
Concurrency Control for Distributed Cooperative
Engineering Applications

João Coelho Garcia

INESC ID / IST

Rua Alves Redol 9, sala 615

1000 LISBOA, PORTUGAL

+ 351 21 3100225

jog@gsd.inesc-id.pt

Paulo Ferreira

INESC ID / IST

Rua Alves Redol 9, sala 609

1000 LISBOA, PORTUGAL

+ 351 21 3100230

paulo.ferreira@inesc.pt

ABSTRACT

Distributed cooperative engineering applications require consis-
tent and long-term sharing of large volumes of data, which may

cause conflicts due to concurrent read/write operations. Therefore

designing concurrency control for underlying middleware systems

is a difficult issue.

Current transactional solutions, even if based on an optimistic

approach, do not solve the problem because such applications

access shared data for long periods of time performing a large

number of read/write operations. Typically, a large set of modifi-
cations has to be discarded and this is unacceptable given the

amount of work lost.

In this paper, we describe the design and implementation of
concurrency control mechanisms aimed at both reducing the

amount of such conflicts and supporting the consistent long-term

sharing of data. The mechanism of visibility depth allows the

programmer to specify the consistency of shared data w.r.t.
different sets of sites. We also provide other mechanisms: private-
copy that allows data to be read/written without being considered

as part of a transaction and reordering transaction history to avoid

transaction aborts. We evaluate these techniques on a prototypical
middleware system called PerDiS and show that: (i) the concur-
rency control mechanisms are well adapted to support long-lived

data sharing in local or wide-area networks, and (ii) performance

is acceptable.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed Databases

General Terms

Design, Algorithms, Performance

Keywords

Concurrency Control, Persistent Store, Cooperative Applications

1. INTRODUCTION
Distributed, cooperative engineering applications are growing in

importance. An example of such applications is the computer-
aided design (CAD) of buildings within a virtual enterprise (VE).

A virtual enterprise (VE) is a consortium of teams from different
enterprises in different geographical locations, working together
for the duration of a project.

In a VE, fast and consistent access to data, despite concurrency, is

a fundamental requirement. Often collaboration follows a styl-
ized, sequential pattern. Typically, one team, usually within a

LAN (local-area network), does the initial design, performing

many updates during a limited period of time. Then, the design is

passed along to another team possibly in a different site, which

assesses a different technical aspect. They then pass their results

on to another group, and so on. There is a high degree of temporal
and spatial locality. There is also some real concurrency, includ-
ing write conflicts, which cannot be ignored; for instance working

on alternative designs in parallel is common practice.

Under these circumstances, a standard transactional model, with

pessimistic transactions and two-phase locking, is not well suited

to our application area because it may imply aborting very long-
lived transactions. In some cases, a transaction that, according to

standard semantics, would abort could in fact commit successfully

with a more sophisticated transactional model.

We propose a new mechanism to avoid transaction aborts and lost
work called visibility depth. It allows the programmer to specify

the consistency of shared data w.r.t. different sets of sites. Pro-
grammers can require the system to ensure the consistency of
shared data for three visibility depths:

• WAN (wide-area network): on a system-wide scale;

• LAN: in the local-area network of a VE team;

• PC: in the workstation of a team member.

This mechanism maps easily to the stylized collaboration of a VE

described above and was applied to a transactional middleware

system (PerDiS) [6], which was designed specifically for VEs.

In addition to the visibility depth mechanism we provide two

other techniques for transactional middleware systems:
• private-copy: allows an application to read or write data that

will not be considered as accessed when the enclosing trans-
action commits;

• reordering transaction history: changing the order with

which transactions are committed so that conflicting transac-
tions once reordered can effectively commit successfully

within a new transaction history;
In this paper, we describe these techniques, how we integrated

them in PerDiS and present an evaluation of the proposed tech-
niques and of PerDiS.

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the

first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.
SAC 2002, Madrid, Spain

© 2002 ACM 1-58113-445-2/02/03…$5.00

2. ENVIRONMENT
Generally in VEs, members of a team work within a single LAN,
while the cooperative work between teams is performed on a

WAN and is less coupled.

We make a clear distinction between LANs and WANs (see Fig-
ure 1).

Figure 1 LAN/WAN architecture (S: PerDiS servers; G: gate-
ways; C: client workstations)

A LAN is made of a group of sites that can act as client (applica-
tion executor), data server (transaction participant) and/or transac-
tion coordinator. All data has a homesite, which is the node where

it was created. The homesite is part of the data-naming scheme

and is used as a base for locating data. For each LAN, there is a

special site, called the LAN's gateway that manages all interac-
tions with sites outside the LAN.

