
SEFS: Security Module for Extensible File System Architectures

Luı́s Ferreiray, André Zúquetez and Paulo Ferreiraz

y ISEL/INESC, z IST/INESC

fluis.ferreira, andre.zuquete, paulo.ferreirag@inesc.pt

Abstract

Data security is a fundamental issue in modern com-
puter systems. In particular, data storage systems are
frequently subject to attacks and so need protection.
Typical storage systems rely on access control mecha-
nisms, either physical or logical, to prevent unautho-
rized users from accessing stored data. However, such
mechanisms are useless against non-ethical attitudes
taken by privileged users, like system administrators.
Thus, the ultimate solution for ensuring the privacy of
sensitive data is to use cryptographic techniques.

This article describes the design and implemen-
tation of a security module, for extensible file sys-
tem architectures (SEFS), that enforces file security
using cryptographic techniques. The security mod-
ule provides privacy facilities at file granularity. The
place where the module is inserted in the file system
architecture maximizes the transparency of its oper-
ation: existing applications can transparently work
with encrypted files, which may be physically stored
anywhere (fixed/removable local/remote devices).
Furthermore, the proposed solution allows a flexible
and discretionary way of marking files as secure, not
imposing any modification in their location. A pro-
totype was implemented for the Microsoft Windows
95 architecture, but a similar solution may be adopted
for other Windows systems, such as Windows NT
or Windows 2000. Preliminary performance evalua-
tions show that the cost of security provided by SEFS
is acceptable and mostly due to cryptographic algo-
rithms.

1 Introduction

Data security is a major concern of today’s informa-
tion systems, both for transient and permanent data.
Since file systems are the main mechanism provided
by operating systems for permanent data storage, the
security of long term data implies an effective protec-
tion of files.

The traditional policy for protecting files relies on
two mechanisms: physical enclosure of the storage
media, and logical access control barriers managed by
the operating system (e.g. ACL monitors[6, 20, 21]).
However, these mechanisms may fail in many differ-
ent scenarios, for instance: (i) free physical access to a
stolen laptop; (ii) access to removable storage devices,
e.g. a backup CD-ROM or a floppy disk; (iii) non-

ethical access by file server’s administrators; or (iv)
unauthorized accesses to users’ files by an attacker
capable of impersonating them. Whence, access con-
trol mechanisms, either physical or logical, aren’t bul-
letproof, and that may be a major concern for people
dealing with sensitive data.

To make it even worse, current distributed file sys-
tems exacerbate some of the previous problems and
introduce new ones. On distributed file systems peo-
ple have to trust on: (i) the physical security of remote
file servers, (ii) administration teams (that may blur
individual non-ethical attitudes), (iii) the capability
of remote authentication mechanisms to prevent per-
sonification, and, finally, (iv) they have to trust that
attackers cannot understand or modify data flows
between the client node and the file server.

All these security issues can be overcome by
locally applying user-driven cryptography, the ulti-
mate strong data protection mechanism in multi-user
computer systems. For the particular case of file
systems, sensitive files should be stored and trans-
ferred encrypted, and should only be decrypted just
before being used by legitimate users’ applications
(and encrypted immediately after being used). This
solution ensures the protection of files as long as legit-
imate users are the only ones controlling the encryp-
tion/decryption engine (which depends on users’
secret keys).

The main goal of our work is to protect sensitive
data, stored either in local or remote files, by adding
security properties, namely cryptographic privacy, to
files and directories. These security properties are
specifically requested by users for specific files or
directories, and transparently enforced using crypto-
graphic techniques controlled by user’s cipher keys.
To simplify the manipulation of secure files by appli-
cations, they are ciphered and deciphered transpar-
ently at file system level by the SEFS module (and
not with a user-level tool, e.g. PGP [24]). The names
of secure files and directories are also hidden using
cryptography. Names are used as well to store per-file
security-related metadata used by SEFS.

The transformation of ordinary files and directo-
ries into secure ones is handled by specific SEFS
tools or plug-ins for popular file system browsers
(e.g. Explorer). Secure files are protected by a secret
key using symmetric cryptographic algorithms, and,
unlike EFS [5], no particular mechanisms are provided
for administrative recover of cipher keys (as we want
to protect users from non-ethical administrators).

1



The SEFS module lies within the file system archi-
tecture, below applications’ API for file manipulation,
and uses underlying file systems structures to store
secure files. Many existing file system types can be
used to store secure files (FAT, FAT32, NTFS, CIFS,
etc.). Unlike CFS [1], SEFS allows users to freely sprin-
kle secure files within those file systems. Extending
file system’s functionality became possible with more
recent file system architectures, that offer the possi-
bility to intercept file system requests. This intercep-
tion mechanism allows the development of new file
system features to improve current systems, instead
of developing completely new ones, and we used
it to implement SEFS. A first prototype of the SEFS
module was developed for the Microsoft Windows 95
architecture, but a similar solution can be adopted for
other Windows systems, like Windows NT or Win-
dows 2000.

Preliminary performance evaluations of read/write
operations show that the cost of security is acceptable,
although significant. The performance degradation is
mostly due to cryptographic transformations, which
are responsible for 78 to 95% of the total SEFS over-
head in read/write operations.

This paper is organized as follows. In x2 we
describe the general architecture of SEFS. In x3 we
describe the implementation of SEFS. In x4 we eval-
uate the performance of SEFS. In x5 we present other
solutions and we compare them with SEFS. Finally, in
x6 we present the conclusions of the paper.

2 SEFS – Security Extension for
File Systems

In this section we describe the general architecture of
SEFS. First we present the main design goals observed
in the design of SEFS and we discuss its architecture;
then we describe how SEFS handles cipher keys, and
finally we highlight some of the high-level issues in
the development of SEFS and the solutions proposed.

The SEFS module was designed in order to achieve
four major goals:

1. Provide transparent file system security (i.e.
cryptographic transformations of sensitive data)
for existing applications with discretionary and
easy-to-use file granularity;

2. Use existing file systems, both local or remote, to
store secure files and directories mixed with ”nor-
mal” ones;

3. Maximize users’ trust in its security features; and

4. Have the lowest possible impact on the overall
performance of the file system.

The first goal is fundamental for simplifying the
daily use of secure files, as well as the administration
of file systems. Secure files are just ordinary files, but
their data and some of their metadata is encrypted.
The visibility of secure files and their encrypted data

(and metadata, e.g. their name) depends only on
the standard access control of the underlying file sys-
tem. This way, normal administrative procedures,
like backups or volume relocations, can still deal with
secure files.

Users may specify, with the minimum inconve-
nience, which files have security properties and which
don’t. Security properties of directories can be inher-
ited by subdirectories or files, either existing or newly
created. Furthermore, secure files may exist any-
where, and not only on special directories or volumes,
in order to simplify the management of users’ securely
stored data.

