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Abstract

Topological worms, such as those that propagate by fol-
lowing links in an overlay network, have the potential to
spread faster than traditional random scanning worms be-
cause they have knowledge of a subset of the overlay nodes,
and choose these nodes to propagate themselves; and also
because they can avoid traditional detection mechanisms.
Furthermore, this worm propagation strategy is likely to be-
come prevalent as the deployment of networks with a sparse
address space, such as IPv6, makes the traditional random
scanning strategy futile.

We present a novel approach for containing topological
worms based on the fact that some overlay nodes may not
have common vulnerabilities, due to their platform diver-
sity. By properly reorganizing the overlay graph, this can
lead to the containment of topological worms in small is-
lands of nodes with common vulnerabilities that only have
knowledge of themselves or nodes running on distinct plat-
forms. We also present the design of Verme, a peer-to-peer
overlay based on Chord that follows this approach, and
VerDi, a DHT layer built on top of the Verme routing over-
lay.

Simulations show that Verme and VerDi have a low over-
head when compared to Chord’s corresponding layers, and
that our new overlay design helps containing, or at least
slowing down the propagation of topological worms.

1. Introduction
In recent years, we have witnessed the outbreak of sev-

eral Internet worms that have not only caused inconvenience
to many users, but also a large societal impact. Many of
these are instances of “random scanning worms”. This
means that once the worm has infected a host, it propagates
itself by probing random IP addresses for new nodes to in-
fect. In some cases this choice of IP addresses is biased by
some heuristic that increases the chances of finding an IP

address that is in use, like choosing other IP addresses in
the same network as the infected host [21].

An alternative strategy would be for the worm to dis-
cover and try to infect a set of nodes whose IP addresses
are obtained either before the deployment or dynamically as
the worm is propagated. An instance of the latter case are
topological worms. These worms choose their next target to
infect by following links in a certain graph, which can, for
instance, be formed by overlay links in an application-level
network (e.g., a multicast overlay).

We argue that topological worms are likely to become
more and more prevalent. With the deployment of IPv6,
and given its sparse address space, it would be futile for
a worm to propagate through blind IP scanning, as many
authors pointed out [28]. Thus worm writers will have to
devise more clever strategies to choose target nodes, and
following a network topology is a natural candidate.

Topological worms are also likely to propagate faster
than traditional worms, given that they do not have to probe
for random IP addresses, and therefore are more likely to
escape prevention mechanisms that are based on “immu-
nizing” nodes against a bad input by disseminating an alert
message [7], since the worm might reach other nodes faster
than the alert.

An important instance of a topological worm that we ad-
dress in this paper is a peer-to-peer (p2p) worm [27]. These
are topological worms that spread through a p2p overlay.
Given the size of p2p systems, they have the potential to tar-
get a large node population. Furthermore, p2p worms can
avoid traditional detection mechanisms, which are based on
anomalous IP traffic patterns [16, 20] (as they do not gener-
ate many failed connections and can disguise as normal p2p
traffic), and avoid being detected by current honeypots [16]
(surveillance machines for early warning and detection that
listen in unused IP addresses).

Even though we have not seen specific instances of fast-
spreading topological worms, there is some indication that
this is a pending problem. For instance, there have been re-



ports of vulnerabilities in p2p client applications like eDon-
key, KaZaA and BitComet that would allow for the execu-
tion of arbitrary code on the client [1, 2, 4]. Also, there have
been some instances of viruses that use file sharing overlays
to assist in their propagation by making themselves avail-
able for download [3].

In previous work, researchers have pointed out the ex-
istence of this problem [21, 27], and even quantified how
much faster p2p worms can propagate using simulations [5]
and analysis [25]. In this paper we take the next step of
proposing that overlays should be modified to incorporate
defenses that contain or at least slow down the propagation
of topological worms.

We begin by presenting a series of general principles that
should guide the design of overlays to achieve the goal of
containing topological worms. Then we apply these prin-
ciples to the design of a new p2p overlay called Verme.
Verme is an extension to Chord [23], designed to contain
p2p worms in small “islands” of nodes that may have com-
mon vulnerabilities (e.g., because all nodes in that island
have the same platform). We designed Verme such that
nodes inside each island do not have knowledge of other
nodes with common vulnerabilities. As a consequence, the
worm can be contained within the island. Furthermore,
Verme is designed to maintain the good properties of Chord,
namely its good lookup performance and low overhead. We
also built a distributed hash table (DHT) layer called VerDi
on top of the Verme routing overlay.