3. VISIBILITY DEPTH
The notion of visibility depth was motivated by the need for dif-
ferent degrees of isolation between VE teams. As an example,
consider a distributed cooperative CAD tool. Suppose that the

company responsible for the pipe infrastructure in a building has a

team working in that company’s LAN. This team is restructuring

the pipe system; thus, the team members want to see each other's

work, but don't want other VE partners to see the intermediate

steps of that work until all the restructuring is done. In this case,
LAN visibility depth limits the visibility of the intermediate

read/write operations to the company’s LAN. The outcome of the

changes will be shown to the rest of the consortium partners only

when a WAN commit is executed.

Visibility depth allows users to define, for each transaction, the

source from where data should be read from during a transaction

and the destination where it should be stored into at transaction

commit time. Currently, we support the following visibility

depths, which provide different consistency domains:

• WAN - Committed updates are made available to all VE

sites. It involves an actual modification of the data at its au-
thoritative homesite.

• LAN - Committed updates are made visible only to other
sites within a LAN and are stored in the LAN’s gateway;
they are not globally visible until the user performs a WAN

commit.

• PC - Committed updates are strictly local to a workstation

(where the application is running) and are not made visible

to others until a WAN or LAN commit is performed on this

data.

Requesting an object with visibility depth PC, LAN or WAN

implies receiving a replica that is coherent w.r.t. the client work-
station, LAN or WAN, respectively. The use of visibility depth

implies that there will be several simultaneous versions of the

same data, which may be joined if they are all brought to a global
(WAN) consistency domain.

4. PRIVATE-COPY
Usually data can be accessed for reading or writing. We propose

private-copy is an additional mode of requesting and accessing

data. Such data is consistent when read and can be used for
browsing or draft work but is not submitted at commit time. In

other words, the application programmer (or its user) may access

the private copy data as he wants (i.e. read or write), but that data

does not belong to the transaction read or write set and therefore

is not included in its validation.

For example, in CAD, a user frequently has to browse through

data to get to the part of the project he is working on. This does

not mean that his work depends directly on the browsed data. As a

matter of fact, most probably the reading of such data has no se-
mantic impact on the running transaction. However, if this data

were marked as read or written, unnecessary conflicts might arise

with other engineers updating part of the browsed data. It's worth

noting that these are not real semantic conflicts between users,
therefore the transaction can effectively commit. If an engineer
were to change his mind and decide to really work on data that
was initially requested as private-copy, the corresponding transac-
tional lock could be upgraded to a read or write lock.

Private-copy has to be used carefully. In particular, users must not
request private copies of data whose access will affect other reads

or writes in the transaction; if that is the case, such data must be

included in the running transaction's read (or write) set.

5. VERSIONS AND REORDERING OF

TRANSACTION HISTORY
Multi-version generalized validation (MVGV) [1] is a validation

and commit algorithm for distributed optimistic transactions that
we have adapted to the environment and goals of PerDiS (see

4.1). Pessimistic transactions restrict concurrency by locking data

conservatively; this guarantees that the transaction does not abort
due to conflicts. Optimistic transactions don't lock data because

they assume low contention between transactions. Consequently

conflicting transactions may have to abort. MVGV manages a

multi-version database where each database tuple1
 may have sev-

eral versions; each version corresponds to the changes made to

the tuple by a different transaction.

Transactions always have a consistent view of the database since

the data versions that were valid when they began are kept at least
until the transaction ends. Thus, in a multi-version store, commit-
ted transactions do not overwrite existing data versions but origi-
nate new versions instead. This has two advantages: (i) read-only

transactions need never be validated or aborted because they al-
ways see consistent data and (ii) the history of transactions is kept
available and can therefore be reordered to eliminate conflicts.

The distributed commit protocol is a two-phase protocol (prepare

and commit) where the site where the application ran acts as co-
ordinator, and the servers that provided data are the participants.

Additionally, during the prepare phase, while each participant
validates the data updates, a site may detect a conflict that can be

avoided by reordering the history of transaction instead of abort-

1
 In PerDiS, the database is a file store and each tuple is a file.

ing. When a committing transaction T1 has had its read set over-
written by another transaction T2 that committed previously, the

transaction protocol proceeds to check whether the committing

transaction T1 has not overwritten the read sets of any of the

transactions between the committing T1 and the conflicting T2

transactions. If this check succeeds, T1 can be placed before T2 in

the validation queue. A third phase in the commit protocol is used

to propose this reordering to all participating sites. If it succeeds

the transactions are committed in the new order; otherwise the

transaction aborts.

