
Enforcing History-Based Security Policies in Mobile Agent Systems

Pedro Dias, Carlos Ribeiro, Paulo Ferreira
INESC, Distributed Systems Group

Rua Alves Redol, nº 9, 1000-029 Lisboa
[pdias, cnr, pjpf]@gsd.inesc-id.pt

Abstract

The mobile agent paradigm used in modern distributed
systems has revealed some new forms of common security
threats, such as abusive resource consumption or
illegitimate information flow between different and non-
cooperative entities. This problem is aggravated when an
agent’s host doesn’t know anything about the agent’s past
activities, visited hosts and interactions with other agents.
Thus, robust and efficient authorization platforms should
be considered in order to avoid undesired actions from
malicious agents.

We present an authorization platform designed for a
mobile agent system, MobileTrans, which supports the
definition and enforcement of history-based security
policies, allowing hosts to decide on the authorization of
an agent’s action upon its past behaviour.

1. Introduction

The mobile agent paradigm [3] has introduced some

new concerns on the security area, in particular, in
information flow control and authorization.

A major issue on such agent-based applications is the
definition of what operations the agent should be
authorized to perform and what operations the agent
should be prohibited from doing or obliged to do.

Consider the case where an agent travels between two
different hosts belonging to two different bank institutions.
Suppose that the agent is intended to pick up money from
one bank account and then transfer it to the other one.
After the first operation, the agent should be prohibited to
spend the money in any other way, as it should only have
permission to deposit the money in the other bank account.

This kind of scenarios can be accomplished with the use
of history-based security policies, which are generally not
addressed in the vast majority of mobile agent platforms.

In this paper we present a generic authorization platform
designed for a mobile agent system, MobileTrans, which
supports the definition and enforcement of history-based

security policies. These policies are defined in SPL
(Security Policy Language) [1], an authorization language,
and are enforced by a security monitor. With such a
platform we can define some useful history-based security
policies applied to the mobile agent paradigm, such as
Chinese Wall [2]. Thus, agent operations may be allowed
or denied based on the agent’s past behaviour.

This paper is organized as follows. In section 2 we
describe relevant work related to authorization models for
mobile agent systems. In section 3 we discuss MobileTrans
security policies and present SPL. Next, in section 4, we
describe the authorization’s platform architecture. Finally,
in section 5, we present some conclusions and consider
future work that may enrich this platform.

2. Related Work

JVM [6], one of the first platforms that considered

security support for mobile code, uses a hybrid approach,
based on sandboxes and digital signatures. However, its
expressiveness is relatively poor, since it doesn’t support
negative permissions or disallowances and does not
support the definition of user groups and group hierarchies,
which are necessary for definition of RBAC policies [11].

The JSEF framework [7] was developed with the
objective of solving JVM’s limitations, allowing the
definition of a hierarchical security policy scheme and the
definition of complex entities such as groups and roles.
Although richer than JVM security policies, it doesn’t offer
any support for history-based security policies.

Deeds [4] supports an history-based access control
mechanism that protects local resources from mobile code.
Although flexible, in the sense that it may enforce many
different history-based policies (handlers), Deeds is hard to
manage because the programmer has to individually
implement all the handlers. Besides, Deeds only focus on
host protection, ignoring mobile code protection.

Ponder [8] provides a general-purpose deployment
model for security and management policies. Its
declarative language is able to specify some generic and
complex security policies such as RBAC policies.

Although Ponder supports different types of policies, such
as permissions, refrains, delegations and obligations, this
platform doesn’t address history-based security policies.

Aglets [3] presents a security architecture that protects
both agents and contexts, which are execution
environments for agents. This protection is based on
security policies that both aglets and contexts may specify,
although policies depending on history are not supported.

In [10] it is presented a model that controls agent
mobility with specific mobility policies. Using Ponder
obligation policies it allows, for instance, an agent to
migrate to other host when the current’s host CPU usage is
above a given level. Although supporting obligation, this
model doesn’t support history-based policies.