In the design of our systems a series of interesting prob-
lems have arisen, like how to address impersonation attacks
(where an attacker could join the overlay with identities of
the wrong platform type, and use them to obtain addresses
of nodes it should not have access to). In this paper we also
discuss possible ways to address such problems.

Performance simulations show that both Verme and its
DHT layer (VerDi) do not introduce a significant over-
head when compared to Chord, and the corresponding DHT
(DHash). Our simulations also show that Verme can be ef-
fective in delaying the propagation speed when compared
to a p2p worm that spreads through a conventional over-
lay. While not claiming to have found a panacea, our new
overlay design contributes to containing, or at least slowing
down the propagation of topological worms, and raising the
difficulty level for writing them.

The remainder of the paper is organized as follows. Sec-
tion 2 presents related work. Section 3 presents an overview
of the problem being addressed and the general solution.
Section 4 presents our new p2p routing overlay, Verme, and
Section 5 presents the DHT built on top of it, VerDi. Sec-
tion 6 discusses some open issues in our design. Section 7
presents our experimental evaluation. We conclude in Sec-
tion 8.

2. Related work
The containment of p2p worms is a recent research area.

One of the first papers to point out the existence of this
problem was the work of Zhou et al. [27]. In this work-
shop paper, the authors motivate the problem, and propose
as their main research direction populating p2p overlays
with guardian nodes. These are special nodes that are run-
ning worm-detection software (which was later proposed in
a separate paper [7]) that tracks how information from un-
trusted sources propagates itself in memory. These have to
be special purpose nodes, since this detection considerably
slows down the execution. This differs from our vision of
a true p2p system where all nodes have common respon-
sibilities, and where the overlay graph is modified to con-
tain the propagation of the worms. In this paper, Zhou et
al. also mention how the existence of immune nodes could
slow down the propagation, but do not propose any reorga-
nization of the overlay to achieve contention.

Previously, a number of other papers had identified the
existence of a critical number of infected hosts before which
a random scan worm spreads slowly [18], and showed the
effect that a hit list (collection of vulnerable hosts gathered
previously) may have in minimizing the time to achieve that
critical point [21]. P2p systems offer not only a very accu-
rate hit list collection field, but also an almost optimal in-
fection strategy, because by following the overlay structure
the number of infection collisions (i.e. two infected hosts
wasting time trying infect the same host) is kept to a mini-
mum.

Yu et al. [25] propose a model for p2p worms, and an-
alyze the propagation of these worms depending on the at-
tack model (e.g., whether the worm uses the overlay topol-
ogy or not), and on the structure of the overlay. They point
out that these worms propagate much faster than traditional
scanning worms, and that unstructured overlays can also
lead to faster propagation. They do not propose, but men-
tion as future work, the design of defense systems.

Ramachandran and Sikdar [19] have proposed an analyt-
ical model for the dissemination of worms in p2p overlays.
They conclude that an accurate model needs to take into ac-
count user characteristics and communication patterns.

Chen and Gray [5] have also studied the propagation of
worms in p2p overlays using simulations, but, unlike the
previous two papers, they have considered a dynamic peer
population instead of a static overlay graph. They also pro-
pose a detection mechanism based on the observation that
worms distort node popularity, reflected in changes in con-
nection rates.

We contrast with the previous papers in that they focus
on a better understanding of the problem using models and
simulations, whereas our proposal focuses on the defenses
required to contain p2p worms.

Phoenix [15] is a replication protocol that places data



Figure 1. Generic structure of an overlay
graph designed for worm containment

on a set of servers running on different platforms to reduce
the probability of correlated failures and improve efficiency.
This is the same guiding principle that our proposal takes
advantage of, but it is used in our case for solving a different
problem, which is the containment of topological worms.

Our own workshop paper [12] presented an early version
of the design presented in this paper but had not shown any
implementation results yet.

3. Overview
In this section we formulate our problem statement and

give an overview of our general solution.
Our goal is to redesign overlay networks in such a way

that they contain or slow down the propagation of worms
that use the overlay topology to choose the next target node
to infect.

The simplest possibility for designing such a worm
would be to exploit a vulnerability in the overlay applica-
tion, and use the routing state maintained by the application
to choose the next target to infect. However, the overlay
application does not have to contain a vulnerability to write
such a worm. A worm that is not related to the overlay
can use knowledge from this application (e.g., by inspect-
ing open TCP connections) to choose where to propagate.