If the user does not want to lose his updates, he can still prevent
aborting the transaction by committing it at a more restricted visi-
bility depth (LAN or PC). This way, conflicting versions are

available for latter reconciliation.

6. PerDiS ARCHITECTURE
PerDiS is a distributed persistent object store. Applications run-
ning on top of PerDiS use a simple API to access persistent ob-
jects within transactions with ACID guarantees. Graphs of persis-
tent objects are stored in files called clusters.

In PerDiS, each LAN has a site called the gateway that establishes

the interface between memory sharing within the LAN and cluster
sharing at WAN scale. It also holds a file cache that stores all data

with LAN visibility depth and performs some cluster prefetch

from remote sites. Further details on caching are out of the scope

of this paper.

Transactions are done over a multi-version store managed using

MVGV. PerDiS has two modes of transactional operation: one for
LANs and another for WANs. This separation influences the lock-
ing, the commit method and caching. Consequently it defines the

type of contention events which can be detected and notified to

applications:

• Within a LAN, PerDiS sites share data coherently using a

page-based distributed shared memory mechanism (DSM)
[12]. At commit time, the PerDiS server at the site where the

transaction ran requests all necessary locks and validates the

transaction. If validation succeeds, updates are written both

to DSM and to local servers’ disks. Contention detection is

done with page granularity given that the DSM is page-
based.

• On a WAN scale, PerDiS sites share data by exchanging and

caching whole files (via their gateways), file updates are

logged locally and transactions are committed using MVGV.
Since data is first logged locally, the commit protocol can be

performed asynchronously, i.e. the application is not forced

to wait for the commit result; it may proceed tentatively us-
ing the foreseeable commit result.

PerDiS includes notifications for when: other users request cluster
(indicating intentions to read or write), other users update cluster
and for when concurrent transactions complete. Notifications are

delivered to applications using callbacks or directly via e-mail to

users.

PerDiS is able of scheduling and performing asynchronously

actions that were postponed due to communication problems,
which sometimes occur over WANs. Asynchronous activities in

PerDiS are: completing transaction commits and sending notifica-
tions. In particular, the result of asynchronous commits are con-
veyed to applications using notifications.

7. PerDiS IMPLEMENTATION
PerDiS is implemented as a user-level library linked with applica-
tions and a PerDiS server running at each site (see Figure 2).

Normal servers perform as gateways depending on run-time con-
figurations. In PerDiS, during transactions data is mapped in ap-
plication memory using shared memory between the applications’
library and the local server. At commit time updates are sent to

the local server, which initiates the commit protocol (MVGV).

Figure 2 PerDiS architecture

In MVGV, a data structure called a validation queue is used to

manage the multi-version store and represent the transaction his-
tory. Each entry in this queue represents a transaction along with

the reads and writes it has performed. These entries do not corre-
spond to pessimistic locks and don’t prevent other transactions

from accessing the same objects.

VQ entries are used for validating the transaction against others,
for detecting conflicts and sending notifications. A transaction

will have entries in the VQs of all sites from which it requests

files. These entries are inserted when the first file is requested.
VQ entries include the identification and intent (read, write or
private-copy) of the requesting transaction, which may also used

for notification purposes.

7.1 WAN Transactions
When a transaction begins, it is assigned a global start timestamp

(gst). When it is submitted for commit, it is assigned a global
commit timestamp (gct). Thus, each cluster is labeled with a time

(or version) stamp marking the moment when it was committed.
Transactions are globally ordered according to their gct.

This global order is established by assuring that the gct is a majo-
rant of all gct previously assigned by the participating sites. The

site where the transaction executed coordinates the distributed

commit and proposes a gct. After validation, it is informed

whether any of the participating sites had already assigned a time-
stamp greater than the proposed one. If that is the case, the trans-
action's gct is increased accordingly and the new value is broad-
cast in the two-phase commit protocol's commit message. One

should note that this procedure tends to keep the timestamps of
sites that interact frequently loosely synchronized.

