Enforcing Obligation with Security Monitors

Carlos Ribeiro, André Zuquete, and Paulo Ferreira

IST/INESC R. Alves Redol N°9 1000 Lisboa, Portugal

Carlos.Ribeiro@inesc.pt

Abstract With the ubiquitous deployment of large scale networks, more
and more complex human interactions are supported by computer ap-
plications. This poses new challenges on the expressiveness of security
policy design systems, often requiring the use of new security paradigms.
In this paper we identify a restricted type of obligation which is useful
to express new security policies. This type of obligation includes the fol-
lowing general situations: i) when two or more actions oblige each other,
i.e. if one action is executed the others must also be executed and recip-
rocally, and ii) when an action obliges another and the obligatory action
is causally dependent on the first action.

1 Introduction

The growing number of Internet users and services raises constantly new chal-
lenges for defining and ensuring adequate security policies. Most policies im-
plement solely access control barriers, based on the concepts of permission or
prohibition, but the current expansion of electronic business will stress, in a near
future, the needs for more sophisticated security policies. In particular, we be-
lieve that the concept of obligation will have an increasing importance for the
expressiveness of such policies. The need for ensuring obligation has already been
recognized by several authors [1,2,3] and is illustrated by the following examples.

Consider that Alice browses through a site where she acquires several goods,
when she leaves the site she is obliged to pay for the goods she acquired, otherwise
the goods are not bought. Usually this policy must be enforced within the site’s
code, because the security service cannot enforce this kind of policy. Another
illustrating example is when Alice registers herself, via a web server, as a student
of Online University. Once she has done that, she is obliged to register herself as
a student of, at least, a discipline chosen from a set of available disciplines. On
the other hand, Alice could first register herself in a discipline; in this case she
is then obliged to register as a student of the Online University.

These examples show that there is a clear need for expressing an application-
specific obligation in a flexible way; and enforcing obligations with a security
monitor has obvious advantages: it is language and application independent,
and can be found in a large number of environments (virtual machines, operating
systems, etc.).

2 Enforceable Obligations

To act upon security policies, a security service must know when someone at-
tempts to violate those policies and what to do when that happens. On most
security services, the attempts to violate rules based on permission and prohi-
bition concepts are detected when an event requesting an action occurs and,
in that case, the action requested is denied. The difficulty with rules based on
obligation is that the time at which a violation attempt occurs and the action
to perform when that happens are not so easy to instantiate on a particular in-
stant and action, respectively. First, because a generic obligation does not need
to have a deadline and second because there is not a generic action (equal for
every situation) to perform in case of violation attempt.

Fortunately, obligation rules are seldom generic. Often what a security man-
ager wants to express is “Conditional Obligations”, in which obligations are
triggered by pre-condition events: “UIl must do O if U2 has done I”. While
with the generic type of obligation a system is in an unsafe! state until the obli-
gation has been fulfilled, with the conditional obligation a system has two safe
states, one before the triggering event (7T) and one after the obligation (0) is
fulfilled. Thus, on the impossibility of fulfilling the obligation the system may
always return to the safe state before the activating event, i.e. undo T. However
even conditional obligations cannot be enforced solely by a standard security
monitor. Using simple logic? it is possible to rewrite the conditional obligation
expression into an expression with a dependency on a future event: “U2 cannot
do T if Ul will no do O".

Schneider [4] states that with a monitor it is not possible to enforce a se-
curity policy in which the acceptability of an event depends on possible future
events. Informally, his argument is quite simple: given the executions (sequence
of events) 7 and 7', in which 7 is the prefix of some execution 7/, it is not possible
to allow 7 on the basis that one of its extensions 7’ is allowed by the security
policy, because the system could stop before 7', and the system would have failed
to enforce the policy.