Our proposal takes advantage of the fact that overlays
contain many different types of nodes, running on differ-
ent platforms, or using different versions of overlay client
software. This diversity can be used to contain the propaga-
tion of p2p worms, since the vulnerabilities in one particular
implementation or platform may not affect the entire pop-
ulation. For instance, the SQLSlammer worm only affects
Windows machines running SQLServer 2000 applications.
In case the vulnerability is found in the overlay applications
it is also not likely to be present in different implementa-
tions (e.g., different BitTorrent clients).

In our presentation, instead of referring to a vague def-

inition of platform (which may include different concepts
like hardware, OS, or even services and applications that
are running), we will introduce the notion of type, where
we define that two nodes are of the same type if and only if
they may have common vulnerabilities.

Given the above observations, we propose that the struc-
ture of the overlay should be modified such that the overlay
graph forms small “islands” of the same type. The nodes in
each island may be adjacent to other nodes from the same
island, or to nodes from islands of distinct types, but may
not be adjacent to nodes from other islands of the same type.

Figure 1 gives an example of a system with two types
of nodes. The overlay graph forms small islands of nodes
of the same type (enclosed within the dashed circles). The
nodes within an island may have edges among themselves
(i.e., they may be present in each other’s routing tables)
which may lead to the propagation of a topological worm
within an island. Nodes may also have edges to nodes that
belong to distinct islands of other types, but never to nodes
of distinct islands of the same type. Therefore a topologi-
cal worm will be confined to an island, assuming it is only
trying to follow overlay links.

Modifying the overlay graph is not enough to succeed
in preventing the propagation of topological worms. For
instance, a worm could use overlay maintenance messages
or perform lookups to discover the network addresses of
nodes of the same type from distinct islands.

4. Verme
In this section we present the design of Verme, an exten-

sion of Chord [23] that follows the design principles pre-
sented above.

4.1. Assumptions

In this presentation we rely on some assumptions that we
will revisit in subsequent sections to discuss how reasonable
they are or how they can be enforced.

First, we assume that each node is assigned a certificate
that binds its node identifier to the public key that speaks
for its principal, and the platform type.

To simplify our presentation, we will assume that nodes
may be of two distinct types without common vulnerabili-
ties (generalizing our design to support more than two types
of nodes is discussed elsewhere [11]).

4.2. Chord overview

Chord [23] is a peer-to-peer routing overlay that provides
a scalable lookup primitive that allows applications to find
data stored in a peer-to-peer system.

In Chord nodes have identifiers that are 160-bit integers
assigned in such a way that they are uniformly distributed
(e.g., as the output of a SHA-1 function applied to the net-
work address and port number of the node).
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Figure 2. Identifier structure in Verme

Chord designates the node whose identifier immediately
follows a key (called the successor node) as responsible for
that key. Lookups map a 160-bit key (the identifier of the
data item) to the network address of the successor of that
key. In some cases where the layer above Chord requires
several replicas for each item stored in the system, lookups
will return a list of n successors of the key instead of only
the immediate successor.

Each Chord node maintains a small amount of routing
state (small enough to keep its maintenance overhead low).
This consists of a list of successors (i.e., the identifiers and
IP addresses of the nodes that follow it in the ring), the
node’s predecessor, and a finger table, consisting of the IP
addresses and identifiers of nodes that follow it at power-of-
two distances in the identifier space. Chord’s maintenance
protocols work hard to keep the pointer to the next succes-
sor up-to-date, by running a stabilization routine that deter-
mines if there were any membership changes in the vicinity
of the node. On the other hand, the remaining routing state
(like finger table entries) can be refreshed in the background
by looking up the appropriate id infrequently.

Lookup requests travel through a sequence of nodes (ei-
ther recursively orn iteratively), where each node in this se-
quence forwards the request to (or answers the client with)
the node from its finger table with highest id still smaller
than the desired key. The lookup will conclude when the
successor of the id is reached, which happens with high
probability after O(log N) routing hops.

In Section 5 we will give examples of other layers that
use this routing overlay, in particular a DHT.

4.3. Id assignment

The id assignment scheme used by Chord does not obey
the principles mentioned in Section 3, since the list of suc-
cessors of any given node will typically contain nodes of
both types. Therefore we modify the way ids are assigned
such that the ring is divided into sections, where each sec-
tion only contains the ids of nodes of a particular type.
Furthermore, neighboring sections must always belong to
different types. This will cause nodes of the same type
from the same section to have knowledge about themselves
(through their successor lists) but no knowledge of nodes of
the same type in other sections (provided that the number
of nodes in each section is large enough that successor lists
never span more than two sections).