JavaSeal [5] offers a security architecture that protects
both execution environments and agents. However, this
platform is extremely restrictive since agents are organized
in a hierarchical tree and communicate through messages
between neighbour agents in the tree. A message sent by a
mobile agent to another, located in a remote node of the
tree, may not arrive to the destination if an intermediate
agent doesn’t allow it; even when both sender and
destination agents agree on cooperating.

Other systems, such as Ajanta [9], base their approach
essentially in cryptographic mechanisms.

Although covering a lot of different techniques, all these
platforms fail to provide a generic and modular support for
history-based security policies.

3. Policy Definition

Although MobileTrans supports numerous types of

policies, such as DAC, RBAC, or obligation policies, in
this paper we will only address the definition and
enforcement of history-based security policies.

The MobileTrans platform uses SPL for policy
definition [1]. The SPL language is based on four essential
blocks: entities, groups, rules and policies. The rules
establish constraints through the relations between entities
and groups, while policies result from the composition of
multiple rules and groups. This language is therefore
policy-oriented and constraint-based.

The SPL entities are typified objects with an explicit
interface, through which their properties can be obtained
and modified. These entities may represent not only
internal authorization model objects, but also external
platform resident objects. Although there are some internal
entities like groups, rules or policies, the vast majority are
external entities, such as mobile agents or files.

Each external entity has an associated type. That type is
used to define its interface and subsequent properties.
Figure 1 shows the definition of two useful types in
MobileTrans: object and mobileAgent.

Another important SPL entity is the rule. Rules are
entities that establish constraints to the authorized

operations. An authorization policy may therefore be
expressed in terms of a set of rules, which are three-value
logical expressions. They may assume the following
values: allow, deny and not apply. These values decide the
acceptability of the events that are generated within the
MobileTrans platform.

To enforce history-based security policies there are two
crucial classes of events: the current event and the past
events. The first one is the event that is being checked and
over which approval is requested. The second type of
events are already approved or refused events that
constitute the knowledge basis for approving or refusing
the current event.

A rule is, in SPL, composed by two logical expressions.
The first one defines the applicability domain of the rule,
while the second expression sets the acceptability domain.
Figure 2 illustrates a MobileTrans rule written in SPL.

A SPL policy is a set of rules and groups that determine
the authorization and prohibition of a given event. From
the complete set of rules, only those with a true
applicability domain will have their acceptability domain
checked.

Consider the implementation of a Chinese-Wall policy.
In this situation suppose we have a single class of interest
that contains multiple hosts. In this scenario any agent that
has already been executed in a given host, will be denied
access to any other host in that class of interest. Figure 3
shows this policy specification in MobileTrans using SPL.

This policy defines one parameter, InterestClass, as a
group of hosts. This parameter will hold the hosts
integrating the same class of interest. The policy
behaviour is given by the ?AgentChineseWall rule. This rule
looks in past events if there is any event of a migration
operation to any other host in that interest class. If one
such event is found then the current request is denied.

DestinyRule: ce.source.type = mobileAgent &
 ce.source = “agentJohn” &
 ce.target.host = “hostA” &
 ce.operation = “migration” :: true

 Applicability Domain Acceptability Domain
Figure 2. Definition of a SPL rule. This rule is

applicable to all migration requests to host A that are
generated by the mobile agent agentJohn. The
acceptability domain is always true, so the event is

type object{
 string name;
 user owner;
 string homeHost;
 number timeOfCreation;
}
type mobileAgent extends object{
 boolean running;
 string group previousHosts;
}

Figure 1. Definition of types object and mobileAgent.

Mobile agents must also be protected from interactions
with other agents. Consider the simple scenario where
mobile agent Joe offers two services, provided by methods
M1 and M2. Joe is very cautious and therefore does not
allow some agents, such as agent Bill, to access the service
provided by M2 if it has already accessed service M1.
Figure 4 shows how this policy could be specified in
MobileTrans. In this policy we define an applicability
domain that checks whether the current event refers to an
invocation of M2 made by Bill. If so, the acceptability
domain assures that the current event is allowed only if Bill
has never tried to invoke M1 before.