The key issue that differentiates our work from Schneider’s is the underlying
model of execution. While to Schneider a system evolves through units of execu-
tion controlled by the security manager, which are independent from each other,
to us those units may be organized in atomic sequences, thus depending on each
other. By atomic we mean, in the sense of transactions’” ACID properties, either
all happens or none happens. Inside these atomic sequences of execution it is
possible to define security policies with dependencies on future actions, because
it is not possible for a system to stop execution leaving the sequence incomplete.

There are several ways to implement transactions [5], namely by keeping an
undo-log with the information needed to reset the system to the initial state
in case of failure, or by defining compensating actions for those actions that

! Unsafe in the sense that the security policy has not been completely enforced until
then.
0«T=-T<«-0

cannot be undone but can be compensated. However, there are some actions that
cannot be undone or compensated, e.g. sending a document to a printer. These
actions are called real actions on transaction management systems [5] and are
already known to require special treatment by those systems in order to achieve
atomicity. Implementing security obligations within transactions increases the
number of real actions, because these must include actions that change human
knowledge state (e.g. showing some text on the screen), which are not dealt by
most transactional management systems.

3 Implementing Enforceable Obligations

We have implemented the obligation concept within our access control frame-
work. This framework is composed by a security policy language (SPL) and its
compiler[6]. SPL is a security language designed to express policies that aim at
deciding about the acceptability of events.

An SPL policy is a structure composed of sets and rules, whose purpose
is to express simple concepts like “separation of duty”, “information flow”, or
“general access control”. Sets contain the entities used by the policies to decide on
events acceptability. A rule is a function of events, and may assume three values:
“allow”, “deny” and “notapply”. Its purpose is to decide on the acceptability of
the current event. A rule can be simple or composed. A simple rule is a tuple of
two logical expressions. The first logical expression decides on the applicability
of the rule, and the second decides on the acceptability of the event. Each policy
has one special rule called the “query rule”, which is identified by a question
mark before the name, whose purpose is to define the policy behavior.

A simple policy stating that documents internal to the organization defining
the policy cannot be sent to someone outside the organization, can easily be
expressed in SPL:

policy Private(user set OrganizationUsers) {

object set InternalDocs: // Policy data
?Private: // Rule name.

ce.action = "SendEmail" & ce.target IN InternalDocs // Applicability exp.

:: ce.parameter[1] IN OrganizationUsers // Acceptability exp.}

The rule uses the special variable “ce” to access the current event properties.
The applicability expression of the rule states that the policy is defined only
for events whose targets are documents internal to the organization and whose
action is to send an Email. The acceptability expression states that for those
events that satisfy the applicability expression the only events allowed are the
ones that send the Email to a user inside the organization.

Given the future-dependent nature of obligation-based policies, they are ex-
pressed in SPL by quantifying a variable over the special abstract set FutureEvents,
which encompasses all the events they are to be performed after the current
event. Figure 1 shows an example of an information flow policy which uses obli-
gation to force applications to register the information flow originated by them

policy InfoFlow () { policy HistoryInfoFlow () {

interface ReadFlowActions, WriteFlowActions;
collection ProtObjects;

?InfoFlow:

FORALL te IN PastEvents { // (1)

EXISTS fe IN PastEvents {

interface ReadFlowActions,
interface WriteFlowActions;
collection ProtObjects;

?InfoFlow:
EXISTS fe IN FutureEvents {
FORALL pe IN PastEvents {
FORALL g IN pe.target.groups {

ce.action IN WriteFlowActions &
ce.task = pe.task &
pe.target IN ProtObjects &
pe.action IN ReadFlowActions &

:cetarget INg }))}

FORALL pe IN PastEvents {
FORALL g IN pe.target.groups {

ce.action.name = "commit” & // (2)
ce.trans_id = te.trans_id & // (3)
te.time < fe.time & /] (4)
te.time > pe.time & // (5)

te.action IN WriteFlowActions &
pe.target IN ProtObjects &
pe.action IN ReadFlowActions &

pe.task = te.task
ctetarget INg 1)}

(a) (b)

Figure 1. (a) An information flow policy. (b) The transformation into an history-based
policy

into SPL rules. This policy is not a strict information flow policy in the sense
that it cannot handle implicit flows, as defined in Denning [7]. However, in some
situations [8] the information leak resulting from implicit flows does not pose a
serious security risk, either because the information on variables determining the
sequence of execution is public or because it is not possible to infer the sequence
of executions from the results of that sequence. For these situations it is possible
to define information flow policies enforceable by event monitors, because the
regulation of explicit information flow, from storage to storage, can be performed
with just the knowledge on past events properties.

