ReConMUC - Adaptable Consistency Requirements for
Efficient Large-scale Multi-user Chat

Pedro Alves

INESC-ID / Technical University of Lisbon /

Opensoft
Rua Joshua Benoliel, 1, 4C, 1250 Lisboa
pedro.alves @opensoft.pt

ABSTRACT

Multi-user chat (MUC) applications raise serious challenges
to developers concerning scalability and efficient use of net-
work bandwidth, due to a large number of users exchanging
lots of messages in real-time.

We propose a new approach to MUC message propagation
based on an adaptable consistency model bounded by three
metrics: Filter, Time and Volume. In this model, the server
propagates some messages as soon as possible while others
are postponed until certain conditions are met, according to
each client consistency requirements. These requirements
can change during the session lifetime, constantly adapting
to each client’s current context.

We developed a prototype called ReConMUC (Relaxed
Consistency MUC) as an extension to a well-known MUC
protocol, which, by attaching a special component to the
server, filters messages before they are broadcast, according
to client consistency requirements.

The performance results obtained show that ReConMUC
effectively reduces the server outbound bandwidth, without
significant increase in memory and CPU usage, thus improv-
ing scalability.

Author Keywords
multi-user chat, publish-subscribe, consistency requirements,
groupware awareness

ACM Classification Keywords
H.4.3 Information Systems Applications: Communications
Applications

General Terms
Algorithms, Experimentation, Human Factors, Measure-
ment, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CSCW 2011, March 19-23, 2011, Hangzhou, China.

Copyright 2011 ACM 978-1-4503-0556-3/11/03...$10.00.

553

Paulo Ferreira
INESC-ID / Technical University of Lisbon
Rua Alves Redol, 9, 1000 Lisboa
paulo.ferreira@inesc-id.pt

INTRODUCTION

Multi-user chat (MUC) applications allow a group of geo-
graphically dispersed people to communicate with each
other, typically by typing text that is broadcast to everyone
in the group. Until recently, these applications have been
mainly used for entertainment purposes such as casual
chatting, meeting new friends, etc. However there is now
a growing trend for adopting these collaborative tools in
the enterprise context, for professional reasons [31]. The
paradigm in which everyone works in their company’s
headquarters is slowly shifting to the officeless company,
where employees rarely meet physically with each other,
rather working from home, some client installations or even
a coffee-shop. In addition, organizations are adapting their
structure to incorporate world-wide design and manufactur-
ing planning teams [20]. This new paradigm is supported
by wide Internet availability and a myriad of collaborative
tools such as email, groupchat, video-conferencing or virtual
meeting rooms [2].

Effective collaboration and knowledge sharing on distributed
teams is only possible if there is a supporting infrastructure
allowing (at least) these two features:

e Direct communication - It must be possible to ask
questions to the team and to answer and discuss these
questions, until the team reaches an agreement. Messages
exchanged may require immediate attention as the asker
may need quick feedback in order to continue what she is
doing.

o Context awareness - It must be possible, for every team
member, to become aware of what is going on: who
belongs to the team, who is online, who is working on
what, who is responsible for what, etc. [15]. This
group awareness is essential, as an understanding of the
activities of others provides a context for our own activity
[8]. Bjerrum [4] refers that surreptitious monitoring
has been found in many settings to be the basis for
learning and knowledge sharing. Sawyer [26] found
that social processes such as informal coordination and
ability to resolve intragroup conflicts accounted for 25%
of the variations on software development quality. Unlike
direct communication in which you are actively seeking a
specific information, in this case the user is just watching
passively what is going on in the chat room. Such context

messages do not require immediate attention by the group
because they are just informative.

Typically, MUC applications provide both features but do
not distinguish them, processing every message the same
way, be it direct communication or context awareness re-
lated. This is undesirable for two main reasons: i) it
forces every participant to analyze each incoming message
to decide if it must be acted upon or if it is just informative;
ii) propagating every message in real-time consumes un-
necessary server resources and bandwidth as some messages
are just informative and do not require immediate delivery.

We address these limitations by adapting to this particu-
lar problem two well-known techniques from other fields:
relaxed consistency for replicated data [25] and content-
based filtering for publish-subscribe systems [21]. Thus,
we propose an adaptable consistency model for MUC prop-
agation in order to increase scalability and performance.
Consistency requirements specification are plugged into the
MUC protocol defining bounded lag parameters for message
propagation. Intuitively, the main idea is propagating impor-
tant messages immediately and delaying not so important
messages, based on client parameterization. The parameters
are Filter (based on the message content), Time (based
on the message age) and Volume (based on the number
of messages retained on the server). Delayed messages
(retained at the server) allow more important ones to be
immediately propagated to clients. In addition, as observed
experimentally, retained messages cand be aggregated and
sent as one, allowing a high level of compression, thus
requiring less network bandwith than current systems.

Besides filter triggering, there is another event that in-
fluences the decision on immediate or delayed message
propagation: the possible relation between exchanged mes-
sages. In MUC applications it makes sense to group certain
messages together (e.g. direct replies) [29]; such message
groups must be carefully processed when the server is under
relaxed consistency requirements. In fact, there is a causal
relation among many of these messages; therefore, we need
to guarantee their ordering [17] across all participants. For
example, we have to make sure that users do not see a reply
before the original message. We also have to make sure that
the asker sees the replies to her question as soon as possible.

We implemented a prototype of our adaptable consistency
model (called ReConMUC) as an extension to the XEP-
045 extension of the XMPP protocol [22] given that it
is probably the most widely used non-proprietary MUC
protocol.! The XMPP protocol does not specify any filtering
mechanism (which can be considered a specific form of con-
sistency requirements) for exchanged messages, although
it’s easy to extend it in order to include this kind of meta-
information, since the underlying message format is plain
XML. In fact, this is precisely how we developed Joom,? a

'Used by Google and Facebook on their chat applications, among
others and reaching more than 500 million users; there are multiple
client applications available using this protocol, as well as server
implementations.