SEFS provides a ”decrypted view” over local or
remote file systems, allowing authorized users to
transparently manipulate the decrypted contents and
metadata of secure files (see Figure 1). Each decrypted
view is controlled by a set of keys known by a user, the
authorized one for that view. Secure and not secure
files may coexist in the same volume. Similarly, differ-
ent users may store secure files in the same volume,
but it is assumed that in each machine there is at most
one user locally authenticated. Other users can, at the
same time, be authenticated on other machines and,
throughout their own SEFS, remotely access secure
files in the same volume.

F2

K2

Dir

F1

F3

K1

F2

Dir

F1

SEFS

K2

F3

User Y

Machine C

Machine B

User Z

K1

User X

Machine A

F2

Dir

F1

F3

Dir

F1

F2

F3

view

view

view

file system sample

SEFS

Figure 1: Example of SEFS decrypted views (dashed
boxes) from a file system sample (dashed oval) shared
by different machines and users, either using or not
SEFS. Those using SEFS have a different view of the
original file system contents, and the view depends on
the cipher keys provided locally to SEFS. Encrypted
files, represented as grey boxes, can only be seen
decrypted by users using SEFS and the correct cipher
key (K1 for F2 and K2 for F3).

Microsoft Windows allows three ways of extend-
ing the system functionality: (i) by extending partic-
ular applications’ functionalities by means of explicit
hooks to plug-ins, (ii) by wrapping legacy code, or
(iii) by extending, whenever allowed, the core func-
tionalities provided by the operating system. The first
solution is clearly not well suited for providing trans-
parent security features for a broad range of exist-
ing applications. Wrapping legacy code is a powerful
but delicate approach that should be avoided if one
has the possibility of extending the system functional-

2



ity. Therefore, we chose to implement our secure file
system as a module within the Windows file system
architecture. This module was complemented by sev-
eral plug-ins to be integrated in file system browsers
(e.g. the Explorer) in order to explicitly manage secu-
rity attributes of files and directories, and the opera-
tional parameters of the SEFS module.

Our three first goals constrained the exact location
of the SEFS module within the file system stack. To
use file/directory abstractions and existing file sys-
tem structures, one should insert SEFS above the
lowest level of the file system stack where storage
details are blurred (like the Vnode level in UNIX file
systems[11]). Furthermore, to increase users’ trust in
the security features one should ensure that sensitive
data, once decrypted, is only available to authorized
applications (users). This means that all sort of sys-
tem caching of (decrypted) sensitive data should be
avoided to ensure that only locally running applica-
tions, on behalf of the authenticated user, can actually
access such data. The natural way to meet both goals
is to insert SEFS features as close as possible to the file
system API used by applications (see Figure 2).

OS

HW
Network
adapter

Medium
Physical

Applications

Remote

client
file system

SEFS

File system
B

File system
A

Device
driver
stack

Device
driver
stack

Network
Arch.

stack

Network
protocol

media

File System Interface
FS Arch.

I/O Arch.

media
Controller Controller

Figure 2: Generic location of the SEFS module within
the Windows file system structure – below the File
System Interface used by applications and above spe-
cific file system managers, either local or remote.

The operation principle of the SEFS module is to
intercept the file system calls before they are serviced
by the file system, perform security related operations
depending on the function being called, and let the
call go to the original file system that then interacts
with device drivers. The driver satisfies the call, pos-
sibly accessing the device, and then returns the call
to the original file system that does its final actions.
On the return of the call, from the file system to the
applications, SEFS gains again control of the request
and possibly more function-specific security opera-
tions are performed.

2.1 Key management

As previously referred, the SEFS module provides a
decrypted view for local applications. To build the
decrypted view the module uses a set of keys pro-
vided by the local user when activating the module.

Cipher keys used by active SEFS modules are not
stored anywhere in the file system, therefore some
mechanism should be used for safe storage of backup
copies (like the one proposed in [2]). SEFS is only a
simple key-based data translator, and it does not deal
with key management issues. Users are free do use
whatever mechanisms they find suitable for maintain-
ing key backups. Similarly, SEFS does not provide any
special mechanisms for updating cipher keys being
used by secure files, because such task is easier to
accomplish with a specific tool.

The same key is used by SEFS, on a user’s behalf, to
cipher arbitrarily large data items, thus SEFS should
use many different cipher keys in order to prevent
attacks based on ciphertext pattern matching. Ide-
ally each secure file should be ciphered with one ran-
dom key, generated by SEFS and stored encrypted
somewhere in the file system, which could be recov-
ered using keys provided only by users to the SEFS
module. A similar solution is used by EFS [5], but
it uses asymmetric cryptography to hide each file-
specific key in order to provide administrative recover
of keys and file sharing.

As we said before, we do not intend to provide
any support for administrative key recovery, and we
believe that cryptographic protection is more likely to
be useful for protecting personal data, so we do not
need to use asymmetric cryptography. Furthermore,
asymmetric cryptography raises problems when try-
ing to recover file-specific key ciphered with old or
revoked keys.

We used a scheme, based on symmetric cryptogra-
phy and very similar to the one used in CFS [1], that
ensures different cryptographic parameters for each
secure file. Each file is bound to a specific random IV
(Initialization Vector) value that is used in the cryp-
tographic transformation of the file’s data. The main
differences between our scheme and the one used by
CFS is that (i) we use a random value for each IV,
while CFS uses the file i-number, and (ii) we store the
IV inside the coded file name (see x2.3), while CFS
stores it in the UNIX GID field of the file i-node (to pre-
vent i-number modifications after a backup/recovery
sequence).

The IV is not a conventional cipher key, as it is
not used, directly or indirectly, by a cipher algorithm.
The reason for not using a per-file cipher key is that
usually cipher algorithms have significant key setup
times [22], which are avoided with our cipher scheme:
each file IV is used in the data transformation process
but using a simple XOR operation (see x3.4). This way
we avoid key setup overheads and we still make equal
plaintext files, encrypted with the same user key, to
produce different ciphertext. Note that a SEFS module
is active only for a particular user, so it has to perform
key setup operations only after getting user´s cipher
keys (or passphrases).

3



2.2 Encrypted metadata

When encrypting information in a file system one has
decide what to encrypt and what is left in clear. Ide-
ally we would like to encrypt all information or meta-
information that could help an attacker. Concerning
files, for instance, the most important and obvious
data to encrypt is their contents. But files have other
associated information, such as name, size, and times-
tamps of previous manipulations. These items are
what we call file’s metadata, since they provide rel-
evant information about the file but are not the data
itself. This information can be very useful in leading
attackers to more interesting and sensitive data, thus
it should be hidden by cryptographic means. Because
one of our goals is to store the secure files in exist-
ing file system structures, metadata transformations
(encryption) must be carefully tackled, or even pre-
vented, in order to maintain their consistency.