As explained in Sect. 2, the problem of enforcing obligation-based security
policies is reduced to allowing or not the event that instructs the transaction
monitor to commit a transaction, whether or not every obligation was fulfilled
at the time of that event. A security policy that allows or denies an event (the
commit event) depending on whether or not some events were executed (the
obligations) is a history-based policy. In [6], we have shown that history-based
policies can be efficiently implemented using special tuned logs for each policy,
thus obligation-based can also be implemented efficiently in the same way.

The transformation from the obligation-based policy to the history-based
policy can be achieved in two steps. The first step, called “aging”, consists of
replacing references to events by older references: (i) References to the current
event are replaced by references to a past event called “trigger-event” (line (1)
of Fig. 1b) ; (ii) References to past events are replaced by references to other

past events with an additional constraint specifying their occurrence before the
trigger-event (line (5) of Fig. 1b); (iii) References to future events are replaced
by references to past events with the additional constraint of occurring after the
trigger-event (line (4) of Fig. 1b). The second step consists of inserting in this
policy an explicit reference to the event that requests the transaction commit
(lines (2) and (3) of Fig. 1b).

Due to space limitations we defer the details on performance of history-
based policies to [6]. Nevertheless, the important observation is that, on all tests
performed the delay on the commit-event caused by the information flow policy
was in the worst case less than 1ms, which is negligible compared to the actual
commit time?>.

4 Conclusion

We have identified a restricted type of obligation which is simultaneously useful
to express the security policies of large organizations and can be enforceable by
security monitors. This type of obligation includes the following generic situa-
tions: i) when the two actions involved in a conditional obligation oblige each
other, and ii) when the obligatory action is causally dependent on its trigger
action. Our approach consists on using the transaction concept to delay the ac-
tual security monitoring until the commit time; thus, avoiding the problem of
future dependency inherent to any obligation policy. We have developed a se-
curity language and a compiler encompassing the obligation paradigm, and the
performance results show that it can be efficiently implemented.

References

1. Jonscher, D.: Extending access control with duties - realized by active mechanisms.
Database Security, VI: Status and Prospects. (1992) 91-112
2. Cuppeuns, F., Saurel, C.: Specifying a security policy: A case study. In: IEEE CS
Computer Security Foundations Workshop (CSFW96). (1996) 123-135
3. Marriott, D., Sloman, M.: Implementation of a management agent for interpreting
obligation policy. In: IEEE/IFIP 7th Int. W. on Distributed Systems Operations
and Management, Italy (1996)
4. Schuneider, F.B.: Enforceable security policies. The ACM Transactions on Informa-
tion and System Security 3 (2000)
5. Gray, J., Reuter, A.: Transaction Processing: concepts and techniques. Data Man-
agement Systems. Morgan Kaufmann Publishers, Inc., San Mateo (CA), USA (1993)
6. Ribeiro, C., Ziquete, A., Ferreira, P., Guedes, P.: Spl: An access control language
for security policies with complex constraints. In: Network and Distributed System
Security Symposium (NDSS’01), San Diego, California (2001)
. Denning, D.: A lattice model of secure information flow. Comm. of ACM 20 (1977)
8. Edwards, W.K.: Policies and roles in collaborative applications. In: ACM 1996
Conference on Computer Supported Work, New York, ACM Press (1996) 11-20

N1

All measurements were taken on a personal computer with a Pentium II at 333MHz
running the Sun Java 1.2.2 virtual machine over Windows NT 4.0.

