
MultiRep - Asynchronous Multi-Device Consistency

João Ribeiro, João Barreto and Paulo Ferreira
INESC ID / Instituto Superior Técnico / Technical University of Lisbon

joao.f.ribeiro@ist.utl.pt, joao.barreto@ist.utl.pt, paulo.ferreira@inesc-id.pt

ABSTRACT
Nowadays, people increasingly use multiple devices to man-
age and share information anywhere anytime. Users are in-
creasingly spreading large sets of files and folders among sev-
eral devices. Since users cannot know at one device which
files/folders are stored by other devices, data management
across multiple devices has become a very difficult task. For
instance, when one user needs an object that is not stored
on the device being used, he/she needs to manually explore
the entire object collection, which is spread across multiple
devices. Additionally, different versions of files are created
on multiple devices raising a consistency problem. Most
current solutions ensure data management and consistency
across devices through central servers or Internet services.
Since portable devices have intermittent network connection
or no connection at all to access these services, it is essential
to take advantage of proximity between devices to synchro-
nize data among them. This paper introduces MultiRep,
a single-user file synchronizer middleware that provides the
user with information about the location of files and folders
stored on multiple devices. MultiRep is a totally decen-
tralized system based on optimistic replication. It ensures
eventual consistency among multiple devices through pair-
wise interactions, reporting all relevant information about
conflicts to the users.

Keywords: Conflict Resolution, Eventual Consistency,
File Synchronizer, Metadata Management

1. INTRODUCTION
In the last few years, people own more and more mul-

tiple devices to store, manage and share information. At
the same time, mobile devices (e.g. PDAs, smartphones,
laptops) are becoming more computationally powerful, with
greater memory and networking support capacity. Due to
this fact, people increasingly use them for entertainment and
to perform work that in the past was only possible with a
desktop PC.

Due to the increasing number of personal devices, user’s
data is scattered throughout several devices. This data eas-
ily becomes disorganized because there is no way to let users
know which data is stored by each device. For instance,
imagine that one user takes several photos during a trip.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
M-MPAC’2011, December 12th, 2011, Lisbon, Portugal.
Copyright 2011 ACM 978-1-4503-1065-9/11/12 ...$10.00.

Then, he/she copies different sets of photos to different de-
vices. How can he/she find one specific photo? How can
he/she know which photos exists? And where are they?
Currently, to answer these questions, users need to manu-
ally explore the entire data collection, which is spread across
multiple devices. Additionally, consistency problems begin
to arise when one user modifies the same files concurrently
on multiple devices.

Many systems ensure data management and consistency
among multiple devices by storing all files/folders on a cen-
tral server or online storage web service. These approaches
have important limitations. For instance, some devices (e.g.
digital camera) may not have network access to a central
server or Internet service. Additionally, when traveling long
distances, communication with a local device is often easier,
more efficient, and more cost effective than synchronization
over long-distance links. Also, scalability and availability
issues arise when we are using systems based on a central
server. For instance, if the number of user’s devices increases
too much, the central server becomes a bottleneck. More-
over, when the central server becomes unavailable, devices
cannot synchronize with each other.

Currently, there are many systems allowing users to syn-
chronize files/folders between multiple devices. These sys-
tems typically can be divided into two groups: 1) online file
synchronizers, such as Dropbox [1], which use cloud comput-
ing to store and share data among devices; 2) offline file syn-
chronizers, such as GoodSync [2] and Microsoft’s Briefcase
[3], which allow offline synchronization of files between dif-
ferent devices without requiring access to Internet services.
In the first group, the file synchronization mechanism only
works using an Internet connection. Due to this fact, these
systems do not take advantage of the proximity of devices
to share data among them. Also, user’s data is stored in
an unfamiliar environment not controlled by the user, thus
raising privacy issues. The second group has several draw-
backs related to data management and network flexibility.
For instance, Microsoft’s Briefcase does not allow file syn-
chronization between all devices in the system that share the
same files and folders. Also, like other systems, it does not
provide any information regarding the location of files and
folders stored on several devices. Thus, when a user needs
an object that is not stored on the device being used, he/she
needs to manually explore the entire object collection which
is spread across multiple devices.