With respect to file names, these can be encrypted
and afterwards coded in a form respecting the valid
format and character set for file names. This scheme
applies to directory names as well. Timestamps could
be easily encrypted, but that would mislead adminis-
trative tasks that depend on them, like backups. File
size hiding cannot happen without interfering with
the actually stored amount data, being difficult to
anticipate all the resulting implications in the behav-
ior of management tools.

We believe that name hiding is the most important
measure for preventing attackers from finding inter-
esting or sensitive files. Consequently, we decided for
keeping all metadata in clear, except names referring
to secure files or directories.

2.3 Storage of security-related metadata

Secure files and directories have security-related
attributes that should be stored in the file system, just
like normal file’s attributes (timestamps, etc.). Spe-
cial user-defined file attributes would be the obvi-
ous choice, but unfortunately few file systems sup-
port them (e.g. AtFS [13], NTFS [17] or BeOS File
System[8]). Using separate directory entries for keep-
ing security-related metadata for all secure files of a
directory, or tree of directories below, could be an
alternative, but it would create single points of failure
to sets of secure files. A separate file for the security-
related metadata of each secure file or directory is not
a good solution because it would waste a lot storage
space.

We chose to store security related metadata within
the encrypted name of secure files. In x3.3 we explain
exactly how this is done and which security-related
metadata is kept this way. For now it is only rele-
vant to say that such metadata contains random fields,
like the IV previously referred, that prevent equal and
clear file names to generate equal encrypted names
(somewhat similar to the protection of encrypted
passwords in UNIX systems using salt bytes to per-
turb the crypt one-way function[15]).

However, all security-related metadata stored

within a secure name should remain constant for the
lifetime of the file, in order to avoid the modifica-
tion of the secure name by any reasons other than
the modification of the related original names. This
constrain is imposed by our purpose of not disturb-
ing administrative actions, like incremental backups.
Consequently, ciphered names cannot be used to store
all sort of security-related metadata, but only constant
values.

2.4 Distinction of secure files from ordi-
nary ones

Since we want to provide security on a per file basis,
we need to clearly distinguish, at the SEFS level,
secure from normal files, as both types may exist any-
where. So, when a user/application issues a file sys-
tem call for a file using its clear name – the only
name he knows – SEFS has to check if the name of
the file corresponds to a normal or a secure file. In
other words, this means that SEFS has to check if the
name refers to a file (or directory) containing security-
related metadata. Since this metadata is stored within
the file name, SEFS has to check the name provided
against clear names, and against decrypted secure
names. Therefore, SEFS has also to distinguish secure
names from normal ones.

We chose to include several hints in secure names
in order to provide several kinds of name distinction.
The hints, and their purpose, are the following:

identification hints to help in recognizing names as
(potential) secure names. Identification hints are
constant prefix and suffix strings in secure names.
Ordinary names may contain these strings, and
thus act as phony secure names, but such occur-
rences are easy to detect after decrypting them
(see x3.3).

lookup hints to minimize the decryption of secure
names when doing a clear name lookup. Lookup
hints are specific cleartext byte blocks of secure
names containing (part of) a value resulting from
hashing of the original name together with cipher
key. By using the cipher key to compute the
lookup hint we reduce the ability of attackers to
locate one or more secure files given their original
name.

2.5 Correctness test of cipher keys

When one particular user is authenticated against
the local SEFS the module knows at least one cipher
key that should be used on the user’s behalf to
encrypt/decrypt secure files. However, the same stor-
age device may contain secure files belonging to dif-
ferent users, usually encrypted with different cipher
keys. Thus, at the SEFS level one has to decide if the
users’ cipher key should be used to decrypt a particu-
lar secure file or if, otherwise, the secure file contents
should be provided unchanged. Clearly, one should
decide for the last case whenever dealing with wrong

4



encryption keys, i.e. keys not suitable for decrypting
particular secure files. This means that SEFS has to
detect if a user’s cipher key is the correct key for a
particular secure file that he intends to manipulate.

This problem is easily solved with the previously
referred lookup hints included in the names of secure
files. As a lookup hint results from hashing the orig-
inal file name along with the user’s cipher key, only
authorized users with the proper key can lookup and
find the files they have previously encrypted. Since
collisions of lookup hints may happen, the correctness
of the key may be further checked when decrypting a
presumable valid secure name, as the decrypted result
must reveal the original file name.

When listing directories this procedure is reversed:
a secure name is decrypted, the recovered original
name (if valid) is hashed together with the user’s key,
and if the resulting value is equal to the lookup hint in
the secure name, then the original name is provided
to the application, otherwise the secure name is pro-
vided unchanged. By chance hint collisions may orig-
inate awkward names, though valid ones, which may
easily be ignored by users.

2.6 Performance of random accesses to
secure files

Files’ data is often randomly accessed without any rel-
evant performance penalty when comparing against
sequential accesses. Thus, for secure files we would
like to keep the usual performance characteristics of
random accesses to their data without compromis-
ing security. This means that file encryption should
avoid cipher techniques requiring feedback for ensur-
ing security. For example, it would be unacceptable,
in terms of performance, to use only the CBC block
cipher mode [22] to encrypt or decrypt a file, since
it would be necessary to fully decrypt it when read-
ing only its last byte. Similarly, it would be unaccept-
able to use directly most stream ciphers, as they usu-
ally need to generate past keystream sequences before
generating a particular keystream block.

To solve this problem we decided for a cipher mode,
mixing both block and stream ciphers, that imposes
a reasonably constant performance penalty without
compromising security. This mode will be explained
in x3.4.

3 Implementation

In this section we describe the implementation of the
SEFS prototype for the Windows 95 operating system.
Currently this prototype has a fully functioning cipher
engine that encrypts the contents and names of files
stored on local file systems. The work for supporting
remote file systems is still in progress.

3.1 Windows 95 File System Architecture

The file system architecture of the Windows 95 oper-
ating system is based on a component called IFS Man-

ager (see Figure 3). The IFS Manager, on the top layer,
centralizes all different ways that applications have
to access files, and forwards applications’ requests
to the proper Instalable File Systems (IFS) control-
ling the storage space [16]. On the bottom layer lies
the Input Output Supervisor (IOS), that manages a
stack of drivers for dealing with low-level accesses to
devices. Between IFS and IOS is the place for plug-
ging File System Drivers (FSD) of the IFS, like FAT,
FAT32, HPFS, etc. Particular cases of FSD are network
redirectors, which are clients of distributed file system
servers. Finally, within the IFS Manager it is possible
to make a chain of interceptors.

OS

CD ROM
FSD

Input/Output

(IOS)

(IFS)

Supervisor
Other
driver

Other
driver

driver
Port

driver
Port

Network
redirector

Installable File System Manager (IFSMgr)

interceptors

driver
SCSI Port

driver
Miniport

Network
Subsystem

Applications

Chains of

FSD
VFAT

Installable
File Systems

SEFS (file system API hook)

File System Interface

Figure 3: File system architecture of the Windows 95
operating system and the location of the SEFS mod-
ule. The SEFS module is plugged-in as an interceptor
of the file system API (file system API hook) at the
beginning of IFS manager’s interception chains.

