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Abstract

Peer-to-peer overlays provide an ideal substrate for
worm propagation. P2p-assisted worms have the po-
tential to spread faster than traditional scanning worms
because they have knowledge of a subset of the over-
lay nodes, and choose these nodes to propagate them-
selves; and also because they can avoid traditional de-
tection mechanisms.

We present a novel approach for containing p2p-
assisted worms based on the fact that some overlay
nodes may not have common vulnerabilities, due to their
platform diversity. By properly reorganizing the overlay
graph, this can lead to the containment of p2p-assisted
worms in small islands of nodes with common vulnera-
bilities that only have knowledge of themselves or nodes
running on distinct platforms.

We present the design of Verme, a p2p overlay based
on Chord that follows this approach, and we discuss
several interesting issues that arise in Verme’s design.
We argue that this new overlay may help containing, or
at least slowing down the propagation of p2p-assisted
worms, and raise the difficulty level of writing them.

1 Introduction

In recent years, we have witnessed the outbreak of sev-
eral Internet worms that have not only caused inconve-
nience to many users, but also a large societal impact.
Most of these are instances of “scanning worms” [13].
This means that once the worm has infected a host, it
propagates itself by probing random IP addresses for
new nodes to infect. In some cases this choice of IP
addresses is biased by some heuristic that increases the
chances of finding a IP address that is in use.

Recently, some authors have pointed out the potential
problems raised by peer-to-peer assisted worms [18].
Such worms could take advantage of the topological in-
formation maintained by the p2p overlay by choosing its
overlay neighbors as the next target to infect.

We must consider the possibility of two types of p2p-
assisted worms. We can either have a worm that exploits
a vulnerability in the p2p client application, or a worm
that is not related to the p2p application, but uses knowl-
edge from this application (e.g., by inspecting open TCP
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connections) to choose where to propagate. In this pa-
per we consider the latter case, since it is more general
in the sense that our defenses will also work for the for-
mer type.

P2p-assisted worms are potentially a more serious
threat than scanning worms, since they can (1) spread
faster as they do not have to probe random IP addresses,
most of which are unused, (2) avoid traditional detection
mechanisms, which are based on anomalous IP traffic
patterns [10, 12] (as they do not generate many failed
connections and can disguise as normal p2p traffic), and
(3) avoid being detected by honeypots [10] (surveillance
machines for early warning and detection that listen in
unused IP addresses).

Although we have not seen specific instances of fast-
spreading p2p-assisted worms, there is some indication
that this is a pending problem. For instance, there have
been reports of vulnerabilities in p2p client applications
like eDonkey and KaZaA that would allow for the exe-
cution of arbitrary code on the client [1, 2]. Also, there
have been some instances of viruses that use file sharing
overlays to assist in their propagation by making them-
selves available for download [3]. Thus we could argue
that it may be serendipity that worm authors have not
written a fast-spreading p2p-assisted worm.

In previous work, researchers have pointed out the ex-
istence of this problem [18], and even quantified how
much faster p2p-worms can propagate using simula-
tions [5] and analysis [17]. In this paper we take the
next step of proposing that peer-to-peer overlays should
be modified to incorporate defenses that contain or at
least slow down the propagation of p2p-assisted worms.

We present a series of general principles that should
guide the design of overlays to achieve the aforemen-
tioned goals. Then we present a new overlay called
Verme that is designed with these principles in mind.
Verme is an extension of Chord [14], designed to con-
tain p2p-assisted worms in small “islands” of nodes that
may have common vulnerabilities. We designed Verme
such that nodes inside each island do not have knowl-
edge of other nodes with common vulnerabilities. As a
consequence, the worm can be contained within the is-
land. Furthermore, Verme is designed to maintain the



good properties of Chord, namely its good lookup per-
formance and low overhead.

In the design of Verme a series of interesting prob-
lems have arisen, like how to address Sybil attacks [8]
(in this case a Sybil attacker could join the overlay with
identities of the wrong platform type, and use them to
obtain addresses of nodes it should not have access to),
and how to address load-balancing issues that arise from
the uneven distribution of platforms that nodes run on.
In this paper we also discuss possible ways to address
these problems.