The main goal of this work is to design and build a system
called MultiRep that takes advantage of devices proximity to
synchronize data among them, ensuring data consistency in
a decentralized fashion. Furthermore, MultiRep allows users
to see at any device anytime which files and folders are stored
by other devices even if they are turned off or inaccessible.
In order to achieve this, MultiRep stores on each device the
metadata of all devices in the system. This approach faces
three challenges: 1) How can we ensure that devices with low
memory capacity are able to keep a copy of all metadata in

the system? 2) How is the metadata of a device distributed
among other devices? 3) How to ensure eventual consistency
of metadata spread across several devices? The first chal-
lenge is the most critical one. In fact, MultiRep does not
guarantee that the smallest device in the system is able to
store metadata of all other devices. Nevertheless, MultiRep
employs efforts to minimize this problem. First of all, it
separates metadata from content. Thus, only metadata of
files and folders are propagated between devices, instead of
propagating the whole content of files. Moreover, MultiRep
provides users with an option to disable the synchronization
of metadata stored by other devices. MultiRep addresses
the second challenge by synchronizing metadata of all de-
vices every time users start the synchronization of files and
folders between any pair of devices. For instance, imagine
that one user synchronizes files/folders between two devices
D1 and D2. Next, he/she synchronizes the same files/folders
between D1 and other device D3. Since all metadata is syn-
chronized between D1 and D3, the device D3 now knows
which files and folders are stored by D2. The last challenge
is solved by employing version tracking mechanisms based
on version vectors[5] to the metadata of each file/folder.

Using MultiRep is very simple. First of all, a user cre-
ates a special folder, called briefcase, as he would create a
normal folder. Then, he copies all files to be replicated into
the briefcase. Finally, he copies the briefcase folder to other
devices in which he wants to keep files synchronized. When
a given briefcase is copied between two devices, MultiRep
creates a synchronization pair between those devices. A
synchronization pair is an association between two devices
that are able to synchronize one briefcase. Figure 1 illus-
trates several synchronization pairs created in MultiRep at
different times between devices closest to the user.

Figure 1: A typical set of devices and communication links. On
the right, horizontal bars represent devices near the user and the
vertical dotted lines represent the synchronization pairs created
at a given time between devices.

The evaluation of MultiRep system shows that the mem-
ory footprint of MultiRep prototype is very reasonable, even
when storing metadata of three briefcases with 4096 folders
and 16384 files. Additionally, results show that the meta-
data synchronization of one briefcase has no impact on the
speed of data synchronization in comparison with other sys-
tems such as Microsoft’s Briefcase.

The rest of this paper is organized as follows. Section 2
presents the MultiRep’s architecture. Section 3 describes
how conflicts are handled by the system. Section 4 presents
the obtained results of the evaluation performed to the im-
plemented solution. Finally, Section 5 describes the related
work.

2. ARCHITECTURE
This section presents the architecture of the proposed file

synchronizer, named MultiRep. This system is a peer-to-
peer middleware that allows a single-user to keep files and
folders replicated and consistent among multiple devices. It
is based on optimistic replication [6] using mechanisms based
on version vectors [5] to track changes to files and folders on
several devices. With these mechanisms, MultiRep detects

conflicts and determines the set of updates to be exchanged
during synchronization sessions. MultiRep allows users to
see at any device which files and folders are kept by other
devices. To achieve this, it does not need to store the entire
data collection on each device. Instead, it stores on each
device the metadata of all other devices.

2.1 Layers and Modules
The MultiRep’s architecture illustrated in Figure 2 is di-

vided into 4 main layers: GUI Layer, Consistency Layer,
Monitorization Layer and Network Layer. Each layer is com-
posed of several modules.

Figure 2: MultiRep’s architecture.

The main layers and modules are described below:

• Monitorization Layer - This layer is responsible for re-
porting modifications performed by users and applica-
tions in the file system to the Consistency Layer.
• Consistency Layer - This layer ensures the eventual

consistency of files and folders stored inside briefcases.
To achieve this, it is composed of the following mod-
ules:

– Reconciliation Manager - module that implements
the synchronization phase. It detects all conflicts
that occur during this phase.

– Metadata Manager - module responsible for stor-
ing and managing all metadata required for the
synchronization phase. It also maintains the meta-
data of all briefcases stored in devices previously
synchronized.

– Version Manager - module that implements the
version vector mechanism for tracking changes to
data on multiple devices.

– Conflict Resolver - module responsible for the con-
flict resolution phase.