2 Available at http://code.google.com/p/joom

554

desktop brainstorming oriented chat application that allows
the user to set an active topic, effectively filtering the whole
conversation for only the messages belonging to a specific
topic. Joom extends the standard XMPP message format to
include specific information such as the active topic of the
conversation.

In summary, the contributions of this work are:

e A new adaptable consistency model bounded by three
metrics (filter, time and volume) for MUC message prop-
agation. It allows users to easily define their consistency
settings, recognizing that each user has different require-
ments for message delivery, without sacrificing general
awareness of what is going on in conversations elsewhere.
In spite of the large number of messages, this model
ensures good performance and scalability.

e ReConMUC, a MUC prototype of the consistency model
built as an extension to a well-known MUC protocol
(XMPP); thus, it can be easily deployed in all XMPP
server implementations.

e Joom, a brainstorming-oriented chat application, that makes
use of ReConMUC to provide enhanced performance and
usability to the end-user.

The remainder of this paper is organized as follows. The
next section surveys relevant related work. After that,
we present the adaptable consistency model, explaining
how XMPP is extended to include consistency settings
information. The next section describes ReConMUC imple-
mentation details. Then, we present performance results and
finally we draw some conclusions.

RELATED WORK

The scalability of large MUC systems can be achieved
by using well-known techniques to reduce the number of
exchanged messages: either by discarding irrelevant mes-
sages (as publish-subscribe systems do) or by postponing its
dissemination (as relaxed consistency systems do). If we
want to preserve awareness in MUC applications without
compromising scalability, we must use a combination of
these techniques, both described in this section. In addition,
since MUC applications are collaborative real-time systems,
we provide an overview of Computer Supported Collabora-
tive Work (CSWC) studies related to real-time groupware
performance.

Publish-Subscribe Systems

The publish-subscribe paradigm [11] is a loosely coupled
form of interaction suitable for large scale settings. It
consists of three components: publishers, who generate and
feed the content into the system, subscribers, who receive
content based on their interests in a topic or pattern, and
an infrastructure that distributes events matching subscriber
interests with publishers content. There are two kinds of
matching systems: subject-based and content-based.

In subject-based systems [21], there are some predefined
subjects also known as fopics or channels to which both

publishers and subscribers can connect. For example, in a
subject-based system for stock trading, a participant could
select one or two stocks and then subscribe to them based
on their name® if that were one of valid channels. Some
examples of these systems include Isis [3], Linda [6], Herald
[5] and more recently Pubsubhubbub [1] for Internet data
feeds.

Content-based systems [21] are much more flexible at the
expense of a more complex matching algorithm - they enable
subscribers to issue sophisticated queries or predicates that
act on a message-by-message basis. In this case, a partici-
pant could decide to receive stock information under much
more specific conditions such as {price(15,20), Earning-Per-
Share>0.5}. Elvin [27] and Siena [7] are examples of such
systems.

The publish-subscribe communication model has been pro-
posed as a possible solution for large scale group col-
laboration [18]. In fact, several group communication
applications have been developed using publish-subscribe
systems such as Corona [16] and XGSP [32]. In particular,
subject-based systems fit well in MUC applications like
IRC, since participants may join rooms or channels from a
predefined list, effectively aggregating messages by topic.
However, there are two important drawbacks of publish-
subscribe systems when applied to group communication.
First, messages are always delivered as soon as possible,
even though the user does not require this immediacy.
This is specially significant if the participant is receiving
messages in a constrained device such as a cell-phone or
the volume of delivered messages is too high for the current
network conditions. Second, the participant is completely
oblivious of the presence of other subscribers (even for the
same topic) [16] as well as not knowing what is going on
other channels, rendering impossible any visualization of
context awareness information which, as explained before,
is crucial to effective knowledge sharing. Besides direct
communication, publish-subscribe systems have also been
used to propagate awareness information (e.g. Tickertape

[12]).

Optimistic Replication

Optimistic replication algorithms increase availability and
scalability of distributed data sharing systems by allowing
replica contents to diverge in the short term [25]. If
we consider exchanged messages in MUCs as a form of
distributed shared data (albeit short-lived) and that this kind
of applications often tolerate some lag on message delivery,
it makes sense to study how optimistic replication algorithms
can be used to implement MUC applications.

One of the oldest optimistically replicated system is a group
communication tool called Usenet [30], first deployed in
1979. Usenet is a multi-server system that lets any user
post articles to any server, which periodically pushes the
newest articles to neighboring servers. Eventually, those

3In this case, each stock name constitutes a channel which users
can subscribe to, thereby receiving real-time information on that
particular stock.

555

articles will reach every server in the world, albeit they can
take as long as a week to show up in every Usenet client.
This temporal variability is a reasonable cost to pay for its
excellent availability.

Hall [16] recognizes as a fundamental group collaboration
requirement that different kinds of data require different lev-
els of consistency. From his own experience implementing
a collaborative system, the author asserts that a communi-
cation service must not enforce a single data consistency
police for all types of data. However, he primarily addresses
the reliability problem, pertaining data loss and updates
ordering. For example, he describes a chat application as
a system where is imperative to reliably deliver messages to
all users, when in fact, certain messages (e.g. awareness)
could be subject to a less restrictive model.

More recently, Yu [33] describes how TACT, a framework
that enforces arbitrary consistency bounds among replicas,
was used to implement a Bulletin Board application similar
to Usenet. The authors refer to the importance of maintain-
ing causal and/or total order [17] among messages posted at
different replicas as well as guaranteeing an upper temporal
limit for missing messages in a given replica. However,
TACT does not allow consistency bounds to be based on
message content: every message is distributed the same way
independently of its subject.

