnologia via project PTDC/EEISCR/1743/2014.

REFERENCES
[1] P. A. Bernstein, V. Hadzilacos, and N. Goodman. 1987. Concurrency Control and

Recovery in Database Systems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

[2] C. Cadar, D. Dunbar, and D. Engler. 2008. KLEE: Unassisted and Automatic
Generation of High-coverage Tests for Complex Systems Programs (OSDI’08).

[3] Austin T. Clements, M. Frans Kaashoek, N. Zeldovich, Robert T. Morris, and E.
Kohler. 2013. The Scalable Commutativity Rule: Designing Scalable Software for
Multicore Processors. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (SOSP ’13).

[4] K. Havelund and T. Pressburger. 1999. Model Checking Java Programs Using
Java PathFinder. 2 (10 1999).

[5] S. Hirve, R. Palmieri, and B. Ravindran. 2014. Archie: A Speculative Replicated
Transactional System. In Proceedings of the 15th International Middleware Confer-
ence (Middleware ’14).

[6] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. 1999. Processing Transactions
over Optimistic Atomic Broadcast Protocols. In Proceedings of the 19th Interna-
tional Conference on Distributed Computing Systems, Austin, TX, USA, May 31 -
June 4, 1999. 424–431.

[7] Leslie Lamport. 2005. Generalized Consensus and Paxos. Technical Report.
[8] M. Marcozzi, W. Vanhoof, and J. Hainaut. 2015. A Direct Symbolic Execution of

SQL Code for Testing of Data-Oriented Applications. CoRR (2015).
[9] R. Palmieri, F. Quaglia, and P. Romano. 2011. OSARE: Opportunistic Speculation

in Actively REplicated Transactional Systems. In Proceedings of the 2011 IEEE
30th International Symposium on Reliable Distributed Systems (SRDS ’11).

[10] Fernando Pedone and André Schiper. 2002. Handling message semantics with
Generic Broadcast protocols. Distributed Computing 15, 2 (2002), 97–107.

[11] V. Raychev, M. Musuvathi, and T. Mytkowicz. 2015. Parallelizing User-defined
Aggregations Using Symbolic Execution. In Proceedings of the 25th Symposium
on Operating Systems Principles (SOSP ’15).

[12] S. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. 2011. Conflict-free Repli-
cated Data Types. In Proceedings of the 13th International Symposium on Stabi-
lization, Safety, and Security of Distributed Systems (SSS).

[13] A. Thomson, T. Diamond, S. Weng, K. Ren, P. Shao, and D. Abadi. 2012. Calvin:
Fast Distributed Transactions for Partitioned Database Systems. In Proceedings of
the 2012 ACM SIGMOD International Conference on Management of Data (SIGMOD
’12).

[14] B. Tian, J. Huang, B. Mozafari, and G. Schoenebeck. 2018. Contention-Aware
Lock Scheduling for Transactional Databases (VLDB).


	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	4 Conclusion and Future Direction
	References