As it was not our purpose to deal with file sys-
tem storage details, but only to perform cryptographic
transformations of data stored within existing file sys-
tem, we decided to implement SEFS as an intercep-
tor within the IFS Manager (a file system API hook,
see Figure 3). Note the that the security provided by
SEFS can only be ensured if (i) the SEFS module is the
first hooker in the hooking chain, or if (ii) the hook-
ers before do not perform any sort of caching of files’
data.

3.2 VxD Hook Module

SEFS was implemented as a Windows 95 Virtual
Device Driver (VxD) that hooks itself to the File Sys-
tem API in the IFS Manager. The hooking step con-
sists in registering a VxD function that will be called
by the IFS Manager when dispatching any file system
request. The registration function returns the address
of the next hook in the chain, which should be called
by SEFS whenever the file system request requires the
contribution of lower file system layers. When the
SEFS VxD is installed it stores in memory a cipher
key provided by the installing user. This key remains
active and associated to that user until the removal of
the SEFS VxD from the chain of hooks (see Figure 4).

This hooking mechanism allows the VxD to inter-
cept all file system requests with the same interface

5



void CtrlMsgDispatch()
{

...
case Sys_Dynamic_Device_Init:

/* when the VxD is installed */

nextHooker = IFSMgr_InstallFileSystemApiHook(SEFShook);

SEFSuser = /* Get the user using SEFS */;
SEFSkey = /* Get the user’s cipher key */;
break;

case Sys_Dynamic_Device_Exit:
/* when the VxD is removed */

IFSMgr_RemoveFileSystemApiHook(SEFShook);

/* clean SEFSuser */
/* clean SEFSkey */
break;

...
}

int SEFShook(..., ioreq * request)
{
if (SEFSuser == request->ir_user) {

return SEFSswitch(..., request);
}
else {

return nextHooker(..., request);
}

}

static
int SEFSswitch(..., ioreq * req)
{
/* SEFS pre-processing

according to req->ifs_func */

/* call nextHooker if necessary */

/* SEFS post-processing
according to req->ifs_func */

}

Figure 4: Pseudo-code of the main entry points of the SEFS VxD, showing the macroscopic handling of some
system requests (like the installation of the driver) and file system requests through the hook chain.

used for file system drivers. However, the SEFS mod-
ule is much simpler than a file system driver because it
doesn’t need to deal with the effective data storage on
devices, leaving all those tasks to the underlying file
system drivers. The exact activities performed by the
SEFS VxD depend on to three aspects: (i) the function
being called, (ii) the user performing the call, and (iii)
the keys currently known by SEFS. If SEFS possesses
a user key and the request comes from the same user,
then SEFS does some security-related pre-processing
of data (given by the application) or post-processing
of data (retrieved by the next hooker). Otherwise,
SEFS simply chains the call to the next hooker in the
hooking chain (see Figure 4). Some of the actions per-
formed by SEFS will be described further below, in
x3.6, after describing how SEFS encrypts the name and
contents of secure files.

3.3 Encryption of file names

As discussed in x2.2 and x2.3, SEFS encrypts the
names of secure files and adds security-related meta-
data to the resulting ciphertext. The resulting bytes
are encoded in ASCII characters before being stored
in the underlying files systems, in order to avoid the
occurrence of reserved characters; the encoding step
uses a BASE64 code map1. Our map uses charac-
ters that are usually supported by all file systems,
namely all alphanumeric characters, the hyphen and
the underscore.

The layout of a secure name, and the algorithm to
generate each of its components, is shown in Figure 5.
A secure name has three main components:

� plaintext bytes — the #S prefix and the .S#
extension. These strings ensure a proper presen-
tation of secure names (when not decrypted by
SEFS) in directory listings ordered by name or
by type. The prefix and the suffix are also used

1Mapping groups of 6 bits into distinct 8-bit characters.

secure file name V ID

digest
function

P

encryption

encoding

K

IV# S S #

security properties

patern matching hint

.

SEFS version

data encryption IV

name encryption IV

original file name

padding

names
stream

Figure 5: Format of a secure name, used to refer a
secure file or directory, and the steps followed to gen-
erate some of its components.

by SEFS for fast pattern-based lookup of secure
names, and as first-stage identification hints of
secure names.

� encoded ciphertext — resulting from encrypting
and encoding the original file name (padded to a
3-byte boundary).

� encoded bytes — the security-related metadata,
formed by 5 different values:

V – the version of the SEFS module that
created the name;

ID – a digest of the name and the cipher key,
used as a name lookup hint;

IV – a random IV used in the encryption of
the file’s data; and

P – the security properties of the file.

The fifth value, formed by the three first ones – V ,
ID and IV – is used as an IV for the encryption
of the original name.

This structure was chosen for improving the per-
formance of SEFS without compromising security and
capacity to operate. The extra information, both plain-

6



text prefix, plaintext suffix and security-related meta-
data, occupy a fixed number of bytes (14) that are
enough for ensuring security, and not excessive in
order to keep the secure name as short as possible.
The exact number of bytes of a secure name is given
by:

Lsecure = 14 + (Loriginal � 8 + 5) =6

where Loriginal is the length of the original filename,
Lpadding is the length of a null-byte padding applied
to the original name before its encryption, and Lsecure

the resulting full length of the secure name. Since
Win32 long file names cannot exceed 255 bytes, then
Loriginal should not exceed 180 bytes, which we
believe is not a dramatic limitation.

This format for secure names is not very effec-
tive in hiding the length of original names, since
for each length of a secure name there are only one
possible value for the length of the original name.
However, we believe this is not a significant source
of useful information for attackers. Besides, it was
unacceptable, in terms of performance, to always use
maximum-length secure names for hiding original
name lengths.

3.3.1 Security-related metadata

The security-related metadata includes the 5 fields of
a secure name previously referred: V , ID, IV , P , and
the block formed by three first ones. The V field indi-
cates the version of SEFS that produced the secure
name and needs no further clarification; the other
fields are explained next.

The ID field is a pattern-matching hint used by
SEFS to locate secure names corresponding to origi-
nal ones. This hint is a 24-bit value, stored encoded,
resulting from applying a digest function (MD5 [19])
to two values: the original name and the name cipher
key (Knames). Thus, when SEFS wants to find a secure
name corresponding to a given original name, it gen-
erates a hint with the original name and the current
SEFS key, and looks for names starting by 7 known
bytes — #S<SEFS version><hint>. False hints are
detected going one step further, decoding and deci-
phering the secure name.

The IV field is a random IV used both in the encryp-
tion of names and data of secure files. It is a 18-bit
value, stored encoded, and is currently generated by
getting the 18 least significant bits of the timestamp
counter fetched with the Pentium RDTSC instruc-
tion. Longer 64-bits IV values, used when processing
names or data of secure files, are generated by simple
concatenation of the 18-bit IV . This repetition is not
dangerous for the security of the system, because the
primary purpose of the random IV is to complicate
ciphertext-matching attacks on names and contents of
secure files.