Real-time Groupware Performance

The scalability of real-time distributed groupware appli-
cations has concerned the CWSC community for quite
sometime [16]. For example, Gutwin [14] shows that
network delays due to latency and jitter cause difficulties in
group coordination, affecting the usability of collaborative
distributed applications.

Smed [28] and Dyck [10] identified several networking
techniques used in multi-player computer games (MCGs)
which share similar demands and characteristics with gen-
eral real-time groupware applications. In fact, most MCGs
include some form of chat (text or audio) to help team
coordination and generate the kind of bursty short messages
traffic we can find in MUC applications. Also, MCGs
produce different types of messages: awareness messages
(e.g. nearby players movement), operations on the data
model (e.g. killing a player) and explicit communication
such as already mentioned chat messages. One of the
most important conclusions of these studies is that although
awareness messages are the most common, they are often
less important than certain creation/deletion messages.

Dyck [9] provides a taxonomy of application-layer net-
working techniques, broken into four categories: encoding,
routing, reliability and scheduling. Two of these groups
assume greater relevance in the context of MUC: encoding
and scheduling. Encoding aims to decrease the payload
size by changing the representation of the messages, mainly
using some form of compression. Scheduling techniques
decide when information is sent and how it is packaged.
Although most groupware applications use an event-driven

TCP model [10], sending messages whenever an event oc-
curs (as soon as possible), this can cause problems under net-
work constrained environments such as WANs and mobile
devices. By scheduling messages to later delivery (based on
QoS requirements) and aggregating them in larger packets,
applications can achieve good usability and performance
even in poor network conditions.

Most groupware performance studies are related to MCGs or
collaborative whiteboards where telepointer events propaga-
tion still constitute the main problem. Nevertheless, in these
applications, the “immediate propagation” paradigm is still
the norm, and only the recent tendency of mobile devices
usage for distributed collaboration has raised some concern
on these applications scalability [19].

ADAPTABLE CONSISTENCY MODEL

This paper proposes an adaptable consistency model for
MUC message propagation, bounded by three metrics: Fil-
ter, Time and Volume:

o Filter - Specifies a list of queries or predicates that are
applied to every message in order to decide if it must be
propagated immediately or if it can be postponed. The fil-
ter principle is similar to content-based publish-subscribe
systems, in which subscribers define their subscriptions
issuing predicates to receive only the information they
need [11, 21]. However, and most importantly, unlike
publish-subscribe systems, the filtered-out messages are
not discarded, only postponed at the server, until other
requirement specifications (time and volume) reach a
certain threshold.

e Time - Specifies the maximum time interval a message
can be postponed (i.e. retained in the server). Once this
time interval expires, the message is propagated to the
client.

e Volume - Specifies the maximum number of retained
messages in the server. When the volume of messages
reaches this threshold, such messages are immediately
propagated to the client.

We also take into account possible message correlation, such
as message replies, message threads (specific short-lived
topics within the main topic), sender’s geo-location, etc. In
particular, our proposal guarantees causal delivery [17] so
that: i) for any reply r; in a chain of replies to a certain
message m, r; will not be propagated before m, even if it
is activated by a filter for immediate delivery; ii) for any
message m,,, sent by participant p, all replies to that message
are instantly sent to p no matter what the current consistency
requirements are.

The remainder of this section starts by describing XMPP,
the protocol upon which the adaptable consistency model
is integrated into. Note that the consistency model here
presented can be applied to other similar MUC protocols.
Next, we explain how the client defines its consistency
requirements. Afterwards, we introduce the concept of
active topic as an example of a filter. We end up illustrating

a possible message workflow that applies these concepts to
a real-word usage scenario.

XMPP - Extensible Messaging and Presence Protocol
The core XMPP specification is defined in RFC 3920 [22]
and defines an XML stream between two entities over
a network for real-time communication [24]. The XML
elements that are sent over these streams are called stanzas
and fall into the following 3 types, each with different se-
mantics: <message/> for unidirectional information push,
from one entity to another; <presence/> for broadcasting
the status and network availability of a particular entity and
<iq/>, a request-response mechanism (similar to HTTP)
normally used for exchanging meta-information. These 3
types have proven sufficient for most kinds of real-time
communications because the stanzas are easily extended by
including child elements that may be qualified by any XML
namespace. In the next sections, we show how we have
extended some stanzas to support our adaptable consistency
model.

Some of the current XMPP extensions are so commonly
used that they have been standardized through the Jabber
Software Foundation (JSF) [23] and include file-transfer,
service discovery, publish-subscribe among others. Of
particular interest to this work is the MUC extension which
has been defined in XEP-045 [23] and is now implemented
in a wide variety of server and client applications.

Although the main adoption driver of XMPP has been
Instant Messaging, its extensibility and ease of development
makes it suitable to diverse applications such as large in-
frastructures monitoring or real-time financial notification
services [24].

Setting Consistency Requirements

In spite of the large number of predefined available XMPP
extensions, there was none for defining consistency require-
ments, so we had to create our own extension (stanza).
This stanza is typically sent by the client to its server just
after joining a MUC session with the initial consistency
requirements. It is worthy to note that consistency require-
ments can also be sent anytime the client wants to change
such requirements. These changes are sent by the client
incrementally, i.e. the message contains only what has
changed since the last consistency requirements message.