Verme’s id assignment achieves this by dividing the node
id in three parts, as depicted in Figure 2. The lower bits are
assigned randomly, and the number of bits employed here
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Figure 3. Finger and successor pointers

specifies the length of the section. By adjusting this number
properly we can ensure that, with high probability, succes-
sor lists do not cross more than one section. The middle
bits are fixed according to the node type. With our simpli-
fying assumption of having only two types in the system we
could use a single bit. The higher bits are also assigned ran-
domly, and their concatenation with the node type specifies
the section number that the node is in.

4.4. Successors and fingers

Each node maintains pointers to a list of successors that
are used and maintained just like in Chord. However, finger
table entries must be modified to point to a node that is not
of the same type as the node itself, to respect the design
principles presented in Section 3.

Thus we need to change the way that fingers are defined.
Instead of a finger table entry pointing to the node that fol-
lows it at power-of-two distances in the identifier space, the
finger entry will now correspond to the first successor of the
ids at the same distance plus the length of a section (except
for nearby nodes that are either in same section where the
node is in, or in the subsequent section of nodes of the op-
posite type where adding a section length is not required),
so that the node that follows it belongs to the opposite type.
Figure 3 shows a Verme ring with the successors and fingers
of a node.

There is a corner case that need to be considered, which
happens when the id falls between the last node in the sec-
tion and the end of that section (in which case the finger
table entry would be the first node in the next section of the
same type). In this case we chose to assign the responsi-
bility to the predecessor of that id, instead of the successor.
The problem with this design choice is that the last node in
each section will have a higher load than in Chord, which
is compensated by a lower load at the first node of each
section. However, fixing this slight load imbalance would
require adding a substantial amount of complexity to the
design of the system (e.g., to skip the neighboring section),
which justifies our choice.



4.5. Lookups

Lookup is the central operation provided by the rout-
ing overlay. In Chord (as in most peer-to-peer overlays)
any node in the system can issue a lookup(id) operation.
As mentioned, this returns the address of a node (or set
of nodes) that are responsible for the data with that id (in
Chord these are the successors of the id).

This is used not only by applications, but also in the over-
lay maintenance protocols: finger table entries are refreshed
periodically by performing a lookup to the appropriate point
in the id space; and joins of nodes incoming to the overlay
are also initiated by performing a lookup to the id of the
incoming node, who then contacts its new successor to up-
date its routing information. We will begin by discussing
how lookups are modified for overlay maintenance opera-
tions, and we discuss how upper layers can use lookups in
Section 5.

The current lookup abstraction allows an infected node
to crawl the overlay, by making lookups with different ids,
to obtain addresses to attack. We address this issue by
changing several aspects of the lookup operation. First, the
lookup message must carry the certificate of the node that
is performing the lookup. This will allow the predecessor
of the id to verify the legitimacy of the initiator in look-
ing up this id. When lookups are being used for joining the
overlay or calculating finger table entries, this is straightfor-
ward: the node must verify if it is the successor or a correct
finger of the id in the certificate.

The second aspect we need to address in lookups is that
they cannot be iterative, since many nodes in a lookup path
have the same type as the node performing the lookup.
Therefore we change the lookup to be recursive (i.e., each
node contacts the next node in the lookup path, and the re-
ply travels back through the reverse lookup path). The re-
ply must be encrypted with the public key of the initiator
(present in the certificate sent with the lookup) to keep the
IP address in the reply from being disclosed to the nodes in
the lookup path.

We also rejected the solution of transitive lookups (i.e.,
the forward path is identical to a recursive lookup, but the
replier contacts the initiator directly) because in this case the
lookup request must contain the IP address of the initiator
node, to allow the replier to contact him. This would open
an avenue for an infected node to collect a large number
of IP addresses of any type, simply by inspecting the IP
addresses that are sent through it.

5. Upper layers: VerDi DHT
The layers above the lookup substrate also need to be

modified to preserve the design principles and properties
subjacent to our scheme, like not propagating network in-
formation about peers.

In this section we will focus on a particular layer that

uses the lookup infrastructure: a DHT that supports get and
put operations, similar to the DHash layer built on top of
Chord lookups [8, 9]. The design of the VerDi DHT is based
on the original design of DHash, and it uses Verme as the
routing overlay. We believe that a DHT is representative of
how other layers, or even applications must be adapted.