4. Architecture

An agent in MobileTrans is created and started by an

application that interacts with the agent through a proxy,
called home proxy. This proxy remains local to the
application, no matter where the agent resides, offering,
among other facilities, agent location independence to the
application. To interact with its agents the application
doesn’t need to know where they reside. It only needs to
interact with the corresponding proxy, which will then
forward the requested operations to the appropriate agent.
These operations may be either the agent’s proper methods
or platform services. The MobileTrans platform supports a
large set of services, such as agent migration or replication.

Cooperating with an agent’s home proxy there is a
mobile proxy, located in the same host where the agent is
being executed, that is able to manage the agent’s
execution flow. The mobile proxy acts as an extension of
the home proxy in the remote host. Contrarily to the home
proxy, the remote one is mobile and travels between hosts,

staying permanently with the agent. The remote proxy
creation is requested by the home proxy to the destination
host when a migration is firstly requested. The proxy
creation is based on the agent’s code and associated
security policies. The home proxy is in turn generated by
an automatic tool provided by MobileTrans, the
MobileCodeg (Mobile Code Generator). The programmer
first implements the agent’s code. Next, the user, possibly
a different one from the programmer, may define a set of
security policies, creating for that matter a policy file in
SPL. With this file and the agent’s code the programmer
may then run the MobileCodeg to create the home proxy.
The home proxy may then be used by any application.

4.1. Proxy’s Architecture

The home proxy’s architecture is composed by four

modules: a reference to the agent’s code, an event listener,
an event history and an authorization monitor (Figure 5).

The agent’s reference allows access to the agent’s code
and data that implement the agent behaviour. This
reference is deleted when the agent migrates to a remote
host, as a consequence of the transfer of the agent’s code
and data to that host. A new reference for the agent is then
created at the mobile proxy in the new agent’s host. This
proxy, upon receiving the agent, starts an execution flow
with one of its methods. The agent’s execution is then
moved from the original machine to the mobile proxy’s
machine.

The Event Listener is the responsible module for the
events handling, such as migrations, file system accesses,
or requests between agents. This module interacts with the
authorization monitor, informing it that a new event that
needs to be authorized. This module is also mobile since it
stays always together with the agent’s code and data.

The Event Listener collects four different kinds of
events: platform events, operating system (OS) events,
application requests and agent requests. The first ones are
generated by our platform, MobileTrans, and are a result of
agent operations, such as migrations or replications. OS
events are generated by accesses to system resources, like
local disk files or network ports. Application requests are
invocations to agent methods that may control their
execution flow, such as stop or resume. An agent request,

Figure 5. Home proxy internal architecture.

policy AgentChineseWall(host group interestClass) {
?AgentChineseWall:
 Exist e IN PastEvents {
 ce.target IN InterestClass &
 e.target IN InterestClass &
 ce.operation = “Migration” &
 e.operation = “Migration” &
 ce.target != e.target :: false
 };
}
Figure 3. Simple Chinese-Wall policy in MobileTrans.

Policy HistoryBasedServiceControl {
?HistoryBasedServiceControl:
 Not Exist e IN PastEvents{
 ce.source = “Bill” & ce.operation = “Invocation” &
 ce.operation.method = M2 ::
 e.source = “Bill” & e.operation = “Invocation” &
 e.operation.method = M1
 };
}
Figure 4. SPL security policy between two agents.

Application
Home proxy

Event
Listener

Authorization
Monitor

Agent
Reference

Event
History

on the other hand, is an invocation from an agent to
another agent, which allows, therefore, agent cooperation.

The Event Listener may then create an event structure,
filling in all the necessary event properties. The
authorization monitor will later check these properties in
order to decide about the current event acceptability.

Once verified the acceptability of a given event, it will
be forwarded to the Event History, which checks if it is
necessary to log it. For optimisation purposes there are
events which are not logged. The Event History checks if
the authorization monitor, to enforce its policies, will ever
need this event. If the answer is negative, then the event is
discarded and will not be logged, keeping the event history
as small as possible. Consider, as an example, that an agent
has a single policy and suppose that it only checks events
related to migration operations. In this case there is no
need to collect events involving files or network ports.