<ig to="chat@conference. jabber.org" type="set">
<consistency-requirements xmlns="http://joom.com/extensions">
<filter>
<filter-entry element="topic"
<filter-entry element="topic"
<filter-entry element="topic"
</filter>
<time>60</time>
<volume>20</volume>
</consistency-requirements>
</ig>

value="xmpp" active="true" />
value="android" active="true" />
value="chess" active="true" />

556

Listing 1: Initial Consistency Requirements stanza

We have extended the <igq/> stanza with a <consistency-
requirements/> child element, featuring the three bounding
metrics previously presented. Listing 1 shows a case in

1: <presence from="alice@gmail.com/home” to="chat@conference.jabber.org/Alice" /-

—

<filter>

</filter>

<time=60</ time>

<vo lume>20</vo Tume>
</consistency-requi rements:
g

2: <iq to="chat@conference. jabber.org" type="set"- i
<consistency-requirements xmlns="http://joom. com/extensions">

<filter-entry element="topic" value="gossip" active="true "

/>

<body>Hello #gossip</body>
<topic>gossip</topic>
</message>

3: <message to="chat@conference.jabber.org" type=“groupchat”>

type="groupchat”>

<topic»gossip</topic>
</message>

<body>Hello #gossip</body:

4: «message from="chat@conference.jabber.org/Alice"”

type="groupchat™”>

<topic»gossip</topic>
</message>

5: «message from="chat@conference.jabber.org/Rabbit"

<body>Hi Alice, what’s up? #gossip</body>

<topicsmovies</topic>

</message>

6: <message from="chat@conference.jabber.org/Rabbit" type="groupchat”>
<body>Watched the new Spielberg’s movie last night #movies</body>

<delay xmlns="urn:xmpp: delay” from="chat@conference. jabber.org”
stamp="2009-08-10723:05:372" />

Figure 1: Messages exchanged between the client (Alice) and the chat room server.

which a client joins the chat room ’chat@conference.jabber.org’

from which she will receive all exchanged messages. How-
ever, she is particularly interested in receiving, as soon as
possible, any messages containing the XML child element
topic with the values xmpp, android or chess. All other
messages can be retained by the server until they are 60
seconds old or until there are 20 pending messages. Notice
that these consistency requirements affect only <message/>
stanzas. The <presence/> and <iq/> stanzas are processed
normally, i.e. they are immediately propagated by the server.
By extending the standard <ig/> stanza, we ensure that any
XMPP server is able to receive this message, even though
only those using our component know what to do with this

message.*

<ig to="chat@conference.jabber.org" type="set">
<consistency-requirements xmlns="http://joom.com/extensions">
<filter>
<filter-entry element="topic" value="xmpp" active="false" />
<filter-entry element="topic" value="pubsub" active="true" />
</filter>
</consistency-requirements>
</ig>

Listing 2: Updated Consistency Requirements stanza

It’s worthy to note that the active attribute of the filter-
entry element can be used to turn off a certain filter. This
is because any client wanting to change its consistency
requirements can do so by issuing another stanza with only
the changed requirements. For example, after sending the
initial requirements on Listing 1, suppose the client is no

*Servers that do not recognize the message respond with an error.
To avoid this, the client should use the service discovery extension
(XEP-0030) to find out if the server supports our proposed
extension, before sending the initial consistency-requirements
stanza.

longer interested in the topic xmpp and is now interested in
the topic pubsub (see Listing 2). Since the <time> and
<volume> elements are absent from the stanza, the server
maintains the previous values (in this case, time=60 and
volume=20). Also, applying the same reasoning, the topics
android and chess remain active.

Filter Example - associating a message with a topic

One of the big advantages of content-based filtering is its
flexibility. As long as the specification language expres-
siveness is rich enough, any filter can be defined. In
ReConMUC, we can define filters based on the presence of a
certain XML child element in the message and on the value
of that element. Note that there are no limitations to the
number of defined filters. Nonetheless, we illustrate the use
of such filters with the concept of active topic.

In Joom (the brainstorming-oriented client MUC applica-
tion we developed) participants choose their active topic
independently and any message they send is automatically
associated with that topic. At any time they can change
their active topic, but they can only have one active topic
at any instant, so their previous active topic is disactivated.
This is a particular usability requirement of Joom, not a
limitation of our extension. This application-level “topic”
concept maps well into our protocol-level “filter” - each
topic is represented by a filter.

<message to="chat@conference. jabber.org">

<body>Hi there! #xmpp</body>

<topic xmlns="http://joom.com/extensions">xmpp</topic>
</message>

557

Listing 3:
element

Message stanza with the non-standard topic

Again, since there is no XMPP standard extension to asso-
ciate messages with a topic or tag we had to define our own.
We extended the <message/> stanza to include a <topic>
child element to achieve this association, with the format
presented in Listing 3. Note that we also append the topic
”xmpp” to the body itself, following an hashtag convention.’
This way, every standard XMPP client can participate in the
MUC session and show the associations between messages
and topics. Also, the XMPP servers which do not recognize
the <topic> element will simply ignore it.

Usage Scenario - messages workflow

The typical message flow starts with a presence stanza sent
by Alice to the chat room server (see Figure 1).° If Alice
is allowed to join this room, she starts receiving all the
messages sent to this room by other clients. Next, Alice
can send a <consistency-requirements> stanza to specify
which messages she requires to receive, based on some
filter defined by her MUC client application. Since she
is interested in gossip, she receives all the gossip related
messages immediately. Other (unrelated) messages are
retained by the server according to the parameters defined
in the initial consistency requirements message. Later on,
she will end up receiving all those messages (e.g. movie
messages) with a delay indication, so that she can know
when they were originally sent.

In Figure 1, we can see in step 2 that Alice is telling the
server to filter only those messages whose topic is gossip,
i.e. she wants to receive all gossip messages as soon as
possible. In steps 4 and 5 she receives messages that fit
within that topic just after they were sent (actually, Alice
always receives her own messages immediately, regardless
of the consistency requirements). In step 6, Alice receives
a message that has been retained at the server because
it did not comply with the filter setup on step 2; it is
now sent because it reached the defined time threshold.
Since this message was delayed, its payload includes an
extra delay element. The delay is an optional element
defined by the XEP-0203 extension (Delayed Delivery)[23],
to communicate the fact that an XML stanza has been
delivered with a delay (e.g. because a message has been
stored on a server while the intended recipient was offline
or because a message is contained in the history of a MUC
room).