7.2 LAN Transactions
For transactions strictly within a LAN, the commit procedure is

simpler. This procedure is supported by the assumption of com-
plete local connectivity and on the use of the DSM caching this

allows. When a transaction wants to commit, all pages in its read

and write sets, and the corresponding locks, are requested. The

transaction is validated by checking for read/write (overwriting of
its read set by others) and write/write (write set overwritten by

concurrent transactions) conflicts. If the validation succeeds, and

before releasing the locks, the cache is updated by writing to local
memory all pages that have been fetched. The corresponding files

are updated by applying their updates from the log to the files on

disk using a LAN scale remote file access protocol.

8. EVALUATION
This section presents and justifies the following evaluation re-
sults: (i) how easy it is to program a distributed application on top

of PerDiS, while making use of the concurrency control mecha-
nisms presented in Section 3, and (ii) even though the prototype is

non-optimized, its performance is acceptable.

8.1 Project Manager
The Project Manager (PM; Figure 3) is a demonstration applica-
tion programmed on top of PerDiS to allow different users to

work cooperatively over a set of application files (text, spread-
sheet, etc…). We define a project as such a set of semantically

related files. This notion of project allows the user to rely on the

transactional PerDiS support to ensure the coherence of related

files whenever one or more of them are being edited.

Users can check-out a single file or a whole project, edit the files

using an external application, and later check them in to ensure

their changes are visible to other users. Files may even be im-
ported from a WWW site into a project.

This application is similar to some version control systems, such

as the CVS software from Cyclic2, in the sense that both allow

check-out and check-in operations from concurrent users, and rely

on external applications to edit the files. Compared to CVS, how-
ever, PM, which runs on top of PerDiS, provides transactional
access to a fully distributed storage well adapted to wide-area

networks. Additionally, we do not have to rely on a central server
to store all the project contents as in version control systems.

Each project is described by a metadata file. Thus, whenever a file

is added to a project, the project's metadata, containing the file

contents and some additional information, is created (if it did not
already exist). When a user checks-out files, the project manager
application stores them locally (in a directory chosen by the user).
Then, these files can be edited using an external application. Later
files are checked-in for transactional commit. If conflicts occur at
WAN visibility depth, the user can always decide to check-in with

LAN or PC visibility and later reconcile [14]. When a conflict
happens or the transaction commit succeeds, PerDiS automati-
cally sends a notification to concurrent users. If a user receives a

conflict notifications while editing a file, he knows that the sub-
sequent check-in may fail; thus, he may decide to check-out that
file again and integrate his changes with the newer version.

Figure 3 Project manager interface

2
 http://www.cyclic.com/

8.2 Simplicity of Programming
PerDiS has a very simple application programming interface

(API). Applications only have to begin transactions and open

clusters in order to obtain persistent objects. From then on, they

access persistent and volatile data in the same way except for a

different memory allocation primitive. When processing is fin-
ished, clusters are closed and all changes become persistent when

the running transaction is committed.

As an example, Figure 4 shows the code for the PM’s check-in

operation, which completes the transaction initiated at check-out,
and saves application files as coherent persistent objects. This

task writes the files that constitute a project into the correspond-
ing PerDiS cluster and commits this operation to the store.

Once a reference to the root object of a cluster is obtained, all the

subsequent handling of local and cross-cluster references follow

standard pointer semantics, except that unreachable data is prone

to be garbage collected after the transaction commits [4].

All error checking has been omitted for the sake of simplicity. As

it can be observed, apart from enclosing the function's contents in

a transaction block and explicitly opening the root of the cluster
data, the remaining code is very much like the one we find in

centralized applications. This example shows that the PerDiS

approach is both powerful and elegant. Thanks to cluster caching

and DSM, all data manipulation is local and distribution is trans-
parent. Local and cross-cluster references are both used as normal
pointers.

void CheckInFile(Cluster clu,
CString filename, transaction t) {

// open cluster and root
root = open_root(ROOT,intent_exclusive,
clu);
// open the file
CFile file(save_filename,
CFile::modeRead | CFile::typeBinary);
long file_size = file.GetLength();
BYTE *buffer = new BYTE[file_size];
// allocate the array on the cluster
root->content = allocate_array_in(
BYTE,my_clu,file_size);
f.ReadHuge(buffer, file_size);
// write the buffer's contents
// into the cluster
memcpy(root->content, buffer, file_size);

// close the file and the cluster

f.Close();
close_cluster(clu);
end_transaction(t, 0);
}

Figure 4 PerDiS source code for Project Manager

8.3 Performance
In this section, we evaluate the performance of the PerDiS plat-
form based on a benchmark that closely resembles the behavior, at
transaction begin (check-out) and commit (check-in), of the PM

presented above.