5.1. DHash overview

DHash exports a simple interface to applications with
two operations:

key = put(value)
value = get(key)

where the key is computed to be the SHA-1 hash of the
value.

In this system data is replicated in the set of n succes-
sors of the identifier of the data item. As an optimization,
a more recent paper has proposed the use of erasure coded
fragments instead of full replicas of the data [9] but we will
not consider that optimization in this paper.

Get and put operations are preceded by a lookup that re-
turns the successor list of the key’s predecessor. Then one
or more of these nodes are contacted directly to store or re-
trieve the data. Another optimization for the get operation
that we did not implement was for the lookup to stop short
of the key’s predecessor provided that enough successors of
the id were returned to reconstruct the original data.

Before returning the output of a get operation to the
client, DHash verifies that the hash of the value returned by
the replica matches the id being looked up (in other words,
the data is self-verifying).

5.2. Replication in VerDi

If we maintained the design of DHash, and only replaced
Chord with Verme in the routing layer, we would still have
a risk of worm propagation because the replicas of the data
may be from the same type of the node making the request.
Therefore an infected node could issue a series of get or
put requests to harvest IP addresses of any type it wishes to
infect.

The first step to address this problem is to change the
way that replicas are assigned in VerDi. Instead of repli-
cating in the n successors of the identifier of the data item,
we make n/2 replicas at that point in the id space, and an-
other n/2 in the same position of the subsequent section of
the ring (of the opposite type). This replication strategy is
depicted in Figure 4.

Again, we addressed the corner case of a data item with
an id that falls between the id of the n

2 th last node in a
section and the end of the section by replicating toward
the predecessors instead of successors, which causes some
load imbalance but avoids a complex design. This implied,
though, a small change to Verme’s maintenance protocols.
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Figure 4. Replication of data items in a DHT

Instead of only trying to keep the successor list up-to-date,
Verme also uses the same strategy to maintain a list of pre-
decessors.

Replicating in nodes of both types also has the advantage
of increasing reliability, since a worm outbreak that affects
nodes from one type will not be able to wipe out all copies
of a given object. We intend to further explore the increased
availability and reliability guarantees of our system.

5.3. Integrating routing and fetching

We also need to understand how get and put operations
are performed in VerDi, in particular how to integrate rout-
ing and fetching. We have devised three alternative methods
for the implementation of these operations, that represent
three distinct points in a tradeoff between performance and
security (in terms of the ability to contain p2p worms).

5.3.1. Alternative 1: Fast-VerDi

The most straightforward way to implement operations in
VerDi is to allow the lookup primitive exported to the upper
layers to return the addresses of the replicas that are of the
opposite type of the node that issued the request. For that
purpose, the lookup operation adds the section length to the
id being looked up if necessary (to avoid returning addresses
of the same type as the initiator). The replier then verifies
if the initiator is of the opposite type before responding (by
checking that the id in the certificate sent along with the
message belongs to the opposite type) dropping the message
otherwise, and encrypts the reply using the public key in
the certificate. The reply travels back through the reverse
lookup path.

Once the initiator node receives this reply and decrypts
it, the get operation is concluded by fetching the data di-
rectly from any of the replicas.

In the case of put operations, after the lookup reply is re-
ceived, the client sends the data to the responsible node (of
the opposite type of the client). After receiving the data, the
responsible node has to send the data to the set of replicas
of the opposite type, to make the data available to all clients

in the overlay (independently of their type). For that, it per-
forms a lookup for the id of the data (or that id plus the
section length) to find a responsible node of the opposite
type to whom a copy of the data is sent.

The main limitation of Fast-VerDi is that it is vulnera-
ble to an impersonation attack. In this attack, a single node
would obtain an identity of the opposite type of the one it
wishes to attack, and issue a series of get or put operations
to random ids to harvest IP addresses and then infect these
nodes. In the next two sections we discuss alternative de-
signs that alleviate this problem.

5.3.2. Alternative 2: Secure-VerDi

In this design we address this problem by combining the
lookup operation with the operations get or put. Thus,
the operation is piggybacked in the lookup message, which
moves recursively until it reaches the predecessor of the
identifier associated with the data. In the case of a get oper-
ation, one of the replicas is chosen to retrieve the data and
the reply travels back through the reverse lookup path. Note
that in this case it is not necessary to fetch the reply from
a particular type of node, and so data does not need to be
replicated in two sections.