– Diff Engine Modules - this module is used to de-
tect the differences between the contents of files
in conflict.

• Network Layer - This Layer allows communication be-
tween multiple instances of MultiRep running on dif-
ferent devices.

2.2 Data Structures
The main data structures required for the synchronization

phase are organized as follows:

• File and folder structures - objects that store meta-
data of files and folders stored inside briefcases. Each
of these structures has an associated list of version vec-
tors for tracking changes to data, as well as a global
unique identifier for recognizing a given file/folder within
a briefcase regardless its name. Folder structures con-
tain a list of file structures.
• Directory tree structure - a tree representing the hier-

archical structure of files and folders inside briefcases.

Figure 3: Hash directory tree structure.

Directory trees are used to compare which files and
folders are new, renamed or deleted during synchro-
nization. These trees are composed of file and folder
structures.
• Device structure - used to store relevant information

about devices, such as device’s name, device’s type
and device’s network information. It also maintains
metadata of all briefcases stored by the device. Each
device structure has a global unique identifier.
• Hash directory tree structure - a data structure that

provides other modules with directly access to any
file/folder structure stored inside any briefcase and any
device (Figure 3). Additionally, it is used to detect
when a file/folder was created inside a given briefcase
during the synchronization phase.

2.3 Version Tracking
A version vector [5] is a vector of n entries, where n is the

number of devices holding the replica of data object associ-
ated with the vector. Each entry holds an integer counter.
Intuitively, the version vector’s counter of each data object
counts the number of updates performed by each device to
that object. In MultiRep, the two types of data objects are
files and folders. Each file and folder has two version vec-
tors: 1) Global Version Vector (GVV) - used to track all
updates performed to files/folders; 2) Rename Version Vec-
tor (RVV) - used to track updates performed only to the
name of files/folders.
Before describing update rules, it is important to present
some definitions:

Definition 1 One vector vv1 dominates vv2 if all entries
related to every device in vv1 are greater or equal than cor-
responding entries in vv2.
Definition 2 One version vector vv1 is compatible with vv2,
if vv1 dominates vv2 or vv2 dominates vv1.
Definition 3 The merge operation returns a version vector
which has for each entry the maximum value of the corre-
sponding entry in the input version vectors.

Update rules define how version vectors are updated ac-
cording to the operations performed to files/folders stored
inside a given briefcase. In MultiRep, there are 4 opera-
tions that can be performed to files/folders: 1) Create -
create a file/folder inside a given folder; 2) Delete - re-
move a file/folder from a given folder; 3) Rename - change
file/folder’s name; 4) Write/Modify - write a file means
change its contents (we use the term write to emphasize
the difference of modifying a file and modifying a folder).
A folder is modified when a file or folder inside it is cre-
ated/renamed/deleted. The following update rules are ap-
plied by each device independently.

Update Rules for GVV:

R1. Initially all counters are zero - for all i ∈ GV V do
GV V i← 0;

Folders update rules
R2. Every time a device Di creates/renames/deletes a folder

Fo, the counter i on GVV of Fo is incremented;
R3. Every time the counter i on GVV of Fo is incremented,

the counter i on GVV of Fo’s parent folder is also
incremented;

Files update rules
R4. Every time a device Di creates/renames/deletes/write

a file Fl, the counter i on GVV of Fl is also incre-
mented;

R5. Every time the counter i on GVV of Fl is incremented,
the counter i on GVV associated to the folder that
contains Fl is incremented.

Update Rules for RVV:

R6. Initially all counters are zero - for all i ∈ RV V do
RV V i← 0;

R7. Every time a device Di renames a file/folder Fl/Fo, the
counter i on RVV of Fl/Fo is incremented.

As a result of applying the above rules we have the following
invariant - global version vectors of folders and files never
dominate the global version vector of their parents’ folders.

During synchronization, a merge operation is applied be-
tween all version vectors of files/folders being synchronized
for timestamping their new version.

2.4 The Synchronization Phase
MultiRep’s synchronization is always performed between

two devices: the local device (in which the whole synchro-
nization process takes place) and the remote device. In gen-
eral, the device that starts synchronization is the one that
performs all steps required for its conclusion. This is not
true, however, if a mobile device starts briefcase synchro-
nization with a desktop PC. In this case, the device that
will perform the whole synchronization is the last one.