4.2. Migration Semantics

Although optimised, the Event History may become

relatively large. For that reason MobileTrans supports two
different ways of migrating an agent: complete migration
and partial migration. In the first one, all modules at the
home proxy are transferred to the destination host. In the
partial migration only the agent itself (code and data) and
the Event Listener are migrated to the remote host. The
Authorization Monitor and the Event History remain local
to the home proxy. Note that there is no advantage in
separating the Authorization Monitor and the Event
History since the frequency of accesses between them is
considerably high. While the first one accesses the second
in order to search for past events, the Event History
accesses the Authorization Monitor to check if a given
event will ever be needed, which allows the security
platform to discard useless events.

5. Conclusions and future work

The MobileTrans is a mobile agent platform that

supports the definition and enforcement of security
policies. In this paper we have presented an agent
architecture to support history-based security policies. Our
architecture is modular and extensible to support new
security semantics such as obligation or role-based
policies. Its authorization model is very flexible. The
agent’s code and the agent’s security policy may be
independently developed, allowing two different users,
with different concerns, to cooperate in the agent creation.

The mobile agent generation process is also very
simple. The MobileCodeg generator automatically
compiles the SPL policies and simultaneously creates the
necessary proxies for the applications.

We have further considered two optimisations that
increase the platform’s efficiency: i) the event logging is

filtered in order to prevent logs to overflow, ii) the
migration process can be accomplished in two distinct
ways allowing some structures to stay local to the
application, even when the agent is migrated.

As future developments our main efforts will reside on
guaranteeing events integrity.

References

[1] C. N. Ribeiro, A. Zúquete, P. Ferreira and P. Guedes, “SPL:
An Access Control Language for Security Policies with Complex
Constraints”, in Network and Distributed System Security
Symposium, NDSS’ 01, February 2001.

[2] D. F. C. Brewer and M. J. Nash, “The Chinese Wall Security
Policy”, published at IEEE Symposium on Research in Security
and Privacy, pages 206-214, May 1989.

[3] G. Karjoth, D. Lange and M. Oshima, “A Security Model for
Aglets”, IEEE Internet Computing, pp 68-77, July-August 1997.

[4] G. Edjlali, A. Acharya and V. Chaudhary. “History-based
Access Control for Mobile Code”, in Proceedings of the 5th
Conference on Computer & Communications Security, 1998.

[5] J. Vitek and C. Bryce, “The JavaSeal Mobile Agent Kernel”,
in the Proceedings of the Joint Symposium on Agent Systems and
Applications and the Third Symposium on Mobile Agents, 1999.

[6] L. Gong, M. Mueller, H. Prafullchandra and R. Schemers,
“Going Beyond the Sandbox: An Overview of the New Security
Architecture in the Java Development Kit 1.2”, in Usenix
Symposium on Internet Technologies and Systems, 1997.

[7] M. Hauswirth, C. Kerer and R. Kurmanowytsch, “A Secure
Execution Framework for Java”, in Proceedings of the 7th ACM
Conference on Computer and Communications Security, pages
43-52, 2000.

[8] N. Dulay, E. Lupu, M. Sloman, N. Damianou, “A Policy
Deployment Model for the Ponder Language”, in Proceedings of
the IEEE/IFIP International Symposium on Integrated Network
Management, 2001.

[9] N. M. Karnik and A. R. Tripathi. “A Security Architecture
for Mobile Agents in Ajanta”, in Proceedings of the International
Conference on Distributed Computing Systems, 2000.

[10] R. Montanari and G. Tonti, “A Policy-Based Infrastructure
for the Dynamic Control of Agent Mobility”, in Proceedings of
the 3rd IEEE International Workshop on Policies for Distributed
Systems and Networks, June 2002.

[11] R. S. Sandhu, E. J. Coyne, H. L. Feinstein and C. E.
Youman, “Role-Based Access Control Models”, in IEEE
Computer, volume 29, Nº 2, pages 38-47, February 1996.