In Secure-VerDi, the impersonation attack mentioned in
the previous section is highly limited: Each node only con-
tacts its overlay neighbors (finger and successor entries) and
therefore a single impersonating node would at most be able
to infect the sections corresponding to these nodes (which
are O(log n), hence a relatively small fraction of nodes for
a large overlay).

The price to pay for this additional level of security is
the latency and bandwidth usage for get and put opera-
tions, which imply a costly data transfer for every hop in
the lookup path.

5.3.3. Alternative 3: Compromise-VerDi

We also propose a compromise solution that represents an
intermediate point in the compromise between performance
and security. The idea is to have a single level of indirection
when uploading or downloading the data object. Thus the
data will be relayed by one of the finger table entries of
the initiator of the request, preventing a compromised node
from harvesting IP addresses by performing several DHT
operations.

In more detail, a get operation works as follows. The ini-
tiator of the operation begins by signing a statement vouch-
ing for the fact that it wants to perform the operation. Then
it sends the request, along with this statement and its certifi-
cate to its appropriate finger table entry (who will act as a
relay). This node will then append its own node certificate
to the request, and will make a get operation like in Fast-
Verdi. When the relay receives the data, it forwards it to the
initiator.

This way, in case of an impersonation attack, an infected



node pretending to be of the same type that it wishes to
attack will not be able to proactively harvest IP addresses
by issuing operations, unless it is colluding with one of its
finger table entries, which is difficult to do because of the
size of the overlay and because of the fact that node ids are
random and we envision that they will be difficult to obtain
(so nodes cannot easily try out different ids until it works).
Again, even though such collusion between a node and its
finger would be possible given enough effort to produce two
node ids that are correspond to overlay neighbors, the goal
of significantly raising the bar for building such a p2p worm
has been achieved.

Note that despite this effort to prevent impersonating
nodes from harvesting addresses by proactively issuing
DHT operations, an impersonating node can still passively
listen to requests coming from nodes of whom they are fin-
ger table entries, and use this to record IP addresses of nodes
of the same type. They are, however, limited to the rate at
which their neighbors issue these requests.

6. Discussion
In this section we question the validity of some of the

assumptions made previously, and discuss other issues.

6.1. Sybil attacks

In our design we assumed that each node in the system
obtained a single certificate containing a correct indication
of the type of node.

In the previous section we already discussed how to ad-
dress an impersonation attack, where an infected node joins
the system with a single identity of a type which is different
from the vulnerable type.

However, we still need to limit the number of certificates
that can be issued to a single entity, since an attacker that
populates the system with nodes of arbitrary types under his
control (called a Sybil attack [10]) can still harvest a large
number of addresses.

Issuing such certificates and limiting Sybil attacks are
issues that have been solved with some degree of success
in deployed systems like Credence [24] (by asking join-
ing nodes to download a large file or solve cryptographic
puzzles), and therefore we intend to use the same strategy.
Also, in some cases where the client hardware allows it, we
can use remote attestation to verify the identity and platform
where the client is running.

6.2. Generalizing to other overlays

Even though DHTs are gaining in popularity, many pop-
ular p2p applications are based on unstructured overlays.
The design principles stated in Section 3 can also be applied
to modify the design of unstructured p2p overlays.

For instance, consider the original (unstructured) design
of BitTorrent [6] where a centralized tracker assigns neigh-
bors for nodes to exchange content with.

In this case, and assuming the tracker is not vulnerable to
worm infection (e.g., it will not run any services, run behind
a firewall, etc.), then it will be able to assign neighbors in a
way that forms an overlay graph with the generic structure
of Figure 1, therefore achieving the same goal.

Recently, file sharing systems like BitTorrent and eMule
have incorporated structured DHTs in their design [22]. For
this part of the file sharing system, we could replace their
DHTs with VerDi and obtain the benefits of our scheme.

7. Evaluation
In this section we present an experimental evaluation of

Verme, and compare it to the Chord overlay in which our
design was based.

We implemented Verme by modifying the implementa-
tion of Chord for p2psim [13], a discrete event simulator
written in C++.

The three variants of the VerDi DHT were implemented
based on an incomplete implementation of DHash that was
included in p2psim. The incomplete implementation in-
cluded the get operation and data stabilization routines to
maintain certain replication levels for the data. We added
the put operation and extended DHash to create the three
variants of VerDi.