MultiRep’s synchronization is divided into three main
phases: version vector synchronization, metadata synchro-
nization and briefcase synchronization. Only the last two
phases can be manually triggered by the users. Every time
users start the briefcase synchronization, MultiRep auto-
matically performs synchronization of all metadata kept by
two target devices. This is done to accomplish that all meta-
data kept by one device is globally replicated among all de-
vices in the system. Therefore, one device D1 can know
which metadata is stored by another device D3 as a result
of performing briefcase synchronization with another device
D2. The previous synchronization phases are described bel-
low.

Version Vector Synchronization: The version vector
synchronization uses the update rules defined in Section 2.3
to synchronize files/folders version vectors stored by local
and remote device. This phase is performed during meta-
data and briefcase synchronization.

Metadata Synchronization: Metadata synchronization
provides other modules with two options for synchronize
metadata: 1) synchronize a given briefcase’s metadata; 2)
synchronize all metadata. In the first one, only metadata
of briefcases selected by the user are synchronized with the
remote device. In the second one, metadata of briefcases
physically held by the local device are synchronized, as well
as all metadata of other briefcases that are only known by
the remote device. The last phase supports the metadata-
everywhere approach, ensuring eventual consistency of all
metadata globally replicated between devices being synchro-
nized. Metadata synchronization is divided into two phases:

1) Briefcase pairs synchronization - responsible for syn-
chronizing all briefcase synchronization pairs created be-
tween devices when copying same briefcase through multiple
devices;

Figure 4: Example of two directory trees associated to briefcase
a stored in device 1 and 2. In this case, device 1 is responsible
for the whole synchronization phase. Grey nodes are the nodes
explored by the tree exploration procedure. White nodes are
ignored during this procedure.

2) Directory tree synchronization - responsible for syn-
chronizing directory trees of briefcases. During this phase,
devices only exchange file/folder structures of directory trees
that have been modified since the previous synchronization
session between these two devices. To achieve this, Mul-
tiRep explores the two directory trees of briefcases being
synchronized comparing Global Version Vectors (GVV) of
each file/folder structure stored in local and remote direc-
tory tree. As we can see in Figure 4, directory tree syn-
chronization only explores nodes that have been modified
since the last synchronization session between these trees.
If MultiRep finds a node that was not modified, it does not
explore the subtree associated to that node. One node is
modified when its GVV is not equal to the corresponding
GVV of another node stored in another directory tree.

Briefcase Synchronization.
The briefcase synchronization is responsible for synchro-

nizing data and metadata between two selected briefcases.
It uses metadata synchronization to update directory trees
of the two target briefcases. After updating metadata of
briefcases, the data synchronization begins.

Data synchronization receives the two updated directory
trees of briefcases, merging all modifications performed to
them in both devices. To do this, it is divided into two
phases: folder reconciliation and file reconciliation. The
first one only synchronizes modifications performed to fold-
ers, unlike the second that only synchronizes modifications
performed to files. In the first phase, all nodes containing
modified folder structures are explored. Folder reconciliation
detects which folders structures were modified by comparing
their global version vectors. One folder is modified when its
global version vector is not equal to the corresponding ver-
sion vector of other folder. If both version vectors are equal,
i.e., there is no modification to that folder, the folder recon-
ciliation stops the tree exploration on that node. Otherwise,
three steps are performed in the following order:

• resolve folder deletions - verifies if a certain folder was
deleted by a given device by analyzing which folder is
marked as deleted in the corresponding folder struc-
ture;
• resolve folder renames - verifies if a certain folder was

renamed by a given device by comparing the Rename
Version Vector, as well as the name of the folders;
• resolve folder creations - detects if a certain folder was

created by a given device by verifying which folders
structures are stored by both directory trees;

File reconciliation begins after folder reconciliation. The
actions performed in this process are similar to the ones em-
ployed during the previous phase. File reconciliation han-
dles files deletions, renames, creation and modifications by
this specific order. As it happens in folder reconciliation,
all conflicts detected during this phase are displayed to the
user. Then, he/she can choose to resolve them or post-

pone their resolution. If he/she chooses to resolve conflicts,
the synchronization process successfully ends, otherwise it
is aborted.