The P field is a bit field indicating which security
properties are enable for the secure file (or directory)
referred by the secure name. It is a 6-bit value, stored

encoded, and each bit reveals a specific security prop-
erty. Currently we support only two properties:

� propagation of privacy properties to files (belong-
ing to the directory the name refers to); and

� propagation of privacy properties to sub-
directories (of the directory the name refers
to).

In the future we intend to had other properties, like
(i) the cipher algorithms to be used, (ii) the integrity
control of the secure file, and (iii) the propagation
of integrity control properties to files or directories
belonging to a secure directory.

We said in x2.3 that security-related metadata
should be keep constant for the lifetime of a secure
file. In fact, this is what happens, except for the prop-
erties field, that can be updated. However, we believe
this field would not be updated frequently, so it does
not raise significant problems to our goal of keeping
secure names as constant as possible (i.e. changing
only when that happens to the original name).

3.3.2 Encryption of original names

Original names are encrypted using a stream cipher
built from a block cipher (IDEA [12]) operating in 64-
bit CFB mode. Original names are padded with null
bytes until 3-byte boundaries to prepare the result-
ing ciphertext to the BASE64 coding phase. The ini-
tial state of the stream cipher is the field referred as
name encryption IV in igure 5, i.e. the first 8 bytes of
the security-related metadata.

With this algorithm we prevent comparison attacks
on secure names without extra costs in cipher opera-
tions. Equal original names, on different directories,
produce different secure names because a random
field (the data encryption IV) is also used as part of the
IV of the stream cipher. The stream cipher also ensures
that similar original names produce very different
secure names. Key-setup overheads are avoided by
using a constant key (Knames) for ciphering all secure
names for a particular user.

3.4 File encryption

SEFS encrypts the contents of secure files, but not
the contents of secure directories. Directories have a
system-defined structured that cannot be modified in
order to keep the coherence of the file system. There-
fore secure directories have only a ciphered name and
security properties that can be propagated for files
and directories below, but not encrypted contents.

The contents of secure files are encrypted using the
method shown in Figure 6. This method is very sim-
ilar to the one used in CFS, named EBC+OFB [1],
and operates as follows. Each plaintext block of the
file, properly aligned, is XORed with two values, one
picked from a global mask, and the other from the file
name (the IV field). The result is encrypted using a
block cipher operating in ECB mode. The global mask

7



is created using a stream generator, and only when the
SEFS VxD is installed for a particular user.

IV

stream
generator

Kmask

Kdata
encryption
ECB block

mask

encypted file data block

plain file data block

Figure 6: Cipher method used for generating the con-
tents of secure files.

The overall performance of this method, when
doing random updates on a secure file, is close to
a pure ECB. Similarly, this method is probably as
secure as a pure ECB [22], but, like for CFS, the mask
reduces the probability of producing equal ciphertext
blocks from two equal plaintext blocks along the same
file, and the IV ensures that equal files ciphered with
the same keys (Kmask and Kdata) produce different
ciphertext. Therefore, the mask complicates struc-
tural analysis of secure files, and the IV complicates
pattern-matching attacks against pairs of files.

The differences between our method and the one
used by CFS are only of operational nature. Cur-
rently SEFS uses the IDEA algorithm and 128-bit keys
for both for the stream generation (operating in 64-
bit OFB mode) and EBC block encryption; CFS uses
DES [22] and 56-bit keys. The IV is a 64-bit value
built from the 16-bit IV field of the file name; CFS
builds an equal-length value from a 32-bit i� number

or GID. The length of the mask was decided as a trade-
off between security, efficiency and resource alloca-
tion. While CFS uses a 1

2
Mbyte mask that can be

paged-out, SEFS uses a 1 Kbyte mask in non-pageable
memory. However, the short mask kept by SEFS is
effectively used as a long 1 Mbyte mask, by means of
a vector multiplication of the short mask with itself
(using XOR and considering each 64-bit block as a
vector element). To avoid the structured occurrence
of null values in the long mask, resulting from XOR-
ing equal blocks, the short mask is multiplied with a
32-bit shifted copy of itself. With this algorithm we
guaranty, with a minimum increase of XOR opera-
tions, that SEFS uses a long and reasonably random
mask without occupying an excessive amount of non-
pageable memory.

Incomplete blocks at the end of files must be han-
dled differently, but not padded. The reason for not
padding them is the following. We cannot store any
frequently-updated metadata in secure names (see
x 2:3), so we cannot use them to store real sizes or even
contents of incomplete blocks. Thus, padding would
have to be fully quantified using file contents, and that
would modify the size of all secure files. As there are
numerous system requests that return the size of non-
opened files (e.g. directory listing requests, queries
of file’s metadata), it would be unacceptable, in terms
of performance, to fetch padding information from

secure files, to correct their actual size, in all those
requests. Consequently, the size of secure files must
remain equal to the original one for keeping perfor-
mance in reasonable levels.

Consequently, we had to choose a different crypto-
graphic method for handling incomplete blocks differ-
ent from padding them. Ciphertext stealing was con-
sidered, but it does not apply to files shorter than a
block. Therefore, we decided for adding the incom-
plete block to the result of encrypting a null-byte
block. Unfortunately, this method cannot prevent
deterministic modifications of incomplete blocks, thus
allowing limited known-plaintext attacks. The solu-
tion for this problem is still an open issue, but, in any
case, it does not compromise the security provided by
SEFS in terms of privacy.

3.5 Encryption keys

As we saw along this section, SEFS uses three dif-
ferent keys, named Knames, Kmask and Kdata. All
these keys are generated from a variable-length pass-
word provided by the user installing the SEFS VxD.
The three keys are 128-bit values generated by suc-
cessively applying a digest function (MD5 [19]) to the
password and all the previously generated keys.

The difficulty of guessing the keys depends directly
on the length of user’s passwords. Short passwords,
though probably providing very different keys, make
the SEFS security weak against exhaustive guessing
attacks. Nevertheless, to increase the cost of such
attacks, SEFS generates Kmask first, directly from the
user’s password, because this key is not directly used
in any exposed ciphertext. The key Knames is the last
to be produced because it is solely and directly used
to produce the ciphertext of secure names.

Kmask = MD5(password)

Kdata = MD5(passwordjKmask)

Knames = MD5(passwordjKmaskjKdata)

Therefore, to guess passwords using known orig-
inal file names, an attacker as to execute the digest
function three times on each trial. Similarly, the
attacker as to execute the function twice when using
original file contents.

3.6 Behavior of intercepted file system
calls

The functions intercepted by SEFS perform some extra
processing whenever dealing with names or contents
of secure files. In this section we will briefly highlight
some of actions taken by SEFS in both cases.