IMPLEMENTATION

ReConMUC

As already said, we implemented ReConMUC as a standard
XMPP server component, compliant with XEP-0114. This
means that it can be easily deployed in all compliant XMPP
server implementations, without requiring any change to
their code or even recompilation. ReConMUC extends the
standard MUC component with consistency settings for each

SShort messages on services such as Twitter or identi.ca may
be tagged by including one or more hashtags: words or phrases
prefixed with a hash symbol (#).

®This is the standard mechanism for joining a chat room, as defined
by XEP-045; the client sends a presence stanza to a “virtual” client
associated with the chat room.

registered client in the session. These consistency settings
define the Filters for each client, as well as the maximum
tolerable Time and Volume. They can be updated at any
time through a <consistency-requirements> message, as
described previously in the Adaptable Consistency Model
Section.

% 9 U AW -

function message_received(m):
foreach u in users:
if m.from == u:
send (m,u) #send imediatly to message origin
elsif m.is_reply_-to_user(u):
send(m.u) #send imediatly replies to origin
else:
foreach filter in u.filters:
if filter.activates(m):
if m.belongs_to_thread():
send_all_previous_in_thread (u,m. thread)
send (m,u)
break

if m.was_not_sent():
retained_msgs[u].append (m)

function send-all_previous_in_thread (u,thread_id):
foreach m in retained_msgs[u]:
if m.thread == thread._id:
send (m,u)
retained_msgs[u].remove(m)

function round-_triggered():
foreach u in users:
if (now — u.last_sent) > kt:
send_all_and_remove_from_retained_msgs(retained_msgs[u])
if retained_msgs[i].size > ks:
send_all_and_remove_from_retained_msgs(retained_msgs[u])

558

Listing 4: Pseudo-code for processing received messages

The function message_received in Listing 4 represents the
pseudo-code for processing messages received at the MUC
server. For each message received, the MUC server iterates
through all participants in the chat room to decide which
ones require immediate message delivery. In particular, in
line 4, we see that it instantly sends the message back to the
original sender. This is necessary because a sender’s MUC
client should only show a message after it has been sent
and received, to avoid coordination problems, even though it
obviously knows its contents.” Line 5 checks if the message
is a reply to the current user in the iteration. In that case, the
server also sends the message immediately because we want
the user to see as soon as possible any direct replies to the
messages she sent. Next, it applies all the active filters for
each user. If the message content matches the filter definition
than it will be propagated immediatly (line 12), but first the
server will check if this message belongs to some thread,?
to guarantee that the recipient never sees a reply before
the original message (lines 10-11), preserving causal order.
Finally, if the message is not fit for immediate propagation,
it is appended to a FIFO list of retained messages. This list is
periodically processed by the round triggered function (see
Listing 4). This function is called by a scheduler and is
responsible for checking the time and volume parameters.

"Coordination problems between members of the chat room may
arise if they do not see the messages ordered the same way (e.g.
the chat room members need to agree on who was the first person
to respond to a given question).

8Here, thread means a group of related chat messages, like a reply
chain.

Joom [chat room:;joom1542299287 @conference.jabber.orgl]

(2= fon o

Jjoom.user3@gmail.com

#ideal

2§11 new |
#idea2

joom.user3@gmail.com: #idea2 other stuff
joom.user3@gmail.com: promote the product in supermarkets #idea2

* joom.userl@gmail.com (invited)

4 ioom.user3@amail.com : every idea must be ta...
4 joom.user3@amail.com : #ideal ao to the bea... i
4 joom.user3@amail.com : #idea2 other stuff

ioom.user3@agmail.com : promote the product ...

#idea2:

Figure 2: Joom screenshot

Joom

We developed Joom (see Figure 2), a desktop chat appli-
cation specially suitable for brainstorming sessions with
geographically disperse users. With this application, users
can not only chat with each other but also create diferent
topics and associate chat messages with those topics. Joom
differs from other group chat applications by helping users
stay focused in only one topic at a time (the active topic)
while maintaining awareness of the activity level in other
topics (using an unread messages counter and a global
timeline). This application uses the XMPP protocol to
connect to any compliant chat server (e.g., gtalk server).
Joom is able to detect if ReConMUC is installed in the chat
server to which it connects. In that case, it starts working
in relaxed consistency mode to improve performance and
reduce network bandwidth.

EVALUATION

As already said in the Introduction, current MUC protocols
waste network bandwidth, thus reducing scalability and
performance, by broadcasting all messages as quickly as
possible, even when that urgency is not required by the end
users. To evaluate ReConMUC scalability and performance,
we measured its network, memory and CPU usage and
compared it with a non-ReConMUC server in a set of
experiments. For that purpose, we used publicly available
chat (IRC) logs from very active channels like #ubuntu.’

Typically, IRC chat users join and watch multiple rooms
at the same time, each one on its own window. We
replicate this behavior by setting up only one XMPP MUC
room where all messages were associated with a topic (as
described in Section) representing the IRC channel which
they were coming from. For example, instead of two IRC
rooms #ubuntu and #mozilla, we setup only one MUC room
where messages from the #ubuntu IRC room were associated
with the topic “ubuntu” and messages from the #mozilla
IRC room were associated with the topic “mozilla”. We
only setup one MUC room to increase awareness of every
channel’s activity.

For this evaluation, we developed an application that parses
IRC log files, searching for users, messages and replies.

® Available at http://irclogs.ubuntu.com

559

Then, this application creates a thread for each user, respon-
sible for keeping a connection with the XMPP server and
joining the room. Afterwards, each message from the log file
is dispatched to the corresponding sender thread which then
sends it to the server using its connection. Each user has a
current topic (analogous to the IRC window with the current
focus) that changes if she sends a message with other topic.
As explained in the Implementation Section, the replies are
immediately sent to the origin.