3. CONFLICT RESOLUTION
During synchronization, several types of conflicts can be

detected between files/folders of two devices being synchro-
nized, as well as between all other devices in the system.
All conflicts between devices being synchronized can be re-
solved during synchronization, unlike conflicts between other
devices that can only be resolved when users synchronize di-
rectly with devices in conflict. The conflict detection with
devices that are not participating in the synchronization pro-
cess is supported by the metadata-everywhere approach.

Conflicts between two folders/files are detected using ver-
sion vectors. One file/folder f1 is in conflict with other
file/folder f2, if the Global Version Vector (GVV) of f1 is
not compatible with GVV of f2.

The following conflicts are detected by MultiRep and must
be manually resolved by the user:
• Creation - create two files at the same path with the

same name on different devices. In this case, Global
Version Vectors of the two files are not compatible;
• Rename/Rename - change the name of one file/folder

to different names on different devices. In this case,
Global Version Vectors and Rename Version Vectors
of the two files/folders are not compatible;
• Delete/Rename - delete a file/folder on one device and

change its name on other device. In this case, Global
Version Vectors of the two files/folders are not com-
patible;
• Delete/Modification - delete a file/folder on one device

and modify it on other device. In this case, Global Ver-
sion Vectors of the two files/folders are not compatible;
• Modification - change contents of the same file on dif-

ferent devices. In this case, Global Version Vectors of
the two files/folders are not compatible.

When these conflicts occur, users can choose to resolve them
or postpone their resolution. Several options are provided
for conflict resolution, such as: keep one of the files/folders
in conflict; or view the content of each file side by side.
MultiRep automatically detects and resolves other concur-
rent modifications to files/folders such as:
• Create two folders with the same path and same name

on different devices - MultiRep merges the contents
stored by the two folders on both devices;
• Change the name of one file/folder to the same name

on different devices - MultiRep does not detect this
case as a conflict and therefore does not warn the user;
• Deletes the same file/folder on different devices - Mul-

tiRep does not detect this case as a conflict and there-
fore does not warn the user;
• Create/rename/delete/modify different files/folders

stored inside the same folder on different devices - Mul-
tiRep updates those files/folders on both devices;
• Change content of a file on one device and renames it

on other device - MultiRep renames the file on the first
device and updates its content on the second device.

When two files/folders in conflict are resolved, a new version
of those files/folders are created in the two devices being
synchronized. The new version covers all previous conflict-
ing versions. It is calculated by applying a merge procedure
to both version vectors of conflicting files/folders. Due to
this fact, MultiRep ensures a deterministic conflict resolu-
tion, i.e. a conflict resolution performed in the same way
between any pair of devices.

4. EVALUATION
In this section, we present the results collected from the

evaluation of MultiRep. MultiRep was implemented us-
ing Microsoft Visual Studio 2010, C# 4.0 and the 4.0 .Net

Figure 5: Synchronization of one briefcase between all devices. In
this case, the option for synchronizing all metadata was disabled.

Figure 6: Synchronization of one briefcase between all devices. In
this case, the option for synchronizing all metadata was enabled.

Figure 7: Comparison between Microsoft’s Briefcase and Multi-
Rep w.r.t. the speed of synchronization.

Figure 8: Comparison between speed of data synchronization
and metadata synchronization.

Framework. The solution was tested under Windows Vista
and Windows 7. The same work load was used to evaluate
and compare MultiRep with Microsoft’s Briefcase.

4.1 Methodology
To evaluate the system, three dedicated devices were re-

quired (see Table 1). As we can see in Figure 9, the com-
munication between these devices was performed by using
temporary wireless ad-hoc networks. Every time it was re-
quired to synchronize briefcases between two given devices,
a 54Mbps Wi-fi ad-hoc network was created between those
devices. The followings steps describe in more detail the

Figure 9: Test environment

Device 1 Device 2 Device 3
CPU Intel Core Duo

T2250 @ 1.73
GHz

Intel Core i7
740QM @ 1.73
GHz

Intel Dual
CPU T3200 @
2.0 GHz

Memory 2559 MB 4021 MB 2048 MB
OS Windows 7 x86 Windows 7 x64 Windows

Vista x86

Table 1: Hardware and software specifications of the three devices
used in MultiRep’s evaluation.

evaluation procedure to measure the memory footprint of
MultiRep: 1) Create one briefcase on device D1, copy it to
device D2 and then copy it from D2 to D3 ; 2) Create N files
and M folders inside briefcase of device D2, where N and
M are parameters of our experiments; 3) Synchronize D2

with D3 ; 4) Finally, synchronize D1 with D2 and D1 with
D3. To measure the speed of MultiRep’s synchronization
the same steps were performed, but with only two devices
D1 and D2.