3.6.1 Secure names

There are two major groups of system calls that deal
with file names: (i) those providing the complete

8



name of a file, either existing or not, to do some-
thing with it (create, open, rename, delete, query/set
attributes, etc.), and (ii) those getting file names from
the file system, either using or not pattern-matching
constrains (directory listings).

For first group of functions SEFS usually tries to use
first the normal name; if it fails, then a secure name
is generated and used. One exception to this rule is
when creating a file on a directory with the privacy
propagation property, that obligates SEFS to create the
file as a secure one (thus with a secure name). In both
cases SEFS does not know if the secure name exists,
which implies a pattern-constrained search among
secure names to find it out. This search uses the 7-byte
pattern described in x3.3.1.

The second group of functions, to perform directory
listings, allow a name-by-name gathering of direc-
tory entries using a listing context and three functions
(FindFirst, FindNext, and FindEnd). When these func-
tions are not used with pattern-matching constrains,
SEFS simply calls the next hooker to get a directory
entry and translates it, whenever referring to a secure
name ciphered with the user’s key, before returning to
the caller. When they are used with pattern-matching
constrains, SEFS first calls the next hooker to get all
normal names matching the pattern. After a failure
SEFS calls the next hooker to get all secure names, and
checks itself the pattern-matching after translating the
returned secure name. This two-phase search implies
that SEFS must keep itself search contexts referring
current search phases.

3.6.2 Secure contents

The functions that manipulate file contents use a han-
dle provided by a create or open system call, both
referring a file name. When SEFS detects that the
name provided in one of these calls is (or will be)
a secure one, then it stores the handle returned by
the next hooker in a table of secure handles. Read
or write system calls not using secure handles are
ignored by SEFS and immediately forwarded to the
next hooker; otherwise some data processing must be
done by SEFS. Seek calls are always ignored by SEFS,
because the offset of data in an encrypted file is the
same as in the corresponding plaintext.

Read calls are simpler to handle than write calls. On
a read call SEFS reads a block-aligned buffer contain-
ing the file contents required, decrypts it, and returns
the required data to the caller. Only when reading the
last and incomplete block of a file it is necessary to use
a different decryption algorithm.

On a write call SEFS encrypts the block-aligned por-
tion of the buffer provided and writes it. If the block
is not aligned, then one or two data blocks are read,
decrypted, and combined with the incomplete blocks
in the begining or end of the buffer, encrypts and
writes them. Finally, some different or extra actions
must be done when writing an incomplete block at the
end of the file, or when writing a buffer after the end
of a file terminating with an incomplete block. In the
first case it is necessary to use a different encryption

algorithm. In the second case the incomplete block
must be read, decrypted, padded with garbage or
combined with the first bytes of the buffer, and writ-
ten again.

4 Performance evaluation

To evaluate the performance of SEFS we measured
our prototype in a variety of scenarios and with sev-
eral types of specific benchmark programs. For run-
ning the benchmarks we used a PC Pentium-MMX
233 Mhz with 64 Mbytes of RAM and an EIDE disk
of 2.6Gb formatted with FAT32 and a 32 Kbyte file
system blocks. The benchmarks used only local files,
as the current SEFS prototype does not intercept all
the system calls used for remote files (through redirec-
tors). We expect to fully support remote file systems
in a near future.

The first benchmark consists of reading data from
a file and writing it into another file. The read and
write operations used 5 different block – of 1 K, 10 K,
100 K, 1 M and 10 Mbytes – starting from the begin-
ing of 10 Mbyte files. The benchmark was executed in
three different scenarios:

1. without SEFS;

2. with SEFS and normal files; and

3. with SEFS and secure files.

The time results presented in Table 1 and Fig-
ure 7 are the arithmetic mean of elapsed times eval-
uated in 10 executions of the benchmark after an ini-
tial READ/WRITE phase to warm-up the file system
cache. The table also presents, in percentage, the over-
heads introduced by SEFS when processing normal
and secure files. Finally, the table shows the time
expended by SEFS in the data cipher mode (subdi-
vided in two operations, the XOR of IV and mask, and
the ECB encryption with IDEA), and the percentage
of each of these operations to the total overhead intro-
duced by SEFS.

The overhead introduced by SEFS for normal files
is negligible (below 4%, except when reading 1 Kbyte
buffers), and mainly due to a search of the applica-
tion’s file handle in the table of handles to secure files
managed by SEFS. Regarding secure files, the over-
head introduced by SEFS is significant, but mostly due
to the cipher method: the XOR step is responsible for
about 6% of the total SEFS overhead, while the cipher
step with IDEA is responsible for 72 to 88% of the
total SEFS overhead. Altogether, the cipher method is
responsible for 78 to 95% of the total SEFS overhead.

5 Related work

In this section we discuss other solutions that use
also cryptography for improving security in stor-
age systems. There are three typical solutions for
managing encryption operations: (i) encryption tools

9



Without SEFS with SEFS
normal file secure file

Buffer time time overhead time (�s) overhead (%)
Operation lenght (�s) (�s) (%) Total XOR IDEA Total XOR IDEA

1K 66 79 19.7 568 32 465 761 5.6 81.8
10 K 295 302 2.3 5273 277 4566 1687 5.2 86.6

READ 100 K 1947 1964 0.9 52971 3077 45590 2620 5.8 86.1
1 M 27345 27464 0.4 532894 34772 469687 1849 6.5 88.1
10 M 239956 241056 0.5 5314088 352393 4696778 22115 6.6 88.4
1K 130 135 3.8 621 36 448 378 5.8 72.2
10 K 297 302 1.5 5106 312 4350 1617 6.1 85.2

WRITE 100 K 2035 2045 0.5 50610 3155 43529 2387 6.2 86.0
1 M 27106 27172 0.2 513458 34437 449795 1794 6.7 87.6
10 M 245298 246613 0.6 5096911 347196 4501715 1979 6.8 88.3

Table 1: Evaluation of elapsed time during READ and WRITE operations in multiple scenarios and with dif-
ferent buffer sizes. The total overheads introduced by SEFS are calculated dividing total elapsed times by the
values obtained without SEFS. The XOR and IDEA overheads are computed dividing XOR and IDEA elapsed
times by the total time spent with SEFS.

0 100 200 300 400 500 600 700

Time (µs)

Without SEFS

SEFS normal file

SEFS secure file

Without SEFS

SEFS normal file

SEFS secure file

R
E

A
D

 1
K

b
W

R
IT

E
 1

K
b

READ / WRITE 1K bytes

TOTAL IFSMgr Next HK SEFS XOR IDEA

0 100,000 200,000 300,000 400,000 500,000 600,000

Time (µs)

Without SEFS

SEFS normal file

SEFS secure file

Without SEFS

SEFS normal file

SEFS secure file

R
E

A
D

 1
M

b
W

R
IT

E
 1

M
b

READ / WRITE 1M bytes

TOTAL IFSMgr Next HK SEFS XOR IDEA

Figure 7: Time diagrams of the values presented in Table 1 for buffers with 1 K and 1 Mbytes. The bars relative
to non-secure read/write operations show only total elapsed times. The bars relative to secure read/write
operations show a breakdown of total elapsed times in 5 components: time expended by the IFS manager
above SEFS (IFSMgr), time expended by the next hooker below SEFS (Next HK), time expended inside SEFS
excluding the cipher method (SEFS), and the time expended by the cipher method (XOR and IDEA).