The testing environment that we simulated as an example of a VE

scenario consists of 4 PCs that make up two LAN workgroups

separated by a WAN network (see Figure 5). The testing envi-
ronment was the following: 4 Intel Pentium III computers with

128 MB RAM, running Windows NT 4.0. The network within the

LANs is a local 100 Mb/s Ethernet. The bandwidth between

LANs is significantly reduced due to traffic generated by other
users.

The data consists of two variable-sized clusters with references

between them. The benchmark application takes these two clus-
ters and opens, modifies and then commits them. In PerDiS, there

is an enormous difference cluster size and actual data content.
This is due only to implementation deficiencies outside of the

transactional sub-system and is transparent to it. These data or-
ganization problems lead to numerous large files, which could

easily be avoided through metadata reorganization. Therefore, we

believe it is fair to evaluate transactional performance using the

real cluster size and not its data content.

Figure 5 PerDiS testing scenario.

We compare the data's check-out and check-in duration with the

aggregate cluster size and with the number of files. Figure 6

shows the performance results of the project check-out and check-
in operations as the file size varies. The check-out operations

presented have a high cache hit rate at the LAN gateway. There-
fore, the duration of the check-out is due mainly to the coherence

validation of all required files at their remote homesites and to the

initializations needed to begin a transaction. As expected the

check-in operation timing greatly depends on the file size. This is

due to the synchronous writing on persistent storage of data and

log information. However, the amount of file spaced in these

tests, if adequately used, could store a large amount of data and so

this scenario corresponds to a realistic commit of a large project.

Figure 6 Check-out and check-in performance

Detailed profiling further showed that circa 75% of the overall
commit time is spent sending data to the server and writing to

disk. Thus, communication places a significant burden on per-
formance at commit time. Note that, since these two activities

(communication and writing to disk) are staggered, there is a large

overlap between them.

9. RELATED WORK
Many middleware platforms are based on remote object invoca-
tion, using Corba [2, 5], DCOM [13] or Java RMI [17]. An appli-
cation invokes objects, stored in a server, through remote refer-
ences. In the CAD domain this results in abysmal performance,
and server scalability problems. Remote objects are especially

inappropriate in VEs, where servers may be located across a slow

WAN connection. Furthermore, efficient porting of centralized

CAD applications to middleware systems requires complete re-
engineering. Additionally, traditional remote object systems cause

a high percentage of aborts in long-term data sharing.

PerDiS can be compared to many different kinds of systems: dis-
tributed file systems, DSM systems, persistent object systems,
etc.... In this paper, we focus on concurrency control especially

the reduction of aborts. Several DBMS have extended standard

pessimistic two-phase locking (2PL) to allow greater concurrency

[11, 15]. In particular, optimistic locking protocols allow intense

concurrency under workload patterns with low write contention.
A client/server DBMS with inter-transactional caching at the cli-
ents requires notifications to maintain cache coherence in regard

to other clients. This can be achieved by invalidating stale cache,
propagating new committed data or by a dynamic choice between

these techniques [7]. In cooperative environments with low write

contention, invalidations perform best because they are less sensi-
tive to usage patterns. With the transactional techniques presented

for PerDiS, maintaining data consistency does not necessarily

imply aborting transactions.

10. CONCLUSIONS
Distributed cooperative engineering applications require consis-
tent and long-term sharing of large volumes of data. PerDiS sup-
ports this kind of sharing by means of a transactional system.
PerDiS incorporates concurrency control mechanisms aimed at
both reducing the amount of lost work due to conflicts and sup-
porting the consistent long-term sharing of data. The mechanisms

of visibility depth, private copy and reordering of transaction

history, all contribute to a small number of aborts. In addition,
from our experience, they provide the right support to deal with

wide-area connectivity problems and to allow the kind of sharing

needed in a VE environment.

The PerDiS API is very simple and similar to the ones found in

centralized systems. This makes porting already existing central-
ized applications to PerDiS a simple task.

In summary, the contributions of this work are the following: (i) a

running prototype called PerDiS, able to support both local-area

and wide-area long-lived data sharing, (ii) the notion of visibility

depth that is well adapted to the stylized, sequential pattern of
cooperation found in a VE, as it allows the application program-
mer to specify where data is fetched from and where it is stored

into, (iii) additional concurrency mechanisms that contribute to

reduce the amount of aborts: private-copy that allows data to be

read/written without being considered as part of a transaction and

reordering of transaction history, and (iv) in PerDiS, local-area

transactions run on top of a DSM mechanism thus providing a

data-shipping approach which results both in a centralized-like

application programming interface and better performance than

function-shipping paradigms for long-lived transactions.