4.1.1 Workload Description
To obtain the memory footprint of MultiRep, an increas-

ing number of folders and files were created inside one brief-
case. In each step of the evaluation procedure, the number
of folders were multiplied by two. In this case, each folder
stored 4 files. Empty files were created since the metadata
of each file does not depend on its content.
To measure the speed of the synchronization process, an in-
creasing number of folders and files were created inside one
briefcase. Each folder stored 2 files. All files have the same
size. Initially, 50 folders and 100 files were created. In this
case, the work load has a total size of 50MB. So, the medium
size of each file is 512KB since each file has identical size.
The size of each file depends on the number of files created
and the total size of work load. The work load was multiplied
by two in each step of the evaluation procedure. In order
to obtain correct results, all evaluation procedures used to
measure the memory usage and speed synchronization were
repeated five times for each test. With the collected results
an average was calculated. The average was used to create
the graphs displayed in the following sections.

4.2 Memory usage
The memory usage is the most important evaluation pa-

rameter of MultiRep since each device stores all metadata of
other devices. The obtained results show that the memory
usage by the application is proportional to the amount of
metadata stored by devices. These results can be seen by
comparing Figures 5 and 6. In Figure 5 the synchroniza-
tion of all metadata was disabled and so each device only
stores metadata of its briefcase. On the other hand, in Fig-
ure 6, the synchronization of all metadata was enabled and

thus each device stores the directory tree of all other devices
corresponding to the briefcase being synchronized. As we
can see, when enabled the synchronization of all metadata
the amount of memory used by application almost triples.
Nevertheless, the memory footprint of MultiRep is reason-
able even when storing metadata of three briefcases each
one with 4096 folders and 16384 files. For this number of
folders/files, device 2 based on a 64-bit processor uses more
29MB of memory than devices 1 and 3 that have inside a
32-bit processor. This happens because all registers and
pointers in the x64 architecture were expanded from 4 bytes
to 8 bytes.

4.3 Performance
W.r.t the MultiRep’s performance, the results showed that

the metadata synchronization of one briefcase has no impact
on the speed of data synchronization in comparison with
other systems such as Microsoft’s Briefcase (see Figure 7).
In fact, MultiRep is more fast than Microsoft’s Briefcase.
For instance, in case of transferring 5000 folders and 10000
files, Microsoft’s Briefcase takes more 3 minutes than Mul-
tiRep. Moreover, as we can see in Figure 8, the speed of
metadata synchronization directly affects the speed of data
synchronization. For instance, in case of synchronizing 1000
folders and 2000 empty files, data synchronization takes 39%
of the time on metadata synchronization phase when the op-
tion to synchronize all metadata is enabled.

5. RELATED WORK
This section describes several solutions that already ad-

dress the issue of replicating content throughout several de-
vices.

Eyo [7] is the system most closely related to MultiRep. It
is a single-user metadata-everywhere storage system based
on the idea that user’s data should be managed transpar-
ently by the user from any of his devices. Like MultiRep,
Eyo aims to provide on each device a global consistent view
of all user’s data objects distributed among devices. Unlike
MultiRep, Eyo allows users to change metadata of all devices
at any device. In this case, an overlay network is used to
send frequent metadata updates. When compared to Mul-
tiRep, Eyo has important limitations. For instance, in Eyo,
applications must use the Eyo’s storage API to manage their
data. Due to this fact, legacy applications must be modified
in order to use Eyo. Also, the conflict resolution procedure
is the sole responsibility of applications. Moreover, Eyo uses
an overlay network to manage all inter-device communica-
tion unlike MultiRep that does not require any.

Roma [8] is a personal metadata service to locate current
versions of personal files and ensure their availability across
devices. In order to achieve this, unlike MultiRep, it uses
a central metadata server to store information about files
kept by all devices in the system. Due to this fact, Roma
has some limitations. For instance, the central server must
be always available to all devices despite intermittent net-
work connectivity. To cover this problem, Roma argues that
the metadata server should be a highly portable device that
commonly is closest to the user. Nevertheless, we know that
mobile devices have concerns w.r.t the battery life, which
can be dramatically reduced by the several metadata up-
dates and requests of other devices. Additionally, there is
no guarantee that this portable device is always close to the
user. Moreover, in order to use Roma, applications must be
modified to communicate with the metadata server and to
take advantage of metadata information stored by the meta-
data server. Finally, Roma does not specify any information
regarding how conflicts are handled by the system.