7.1. Verme overhead

Our first set of experiments evaluates the performance
overhead introduced by our new design features. We be-
gin by discussing the overhead of Verme when compared to
Chord, and subsequently compare VerDi with DHash.

7.1.1. Simulation setup

We used a simulated network of 1740 nodes, with a ma-
trix derived from measuring the inter-node latencies of DNS
servers using the King method [14]. The average round trip
time (RTT) was 198 ms. This matrix was obtained from the
p2psim web site [13].

In both Verme and Chord overlays, each node has 10
successors, each one runs its stabilization function every
30 seconds and its finger stabilization every 60 seconds.
Lookups are issued with random keys by each node at in-
tervals exponentially distributed with a mean of 30 seconds
(the values were chosen based on experiments from [17]
and [23]).

The Verme overlay was configured with 128 sections,
which gives an average of 13 nodes per section and each
node has 10 predecessors. The mean node lifetime took the
following values: 15 minutes, 30 minutes, 1 hour, 4 hours
and 8 hours.

We used the same proportion of nodes of each type. Due
to space constraints, we omit the results with an uneven dis-
tribution of node types. These results show that such de-
ployments cause a slight load imbalance, which would only
become relevant for systems with a very high load.



Figure 5. Comparison of lookup latencies

For each experiment, the simulation ran for 12 hours and
we computed average values. Each simulation was repeated
8 times and we report on the average.

7.1.2. Evaluation results

Figure 5 shows the comparison between the lookup latency
for Chord and Verme. Verme lookups have to be recursive,
whereas Chord lookups may be transitive, where a recur-
sive route is taken by the lookup request, but the reply is
given directly to the initiator. We compared the latency of
Verme with transitive and recursive Chord. In the x-axis we
varied the mean node lifetime, to determine if our results
were affected by node dynamics. The additional overhead
introduced by Verme is noticeable when compared to tran-
sitive Chord, where lookup latencies are 35% lower than in
Verme. Note that the impact of this overhead is minimized
when we take into account the fact that an operation in a
DHT will include both the lookup and the time to down-
load or upload the data. When compared to recursive Chord
the latency of Verme is similar, thus the changes in the fin-
ger assignment and in the lookup strategy did not introduce
a significant overhead. The node dynamics did not affect
the comparison, since all implementations were equally af-
fected by the need to route around failures (every time a
node tried to contact a node that had failed it chose another
neighbor).

In additional experiments, reported in a separate docu-
ment [11], we also show that both lookup failure rates and
the bandwidth used for overlay maintenance and lookups
does not differ significantly between Chord and Verme.

7.2. VerDi overhead

Now we evaluate the overhead of VerDi with respect to
Chord’s DHT layer, DHash. In this set of experiments, the
King data set revealed itself less useful, since we were sim-
ulating data operations, and it did not have reference values
for bandwidth between nodes, so we slightly modified the
setup to use the GT-ITM model [26].

Figure 6 shows the latency for DHT get and put oper-

Figure 6. Latencies for get and put

Figure 7. Bandwidth for get and put

ations in the different systems. The results confirm that
there is a tradeoff between performance and security. If
we analyze the latency of get operations, we can see that
Fast-VerDi has the lowest latency, which is very close to the
latency of DHash, since they work very similarly by hav-
ing the initiator perform a recursive lookup followed by a
direct download from the responsible node. Secure-VerDi
has the highest latency due to the fact that there is a costly
data transfer between every pair of nodes along the reverse
lookup path. Compromise-VerDi performs in between the
other two designs, since it only has one level of indirection
when downloading the data – up to 31% slower than DHash.

In terms of the latency of put operations, Secure-VerDi
has the highest latency because the data is sent through the
forward lookup path. Fast-VerDi and Compromise-VerDi
show a larger difference when compared to DHash due to
the fact that the reply is only sent to the client after the re-
sponsible node that receives the data makes a copy to the
other responsible node of the opposite type (to ensure that
the data is available to nodes of any type).

We also analyzed the bandwidth used for DHT get and
put operations. The results are shown in Figure 7.