(e.g. PGP [24]), (ii) disk encryption systems (e.g.
PGPdisk [18]), and (iii) file or directory encryption
systems (e.g. CFS [1]). We are going to focus mainly
on this last one, and then we give a brief summary on
some disk encryption systems; encryption tools are far
out of our objective and will not be addressed.

The first example of file or directory encryption
systems is the Cryptographic File System (CFS) [1],
developed by M. Blaze at AT&T around 1993. This
system was developed for UNIX platforms and allows
users to encrypt files on a per-directory basis, both
on local and remote file systems. The system inter-
cepts the file system calls via the NFS interface. Each
client machine runs, in user space, an altered NFS
server named CFS daemon (cfsd) implementing the
cipher engine and exporting encrypted mount points
through the localhost interface. The CFS daemon then
accesses local file or remote file systems through the
standard UNIX interface to store secure data. Thus,
accessing secure remote files through CFS requires a
double mount technique; this is one of its major draw-
backs since it implies large performance costs.

To use CFS, a user attaches an exported encrypted

directory to a special mount point that is the home of
all secure directories, and the only place where files
can be seen and accessed in clear. This scheme forces
changes in file location when adding security proper-
ties to them, and so lacks flexibility.

The CFS offers data privacy by encrypting file con-
tents and names using DES [22]. For encrypting file
contents CFS uses a combination of the ECB and OFB
cipher modes in order to improve security without
compromising performance of usual random block
accesses. This cipher mode also uses a IV for each file
to prevent comparison attacks, but the system cannot
fully guaranty the recovery of this value, putting in
risk the decryption of file data in some circumstances.

Following the work made by M. Blaze, a team from
University of Salerno came with Transparent Cryp-
tographic File System (TCFS [4]). This system pro-
vides deeper integration between the encryption ser-
vice and the Linux file system architecture. TCFS
operates like a NFS client, using the same system calls,
and solves some of the problems of CFS. The main dif-
ference is that the user does not has to have his secure
directories attached to a special mount point where all

10



encrypted files can be seen in clear form. Instead, in
TCFS encrypted and normal files can have the same
location and be accessed in the same way. Another
difference is that CFS works in user space while TCFS
works in the kernel space, thus resulting in improved
performance. However, the problem of distinguish-
ing secure from non-secure files is solved by adding a
special attribute to the file that is interpreted by a spe-
cial attribute server running on the server machine of
a remote file system. The introduction of this attribute
server prevents transparent use of existing distributed
file servers without changes.

The Secure File System (SFS [10]) is a component
of the UFO architecture developed in University of
Minnesota, based on UNIX architectures. The idea is
to put the cipher engine layered between the appli-
cations and the original file systems. On the client
machine, SFS intercepts the file system calls using
the native debugging interface, to process file name
and data, encrypting before sending it and decrypting
after receiving it from the remote storage system.

The control information associated with the secure
files, like user-key pairs, is saved in a header in the
file content, implying that a file as to be opened and
partly read to obtain his security properties. Because
SFS uses the UFO architecture, where file process-
ing is based on the open call, and read/write system
calls are not intercepted, it requires an entire file being
encrypted or decrypted on open with the performance
cost associated. Another weakness of SFS is that the
names of the files in a directory are all encrypted with
the same key creating problems in having files belong-
ing to different users in the same directory.

The Encrypted File System (EFS [5]) is a component
of the Microsoft Windows 2000 operating system. EFS
is a module that adds encryption to data stored in
local NTFS volumes, allowing to encrypt or decrypt
data on a per-file and per-directory basis. EFS uses
a mix of public key and symmetric cryptography: it
uses DES and randomly generated keys to encrypt file
data, and file owner’s public key to encrypt the DES
key.

EFS uses the extendable characteristics of NT file
system architecture to add the encryption module on
top of NTFS, intercepting all file system calls. One
problem with EFS, however, is that it saves security
control information in special file attributes of NTFS,
and so becoming dependent of it. This, besides dis-
allowing the use of the encryption module on top of
other common local file systems, like FAT32 or HPFS,
also raises problems on using distributed file systems
like CIFS [14] (LanMan, SMB). Since the protocol used
by network connections doesn’t have knowledge of
this special attributes supported by NTFS, a secure
file can not be stored on a remote file server. The
exception to this is when the server runs Windows
2000 with an EFS/NTFS installation, but in this case
the client is forced to trust the server with the clear
data [5]. Another security weakness of EFS is that
it doesn’t encrypt file names, which are useful hints
to attackers. Finally, in the case of remote servers,

files and directories may be encrypted on server but
the data decrypted and transmited in clear to remote
clients.

Another approach to security in storage architec-
tures is putting security at device driver level, work-
ing by encrypting and decrypting entire disk blocks
. Also, they have to define the volume as the mini-
mum granularity for security, since it’s the only con-
cept in common between drivers and users. So, these
systems lack the flexibility to define security proper-
ties at file and directory level and have very weak
control on the amount of data that really need to
be processed. As cipher operations are very time
consuming, this can lead to great inefficiency. This
approach was common on the MS DOS operating
system, since there was no way to easily expand its
file system and it was relatively easy to build and
install a block device driver for the storage system.
Nevertheless, there are still many systems that use
this approach, as it is easy to implement and man-
age. Examples of such systems are Secure File System
(SFS) for MS DOS/Windows [9] and PGP Disk [18] for
MS Windows and UNIX systems.

5.1 Comparison with SEFS

Concerning the implementation, the SEFS approach is
similar to the ones followed by TCFS and EFS: they all
work at kernel level and provide security for particu-
lar files and directories. However, SEFS is more flexi-
ble, because it allows users to store secure files over
several existing file systems, either local or remote.
SEFS does not rely on special file attributes (as EFS
does) to store the metadata of secure files, or partic-
ular mount points for triggering its action (as TCFS
does), thus being more capable of spanning many dif-
ferent local and remote file systems.

Concerning the location of secure files, SEFS is more
flexible than CFS and SFS, because it allows users to
sprinkle secure files everywhere within existing file
systems. CFS and SFS provide a decrypted view
over completely encrypted file systems or directories,
while SEFS provides an ordinary or decrypted view
over partially encrypted file systems. This allows
secure files from different users to co-exist in the same
file system.

Both SEFS and CFS encrypt secure file’s names,
but CFS uses only the resulting ciphertext for nam-
ing secure files, while SEFS includes also security-
related metadata in the names of secure files. CFS
always decrypts all directory names when doing
name lookups, while SEFS minimizes decryptions
using hints on name lookups.