Footloose [4] is a single-user replication system that aims
to provide a user-centered data store that can share data
and reconcile conflicts across multiple devices. Like Multi-
Rep, Footloose is a peer-to-peer middleware that uses pair-

wise synchronization to enhance data consistency between
devices in the system. Unlike MultiRep, Footloose does not
provide any information to the user regarding the location
of files and folders stored by multiple devices. In addition,
applications have to be modified to use Footloose. Moreover,
Footloose’s conflict resolution is an entirely application-based
process, i.e. applications must know how to resolve conflicts
and in some cases must implement their own data structures
to detect other conflicts.

Microsoft’s Briefcase [3] is an offline file synchronizer that
was introduced in Windows 95. With Briefcase, when users
want to replicate files from a device to another, they just
need to create a briefcase folder then drop target files into
that briefcase and finally copy it to another device. Brief-
case’s file synchronization mechanism has several limitations.
First, it does not propagate the creation of folders until they
have a file inside. Second, it reports to the user too few in-
formation about conflicts detected during synchronization.
Third, if a folder/file is renamed, Briefcase is not able to de-
tect if it is still the same folder/file. In most cases, it splits
the folder/file from the original, rendering it an orphan. Ad-
ditionally, Briefcase has some limitations w.r.t. synchroniza-
tion between multiple devices. For instance, imagine that a
user copies a briefcase folder with the same contents from a
device A to devices B and C. Devices B and C can synchro-
nize files and folders with device A. However, they cannot
synchronize such files/folders between them. Furthermore,
Microsoft’s Briefcase does not provide to the user any infor-
mation about files and folders stored by other devices.

Online file synchronizers, such as Dropbox [1], allow users
to share files/folders with others across the Internet. They
typically use cloud storage services to store data and syn-
chronize files/folders between multiple devices. Although
these systems offer good flexibility in a scenario where one
user has several devices connected to the network at the
same time, they have important limitations. For instance,
they depend strongly on the Internet connection to share
updated resources without taking the advantage of physical
device proximity. Moreover, user’s data is stored in an unfa-
miliar environment not controlled by the user, thus raising
privacy issues.

6. REFERENCES
[1] Dropbox: Secure backup, sync and sharing made easy.

https://www.dropbox.com accessed on 29/10/2010.
[2] Goodsync: Backup or synchronize your files easy, fast,

automatic and completely reliable.
http://www.goodsync.com/support/manual accessed
on 25/11/2010.

[3] Microsoft. How to use the briefcase feature in windows
xp http://support.microsoft.com/kb/142574/ accessed
on 24/11/2010.

[4] J. Paluska, D. Saff, T. Yeh, and K. Chen. Footloose: A
case for physical eventual consistency and selective
conflict resolution. IEEE WMCSA, 2003.

[5] D. Parker, G. Popek, G. Rudisin, A. Stoughton,
B. Walker, E. Walton, J. Chow, D. Edwards, S. Kiser,
and C. Kline. Detection of mutual inconsistency in
distributed systems. Transactions on Software
Engineering, 1983.

[6] Y. Saito and M. Shapiro. Optimistic replication. ACM
Computing Surveys (CSUR), 37(1):42–81, 2005.

[7] J. Strauss, C. Lesniewski-Laas, J. Paluska, B. Ford,
R. Morris, and F. Kaashoek. Device transparency: a
new model for mobile storage. In: Proceedings of the
SOSP Workshop on Hot Topics in Storage and File
Systems (HotStorage), 2009.

[8] E. Swierk, E. Kiciman, N. Williams, T. Fukushima,
H. Yoshiday, V. Laviano, and M. Baker. The roma
personal metadata service. MONET special issue of best
papers from WMCSA 2000,, 7(5), October 2002.

	Introduction
	Architecture
	Layers and Modules
	Data Structures
	Version Tracking
	The Synchronization Phase

	Conflict Resolution
	Evaluation
	Methodology
	Workload Description

	Memory usage
	Performance

	Related work
	References