The results for bandwidth usage show that DHash and
Fast-VerDi use more or less the same bandwidth for get op-



Figure 8. Simulated propagation speeds

erations, since the bulk of the bandwidth is spent on the data
transfer from the responsible node to the client. Get opera-
tions in Secure-VerDi are costly because the data is piggy-
backed on the reply that travels through every pair of nodes
in the lookup path, and Compromise-VerDi only has one
level of indirection, which approximately doubles the band-
width consumption when compared to the more effective
strategies. When we analyze the bandwidth used by put op-
erations we can see that the results are similar to the results
for get operations, because the sequence of data transfers
are also similar (albeit in the reverse direction). The differ-
ences for Fast-VerDi and Compromise-VerDi are due to the
fact that before returning to the client, an extra copy is done
to the other responsible node (of the opposite type). Note
that the results shown in Figure 7 do not include the band-
width used for the creation of additional replicas (other than
the copies held by one or two responsible nodes, depending
on the implementation) that takes place in background.

The conclusion of this comparison between the differ-
ent DHT layers is that there is a marked tradeoff between
the security offered by our DHT against more sophisticated
worms, and the overhead introduced by the DHT, especially
in terms of bandwidth usage. Latencies, however, are more
affected in the case of put operations (which are probably
less frequent in most scenarios) or in the case of Secure-
VerDi where all operations work in a completely recursive
manner.

7.3. Worm propagation speed

The experiments so far have focused on the overhead in-
troduced by the system when compared to the original ver-
sion of Chord. Now we shift our focus to benefits from
using Verme in terms of slowing down the propagation of
worms. To analyze these benefits, it was necessary to de-
velop a model for worm propagation under different condi-
tions. The adopted model was based on an existing model

to simulate the propagation of worms that used parameters
derived from real worms [21].

In particular, we considered a model where nodes can be
in one of four states: not infected, scanning, infecting, inac-
tive. A machine that is in the scanning state starts scanning
nodes at some rate (according to some strategy to obtain
addresses of peers that depends on the type of worm, as we
discuss next). If it finds a vulnerable node, it switches to
the infecting state. After some period of time, if the target
node is in the not infected state, the infection is complete,
the target node goes to the inactive state, and the original
node returns to scanning. After some more time the worm
is activated in the new node, and it also starts scanning.

We used the following parameters (based on the
aforementioned model [21]): a scanning rate of 100
scans/machine/second; the time to infect a machine was 100
ms; and the time between the node infection and worm ac-
tivation was 1 second.

We considered a 100, 000-node static overlay where 50%
of the machines were vulnerable to the worm being simu-
lated. The Verme overlay was configured with 4096 sec-
tions which gives an average of 24 nodes per section.

Our simulation compares the propagation speeds for dif-
ferent strategies: a p2p worm that propagates exclusively in
a Chord overlay, a p2p worm that propagates exclusively in
Verme, and a p2p worm that propagates with the help of an
impersonating node (i.e., a node that joins the overlay with
a type that is opposite from the one it wishes to attack) that
issues a series of DHT operations to harvest IP addresses.
In the latter case we considered the three variants of VerDi.
For the case of Fast-VerDi, the impersonating node was is-
suing lookups at a rate of 10 lookups per second, and in the
case of Compromise-VerDi (where the impersonating node
does not gain from issuing lookups, but has to wait for other
nodes to issue so it can act as a relay) every overlay node
would issue 1 lookup per second. Each strategy was simu-
lated 10 times and we report on the average.

Figure 8 shows the number of infected machines as a
function of the time since the start of the infection. Note
that we used a logarithmic scale in the x-axis so there are
substantial differences between the different curves. These
results show that an overlay like Chord can be the ideal sub-
strate to achieve a very fast propagation, taking only 32
seconds to infect the entire system. On the other end, if
Verme is used without any impersonation attack then the
worm would be confined to the nodes in a single section.
In the case of Secure-VerDi with an infected machine im-
personating the appropriate type, the infection is limited to
a logarithmic number of sections, which also represents a
very small fraction of the system (352 nodes). These two
curves are almost imperceptible because they are so close
to the x-axis. Fast-VerDi and Compromise-VerDi succeed
in slowing down worm propagation, even in the presence of



an impersonation attack, with approximately 160 and 1600
seconds to infect half of the vulnerable population of the
overlay.

8. Conclusion
This paper presented a novel overlay called Verme, and

a new DHT built on top of it called VerDi, which were de-
signed to contain, or at least slow down the propagation of
p2p worms.

We implemented Verme and VerDi using p2psim. Our
simulations show that the overhead of using our overlay and
DHT is reasonable when compared to Chord and DHash,
and that using Verme can contain, or at least slow down the
propagation of p2p worms.

Our new overlay design is a first step towards the con-
tainment of worms that propagate using the aid of an over-
lay network, and is at least raising the difficulty level for
writing them.
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