Finally, SEFS, CFS and SFS ensure network secu-
rity to remotely stored secure access, as they are
only decrypted by the clients. On the contrary, EFS
decrypts the files before sending them to clients, and
relies on secure network protocols, such as Secure
Sockets Layer/Private Communication Technology
(SSL/PCT [7, 23]), to encrypt data accesses over the
network.

11



6 Conclusions

SEFS provides seamless privacy at file and directory
level by means of a module inserted in the file sys-
tem stack, using any underlying file system to store
secure files and directories. The file system API is
not changed by SEFS, allowing existing applications
to transparently work with secure files. Administra-
tive procedures, like backups, are not affected by the
presence of secure files, and deal with them just like
with other ordinary files.

Secure files may be stored anywhere, mixed with
normal files, both in local or remote file systems. Net-
work security is ensured because decryption happens
locally to applications. The names of secure files and
directories are also encrypted to complicate the task
of finding interesting sensitive files. The names of
secure files are also used to store per-file security-
related metadata, and is one of the innovative aspects
of SEFS.

The privacy provided by SEFS is based on symmet-
ric cryptography, both for encrypting names and con-
tents of secure files. Each installed SEFS module oper-
ates for a given user, and uses a set of keys computed
from a password obtained when installed. For that
user SEFS provides a decrypted view of file systems,
i.e. a view where files and names ciphered with the
user’s password are decrypted before being provided
to applications. The current implementation of SEFS
supports only one password per user, but its easy to
allow more than one. SEFS does not provide any
means for administrative recover of secure files’ data.

To improve performance SEFS uses several tech-
niques to reduce the impact of cryptography. To
keep the usual performance characteristics of ran-
dom accesses to secure file’s data, without compro-
mising security, it uses the technique designed for
CFS [1]. For reducing the number of decryption in
name lookup operations, the name of secure files con-
tain identification and lookup hints.

A prototype of SEFS was developed, for the Win-
dows 95 operating system, as VxD that hooks itself in
the hooking chain provided by the IFS Manager. The
privacy provided by SEFS is ensured for as long as
the SEFS VxD remains the first hooker of the chain.
In a near future we expect to develop an SEFS pro-
totype for the Windows Driver Model (WDM) archi-
tecture, supported by the Windows 98 and windows
2000 operating systems [3].

In terms of performance SEFS introduces a signifi-
cant overhead when reading/writing secure files, but
that is mostly due to cryptographic transformations.
Since such transformations are necessary to enforce
privacy, either with application-level tools or with a
file system module like SEFS, we can conclude that the
performance of the current SEFS prototype is good for
the functionality it provides.

References

[1] Matt Blaze. A Cryptographic File System for
Unix. In 1st ACM Conf. on Comm. and Computing
Security, pages 9–16, Fairfax, VA, USA, Novem-
ber 1993.

[2] Matt Blaze. Key Management in an Encrypting
File System. Technical report, AT&T Bell Labora-
tories, 1993.

[3] Chris Cant. Writing Windows WDM Device
Drivers. R&D Books, 1999.

[4] A. Celentano, A. Cozzolino, A. del Sorbo,
E. Mauriello, and R. Pisapia. Transparent
Cryptographic File System. In Pluto Meeting
1998 – LiMe’98, Rome, Italy, October 1998.
http://impchim2.ing.uniroma1.it/-
LUG/lime98/atti/index.html.

[5] Microsoft Corporation. Step-by-
Step Guide to Encrypting File System
(EFS). http://www.microsoft.com/-
TechNet/win2000/efsguide.asp.

[6] Gary Fernandez and Larry Allen. Extending
the UNIX Protection Model with Access Con-
trol Lists. In Proc. of the USENIX Summer Conf.,
pages 119–132, San Francisco, California, USA,
June 1988.

[7] Alan O. Freier, Philip Karlton, and Paul C.
Kocher. SSL Protocol Version 3.0. Internet-Draft
(expired), March 1996. currently available
in http://developer.netscape.com/-
docs/manuals/security/sslin/-
contents.htm.

[8] Dominique Giampaolo. Inside the BeOS; Modern
File System Design. Morgan Kaufmann Publish-
ers, October 1998.

[9] Peter Gutmann. Secure FileSys-
tem (SFS) for DOS/Windows, 1996.
http://www.cs.aukuni.ac.nz/-
˜pgut001/sfs/index.html.

[10] James Hughes, Chris Feist, Steve Hawkinson, Jeff
Perrault, Matthew O’Keefe, and David Corcoran.
A Universal Access, Smart-Card-Based, Secure
File System. Atlanta Linux Showcase, October
1999. http://www.securefs.com.

[11] S. R. Kleiman. Vnodes: An architecture for Mul-
tiple File System Types in Sun UNIX. In Proc.
of the USENIX Summer Conf., Atlanta, Georgia,
USA, June 1986.

[12] X. Lai and J. Massey. A Proposal for a New Block
Encryption Standard. In Advances in Cryptology
– EUROCRYPT ’90 Proceedings, pages 389–404.
Springer-Verlag, Berlin, 1990.

12



[13] Andreas Lampen. Advancing Files to Attributed
Software Objects. In Proc. of the USENIX Winter
Conf., pages 219–229, Dallas, Texas, USA, January
1991.

[14] Paul Leach and Dan Perry. CIFS: A
Common Internet File System. Microsoft
Interactive Developer, November 1996.
http://www.microsoft.com/-
mind/1196/cifs.htm.

[15] Alfred J. Menezes, Paul C. van Oorschot, and
Scott A. Vanstone. Handbook of Applied Cryptog-
raphy. CRC Press, 1997.

[16] Stan Mitchell. Inside the Windows 95 File System.
O’Reilly & Associates, 1997.

[17] Rajjev Nagar. Windows NT File System Internals.
O’Reilly & Associates, 1997.

[18] PGP Disk. http://www.pgpinternational.com/-
products/pgpdisk.shtml.

[19] R. Rivest. The MD5 Message-Digest Algorithm.
RFC 1321, April 1992. available via DDN Net-
work Center.

[20] J. H. Saltzer. Protection and control of infor-
mation sharing in Multics. Comm. of the ACM,
17(7):388–402, July 1974.

[21] M. Satyanarayanan. Integrating Security in a
Large Distributed System. ACM Trans. on Com-
puter Systems, 7(3):247–280, August 1989.

[22] Bruce Schneier. Applied Cryptography: Protocols,
Algorithms and Source Code in C. John Wiley &
Sons, Inc., second edition, 1996.

[23] Daniel Simon. The Private Communication Tech-
nology Protocol. Internet-Draft (expired), April
1996. draft-benaloh-pct-01.txt.

[24] Philip Zimmermann. The Official PGP User’s
Guide. MIT Press, 1995.

13