The experiments consists on creating a chat room on the
server, connecting 800 participants and feeding the server
with six IRC log files in parallel, during 15 minutes. This
simulates 6 simultaneous IRC channels with 800 participants
trying to follow the conversations. During these 15 minutes,
the server receives aprox. 5400 messages which broadcasts
to all participants, resulting in a total of more than 4 million
messages.

We setup the experiments to run under different scenarios. In
the first scenario ReConMUC is disabled, so every message
is broadcast immediately to every participant, as current
MUC systems do. In the other scenarios, ReConMUC
is enabled taking into consideration that each participant
has only one active topic at any instant (analogous to
watching just one IRC chat window). Also, in each scenario
we change one of the consistency settings, to measure
the performance impact. Since the variation of the time
and volume parameters redound in the same effect (as we
observed experimentally) we only change the volume pa-
rameter because it is easier to manipulate, keeping constant
the time parameter. To better simulate real-life conditions,
the volume is defined by each participant’s thread through
a random function around a globally defined per scenario
parameter. For example, if vol=30, each client calculates
a random value between 0 and 60 for vol, resulting on
the global average value of 30. We think this is a more
realistic scenario than having the exact same parameters for
every participant. In summary, we evaluate the following
scenarios:

o Without ReConMUC - We call this the standard MUC
scenario given that it is used by current MUC systems that
broadcast every message as soon as possible;

With ReConMUC (vol=30; no aggregation) - Non-
optimized version of ReConMUC in which retained mes-
sages are sent one by one, instead of a single aggregated
message;

With ReConMUC (vol=10) - ReConMUC with an aver-
age volume of 10 retained messages per user;

With ReConMUC (vol=30) - ReConMUC with an aver-
age volume of 30 retained messages per user;

With ReConMUC (vol=60) - ReConMUC with an aver-
age volume of 60 retained messages per user.

Note that every participant receives 5400 messages in all
scenarios; what differs is not what each participant receives
but when and how each participant receives such messages.

Scenario Avg. Outbound | Rel. Consumed
Bandwidth Bandwidth

Without ReConMUC 257.80 Kb/s 100%
ReConMUC (no aggrega- 296.02 Kb/s 115%
tion) (vol = 30)

ReConMUC (vol = 10) 210.65 Kb/s 82%
ReConMUC (vol = 30) 148.37 Kb/s 58%
ReConMUC (vol = 60) 145.17 Kb/s 56%

Table 1: Outbound network usage under different scenarios

800

700 /
600

—4+—Without ReConMUC

——With ReConMUC (no aggregation)
With ReConMUC (vol=10)

—=—With ReConMUC (vol=30)

(

o
o
g
o 400 - —s—With ReConMUC (vol=60)
300 -
200 -
100 - .
0 : . .
5 10 15
time (min)

Figure 3: Outbound network usage over time, in kB/sec

The next sections shows how server outbound network
consumption, server memory usage and server CPU usage
are affected in the five previously mentioned scenarios. We
finish with an evaluation of causal delivery propagation time
(i.e. how long a direct reply takes); this is an impor-
tant indicator in MUC applications where related messages
propagation should not be affected by other less important
messages.

The MUC server is an Intel Core 2 Quad CPU 2.4GHz
computer with 8Gb RAM (Linux) and is monitored in three
dimensions: outbound network consumption, memory and
CPU usage. The MUC clients are deployed in two Intel Core
2 Quad CPU 2.4GHz computers with 8Gb RAM (Linux).
These three computers are connected through a LAN.

Outbound Network Consumption

It’s important to note that in all experiments we used stream
compression (XEP-0138 [23]). As a matter of fact, all
the major MUC server and client implementations support
this extension using, for example, the ZLIB algorithm to
compress all the traffic between the server and clients. Thus,
in all experiments for all scenarios, stream compression was
turned on.

Table 1 and Figure 3 show the results obtained, while
monitoring network usage, for all five scenarios. The
scenario where we use ReConMUC without aggregating
messages registers the highest bandwidth consumption (even
higher than the standard MUC scenario). All other Re-
ConMUC scenarios (that aggregate retained messages at
the server) perform better than the standard scenario. The
best scenario has the higher volume parameter (vol=60); it
decreases bandwidth usage to almost half the bandwidth of
the standard scenario.

560

800

700

A

—4— Without ReConMUC

——With ReConMUC (vol=10) |
With ReConMUC (vol=30)

—=—With ReConMUC (vol=60) i

Memory (Mb)
L83
o
o

4 8 12 16
Time (min)

Figure 4: Server memory usage over time

An interesting result is the network usage increase of Re-
ConMUC without aggregating messages. This is easily
explained by the length increase in all delayed messages,
which had to include (verbose) delay information (e.g.
<delay xmlIns="urn:xmpp:delay’ from="juliet@capulet.com’
stamp="2002-09-1 0T23:41:07Z’/>). Since this is a stan-
dard XMPP extension, we did not want to modify this
element to make it more concise, because that would com-
promise its portability.

We observed that the ReConMUC server postpones message
propagation until a certain condition is met (e.g. the
number of retained messages reaches the maximum tolerable
volume) and then, it sends all those messages in a burst.
However, most XMPP server implementations process such
messages as individual packets instead of aggregating them
in a larger single packet. By applying the compression
algorithm to an aggregated packet instead of its individual
parts, the server achieves higher compression rates, since the
messages have similar information. As we have observed in
the results, this technique effectively drops network usage
in 50% approximately (see Table 1). This aggregation is
implemented using the composite pattern [13], achieving an
easier integration with the transport layer of each XMPP
server implementation.

As we experimented increasingly relaxed consistency set-
tings (vol = 10, then 30, then 60), we noticed a decrease
in network consumption. This is because, as we aggregate
more messages, the compression algorithm becomes more
effective because of the increased redundancy. Nevertheless,
after a certain threshold, the compression efficacy starts to
diminish, as we can observe from the very slight improve-
ment when we go from vol = 30 to vol = 60.