11. REFERENCES
[1] Divyakant Agrawal, Arthur J. Bernsteinm, Pankaj Gupta, and

Soumitra Sengupta. Distributed optimistic concurrency con-
trol with reduced rollback. Distributed Computing, Springer-
Verlag, 2:545-59, 1987.

[2] Virginie Amar. Integration des standards STEP et CORBA

pour le processus d'ingenierie dans l'entreprise virtuelle. PhD

thesis, Université de Nice Sophia-Antipolis, September
1998.

[3] Ken Arnold and James Gosling. The Java Programming Lan-
guage. Addison-Wesley, 1996.

[4] Xavier Blondel, Paulo Ferreira, and Marc Shapiro. Imple-
menting garbage collection in the PerDiS system. In Proc. of
the Eigth International Workshop on Persistent Object Sys-
tems: Design, Implementation and Use (POS-8), 1998.

[5] Digital Equipment Corporation, Hewlett-Packard Company,
HyperDesk Corporation, NCR Coporation, Object Design,
Inc., and SunSoft, Inc. The Common Object Request Broker:
Architecture and specification.Technical Report 91-12-1,
Object Management Group, Framingham MA (USA), De-
cember 1991.

[6] Paulo Ferreira, Marc Shapiro, Xavier Blondel, Olivier Fam-
bon, João Garcia, Sytse Kloosterman, Nicolas Richer, Mar-
cus Robert, Fadi Sandakly, George Coulouris, Jean Dolli-
more, Paulo Guedes, Daniel Hagimont, and Sacha Krako-
wiak. PerDiS: design, implementation, and use of a PERsis-
tent DIstributed Store. Recent Advances in Distributed Sys-
tems, Springer Verlag LNCS, Eds. S. Krakowiak and S.K.
Shrivastava, 1752, February 2000.

[7] Michael Franklin, Michael Carey, and Miron Livny.
Transactional client-server cache consistency: Alternatives

and performance. ACM Transactions on Database Systems,
22(3):315-363, September 1997.

[8] Jim Gray and Andreas Reuter. Transaction Processing: Con-
cepts and Techniques. Data Management Systems. Morgan

Kaufmann, 1993. ISBN 1-55860-190-2.

[9] E.James Whitehead Jr. World wide web distributed author-
ing and versioning (webdav): An introduction. Standard

View, 5(1), March 1997.

[10] E.James Whitehead Jr. and Meredith Wiggins. Webdav:
IETF standard for collaborative authoring on the web. IEEE

Internet Computing, September 1998.

[11] Charles Lamb, Gordon Landis, Jack Orenstein, and Dan

Weinreb. The ObjectStore database system. Communications

of the ACM, 34(10):50-63, October 1991.

[12] Kai Li and Paul Hudak. Memory coherence in shared virtual
memory systems. ACM Transactions on Computer Systems,
7(4):321-359, November 1989.

[13] Roger Sessions. COM and DCOM: Microsoft's Vision for
Distributed Objects. Wiley, 1996.

[14] Marc Shapiro, Anthony Rowstron, and Anne-Marie Kermar-
rec. Application-independent reconciliation for nomadic ap-
plications. In Proc. of the 9th ACM SIGOPS European

Workshop, Kolding, (Denmark), September 2000.

[15] Reinhard Stroste and Herbert Eberle. Kernel service call.
Technical Report 43.8701, IBM European Networking Cen-
ter, January 1987.

[16] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall,
1996.

[17] Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed

object model for the Java system. In Conference on Object-
Oriented Technologies, Toronto Ontario (Canada), 1996.
Usenix.

João Garcia is a teaching assistant at the Computer Science De-
partment of IST in Lisbon (Portugal) and is a researcher at the

Distributed Systems Group at INESC ID in Lisbon. His work is

focused on ad-hoc networks, service location and persistent
stores.

Paulo Ferreira is an assistant Professor at the Computer Science

Department of IST in Lisbon and heads the Distributed Systems

Group at INESC ID. His scientific interests are system support for
large-scale distributed data sharing, replication and consistency

protocols, distributed garbage collection, persistence by reachabil-
ity, operating systems, large-scale distributed applications, inter-
net protocols.