This is also easily observed in Figure 3. There is an
initial message burst as every participant joins the room: 3
participants per second were joining the room, so it takes
aprox. 5 minutes until everyone has joined the room. During
this initial phase, most exchanged messages are related to
authentication, presence propagation and discussion history
(when a participant joins a room, it receives the last 100
messages posted to that room). After that, the consumed
outbound bandwidth remains almost constant in all scenar-
ios, being the scenarios with ReConMUC at vol = 30 and
vol = 60 the most efficient ones.

CPU Usage (%)

—4— Without ReConMUC
——With ReConMUC (vol=10)

With ReConMUC (vol=30)
—=—With ReConMUC (vol=60)

o
=
[T

45
90 |
135

180 |

N oo’ O o
0 M M~ W
N W oW M~ e

Number of participants

Figure 5: Server CPU usage with increasing number of
participants

Server Memory Usage

Typically, relaxed consistency protocols assume a trade-
off between two dimensions: network consumption and
memory usage. We could reduce network consumption
at the expense of server memory used to store retained
messages. Unsurprisingly, we observe that the average
number of retained messages per user in the server is equal
to the corresponding vol parameter for each scenario. For
example, if vol is 10, the server retains 10 messages per user;
if vol is 30, the server retains 30 messages per user and so
on.

In order to understand the real impact of these numbers, we
monitored memory usage in the server, obtaining the results
shown in Figure 4. Initially, as the participants start joining
the chat room and chatting, there is a noticeable increase in
memory consumption in all scenarios. After everyone has
joined the room, memory usage remains constant, between
600 Mb for the standard "Without ReConMUC” scenario
and 700 Mb for the scenario where ReConMUC is used with
the highest volume parameter (vol = 60).

Although ReConMUC uses more memory, the increase is
negligible in most scenarios. Only when vol = 60, we
observe a significant increase, although less than 100 Mb.
This low memory consumption is due to a feature of the
MUC extension specification that allows anyone who joins
a room to receive the previous messages exchanged in that
room (i.e. the discussion history). Although this can be
turned off, it is usually turned on to reduce the sense of
lostness of newcomers to a discussion. Thus, ReConMUC
does not store actual retained messages but only pointers
to those messages in the discussion history (which exists
anyway). That is, even in the most memory demanding
scenario, ReConMUC only stores a list of 60 pointers for
each user. Also note that the discussion history is usually
limited - it only stores the last n messages, being n a
parameter that can be configured in most XMPP servers. In
our experiments, we setup this value to 100 messages.'”

1'ReConMUC does not allow a client to define a vol parameter that
is larger than the discussion history limit.

561

Scenario Average direct reply
propagation time
Without ReConMUC 60 ms
vol = 10 8 ms
vol =30 9 ms
vol = 60 6 ms

Table 2: Avg. direct reply propagation time

Server CPU Usage

Given that ReConMUC runs inside a loop that iterates
through all the MUC participants (see Listing 4), we mea-
sured the CPU usage impact of adding participants to the
chat room. As we can observe in Figure 5, there is a CPU
usage increase, as the number of participants grows, which
is similar in all scenarios. Thus, ReConMUC does not
significantly impact CPU usage. This is because ReCon-
MUC algorithm is very simple, when compared to all the
necessary operations in a standard MUC (e.g., guaranteeing
authentication and authorization of the participants).

Causal Delivery Propagation Time

Although network, memory and CPU consumption are im-
portant indicators of ReConMUC performance, it is also
important to evaluate how causally related messages are
propagated. In particular, we measured the average prop-
agation time of a direct reply message, until it reaches
its recipient, in the same five scenarios used in the other
experiments.

In order to measure the propagation time of a direct reply,
the sender attaches a timestamp to the message.'! When the
recipient receives the message, it compares the timestamp of
the message with the current time. Every participant keeps
track of these propagation times and, in the end, an average
of these values is calculated.

The results are presented in Table 2 and show that with
ReConMUC, direct replies take approximately 10x less to
reach the recipient (w.r.t. the standard scenario). This is
due to the fact that its special meaning is considered, i.e.
the direct reply is not processed as an ordinary message.
This is an important observation: with ReConMUC we
deliver important messages, such as direct replies, as soon
as possible, even if this means that remaining messages
may take longer propagation times. We believe this is
more aligned with users expectations, when using real-time
communication tools.

CONCLUSION AND FUTURE WORK

With the increasing demand for collaboration tools that
assist dispersed teams, specially those that try to maintain
context awareness, we predict an explosion in the number of
messages broadcast by these systems, many of which do not
require immediate attention of their recipients. This raises
serious scalability problems to such systems.

""We modified the MUC client application to attach the timestamp
in this particular test, since the normal behavior is not sending any
timestamp.

In this paper, we propose an adaptable consistency model for
the propagation of MUC messages based on three dimen-
sions: time, volume and content filters. These parameters
are configured for each client, based on their current context,
device capabilities, network availability, etc. ReConMUC
implements this model on top of XMPP, an open and widely
used messaging protocol; therefore, our model can be easily
deployed on any of the available server implementations in
the Internet.

Our evaluation based on real chat logs demonstrates that,
by aggregating and compressing retained messages, we can
actually significantly reduce network usage without increas-
ing server memory and CPU consumption, thus improving
the scalability of the system. As future work, we plan to
investigate other consistency dimensions such as the social
network of the participants (e.g. relax consistency as we
increase the social distance between the sender and the
receiver).

REFERENCES
1. Pubsubhubbub - http://code.google.com/p/pubsubhubbub/,
2009.

. G. Bafoutsou. Review and functional classification of
collaborative systems. International Journal of Information
Management, 22(4):281-305, August 2002.

. K. Birman and T. Joseph. Exploiting virtual synchrony in
distributed systems. ACM SIGOPS Operating Systems
Review, 21(5):138, 1987.

. E. Bjerrum and S. B¢ dker. Learning and living in the "new
office’. In Proceedings of the eighth conference on European
Conference on Computer Supported Cooperative Work, pages
199-218, Helsinki, Finland, 2003.

. L. Cabrera, M. Jones, and M. Theimer. Herald: achieving a
global event notification service. Proceedings Eighth
Workshop on Hot Topics in Operating Systems, pages 87-92,
2001.

. N. Carriero and D. Gelernter. Linda in context.
Communications of the ACM, 32(4):444-458, April 1989.

. A. Carzaniga, D. Rosenblum, and A. Wolf. Achieving
scalability and expressiveness in an Internet-scale event
notification service. Proceedings of the nineteenth annual
ACM symposium on Principles of distributed computing -
PODC 00, pages 219-227, 2000.

. P. Dourish and V. Bellotti. Awareness and coordination in
shared workspaces. In Proc of CSCW’92, Toronto, ACM Press,
pp:107-114, 1992.

. J. Dyck. A Survey of Application-Layer Networking
Techniques for Real-time Distributed Groupware, 2006.

J. Dyck, C. Gutwin, T. Graham, and D. Pinelle. Beyond the
LAN: Techniques from network games for improving
groupware performance. In Proceedings of the 2007
international ACM conference on Supporting group work,
pages 291-300. ACM, 2007.

P. Eugster, P. Felber, R. Guerraoui, and AM. The many faces
of publish/subscribe. ACM Computing Surveys,
35(2):114-131, June 2003.

G. Fitzpatrick, S. Parsowith, B. Segall, and S. Kaplan.
Tickertape: awareness in a single line. Conference on Human
Factors in Computing Systems, (April):281-282, 1998.

10.

11.

12.

13. E. Gamma, R. Helm, R. Jonhson, and J. Vlissides. Design
Patterns - Elements of Reusable Object-Oriented Software.

Addison-Wesley Publishing Co, 1995.

562

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

. C. Gutwin. The effects of network delays on group work in
real-time groupware. In Proceedings of the seventh conference
on European Conference on Computer Supported Cooperative
Work, page 318. Kluwer Academic Publishers, 2001.

C. Gutwin, K. Schneider, D. Paquette, and R. Penner.
Supporting Group Awareness in Distributed Software
Development. In Engineering Human Computer Interaction
and Interactive Systems, pages 383-397. Springer Berlin /
Heidelberg, 2005.

R. W. Hall, A. Mathur, F. Jahanian, A. Prakash,

C. Rasmussen, and A. Arbor. Corona : A Communication
Service for Scalable, Reliable Group Collaboration Systems.
In Proc. Conf. on Computer-Supported Collaborative Work
(CSCW), pages 140-149, 1996.

L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM,
21(7):558-565, July 1978.

A. Mathur, R. Hall, F. Jahanian, A. Prakash, and

C. Rasmussen. The Publish / Subscribe Paradigm for Scalable
Group Collaboration Systems. Ann Arbor, 1001(313):48109,
1995.

R. Messeguer, S. F. Ochoa, J. A. Pino, E. Medina, and
L. Navarro. Building Real-World Ad-Hoc Networks to
Support Mobile Collaborative Applications : Lessons
Learned. Groupware: Design, Implementation, and Use,
578:1-16, 2009.

J. Olson and S. Teasley. Groupware in the wild: Lessons
learned from a year of virtual collocation. In Proceedings of
the 1996 ACM conference on Computer supported
cooperative work, pages 419-427, 1996.

B. Plale and Y. Liu. Survey of Publish Subscribe Event
Systems. Technical Report TR574, Indiana University, 2003.

P. Saint-Andre. RFC 3920: Extensible Messaging and
Presence Protocol (XMPP): Core, 2004.

P. Saint-Andre. XEP - XMPP Extension Proposal, 2005.

P. Saint-andre and R. Meijer. Streaming XML with
Jabber/XMPP. IEEE Internet Computing, 9(5):82-89,
September 2005.

Y. Saito and M. Shapiro. Replication: Optimistic approaches.
Hewlett-Packard Labs Technical Report HPL-2002, 2002.

S. Sawyer and P. J. Guinan. Software development: processes
and performance. IBM Systems Journal, 37(4), 1998.

B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps.
Content based routing with elvin4. In Proc. AUUG 00,
volume 61, 2000.

J. Smed, T. Kaukoranta, and H. Hakonen. Aspects of
networking in multiplayer computer games. The Electronic
Library, 20(2):87-97, 2002.

M. Smith, J. J. Cadiz, and B. Burkhalter. Conversation trees
and threaded chats. Proceedings of the 2000 ACM conference
on Computer supported cooperative work - CSCW ’00, pages
97-105, 2000.

A. Tanenbaum. How USENET is implemented, pages
675-677. ISBN, Prentice-Hall, 1996.

Walker. Instant Messaging Is Growing Up, Going to Work,
The Washington Post, 2004.

W. Wu, G. Fox, A. Uyar, and H. Altay. Design and
Implementation of a collaboration Web-services system.
Neural, Parallel & Scientific Computations, 12(3):391-406,
2004.

H. Yu and A. Vahdat. Design and evaluation of a continuous
consistency model for replicated services. Proceedings of the
4rd Symposium on Operating Systems Design and
Implementation, 2000.

	Introduction
	Related Work
	Publish-Subscribe Systems
	Optimistic Replication
	Real-time Groupware Performance

	Adaptable Consistency Model
	XMPP - Extensible Messaging and Presence Protocol
	Setting Consistency Requirements
	Filter Example - associating a message with a topic
	Usage Scenario - messages workflow

	Implementation
	ReConMUC
	Joom

	Evaluation
	Outbound Network Consumption
	Server Memory Usage
	Server CPU Usage
	Causal Delivery Propagation Time

	Conclusion and Future Work
	REFERENCES