While not claiming to have found a panacea, our new
insights and overlay design may contribute to contain-
ing, or at least slowing down the propagation of p2p-
assisted worms, and raising the difficulty level for writ-
ing them.

2 Design Principles

We propose that the design of peer-to-peer overlays
should be guided by the need to incorporate defenses
that limit the propagation of p2p-assisted worms. The
main insight behind our proposal is that overlays con-
tain many different types of nodes, running on different
platforms, or using different versions of p2p client soft-
ware. This diversity can be used to contain the prop-
agation of p2p-assisted worms, since the vulnerabili-
ties in one particular implementation or platform may
not affect the entire population. For instance, the SQL-
Slammer worm only affects Windows machines running
SQLServer 2000 applications. On the other hand the
Linux/Lupper worm spreads by exploiting web servers
hosting vulnerable PHP/CGI scripts, but it targets only
1386 machines running Linux because it is distributed as
an i386 ELF program. In case the vulnerability is found
in the p2p client applications it is also not likely to be
present in different client implementations.

Therefore we propose that existing overlay designs
must be modified such that the overlay graph (i.e., the
graph formed by the overlay routing state) forms small
“islands” of nodes that are running on the same platform
(or otherwise have common vulnerabilities). The nodes
in each island may be adjacent to other nodes from the
same island, or to nodes from islands of distinct types
(i.e., that do not have common vulnerabilities), but may
not be adjacent to nodes from other islands of the same
type.

Figure 1 gives an example of a system with two types
of nodes that do not have common vulnerabilities. The
overlay graph forms small islands of nodes of the same
type (enclosed within the dashed circles). The nodes
within an island may have edges among themselves

Figure 1: Generic structure of an overlay graph designed
for worm containment

(i.e., they may be present in each other’s routing tables)
which may lead to the propagation of a p2p-assisted
worm within an island. Nodes may also have edges
to nodes that belong to distinct islands of other types,
but never to nodes of distinct islands of the same type.
Therefore a p2p-assisted worm will be confined to an
island.

Modifying the overlay graph is not enough to succeed
in preventing the propagation of p2p-assisted worms.
For instance, a worm could use overlay maintenance
messages or perform lookups to discover the network
addresses of nodes of the same type from distinct is-
lands. In the following sections we discuss other mod-
ifications to the peer-to-peer protocols and applications
that are necessary.

3 Verme Design

In this section we present the design of Verme, an ex-
tension of Chord [14] that follows the design principles
presented above.

In this presentation we rely on some assumptions that
we will revisit in subsequent sections to discuss how rea-
sonable they are or how they can be enforced.

First, we assume that each node is assigned a certifi-
cate that binds its node identifier to the public key that
speaks for its principal, type, and possibly (depending
on the level of security that is provided, as we will dis-
cuss next) its IP address.

To simplify our presentation, we will assume that
nodes may be of two distinct types without common
vulnerabilities (generalizing our design to support more
than two types of nodes without common vulnerabilities
is relatively straightforward). Furthermore we assume
that nodes are evenly distributed among the two types.
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Figure 2: Identifier structure in Verme

In Section 5 we discuss how to mitigate the negative ef-
fects of uneven type distributions.

3.1 Chord overview

Chord [14] is a peer-to-peer routing overlay that pro-
vides a scalable lookup primitive that allows applica-
tions to find data stored in a peer-to-peer system.

In Chord nodes have identifiers that are 160-bit inte-
gers assigned in such a way that they are uniformly dis-
tributed (e.g., as the output of a SHA-1 function applied
to the network address and port number of the node).

Chord designates the n nodes whose identifiers im-
mediately follow a key (called the successor nodes) as
responsible for that key. Lookups map a 160-bit key
(the identifier of the data item) to the list of successors
of that key.

Each Chord node maintains a small amount of rout-
ing state (small enough to keep its maintenance over-
head low). This consists of a list of successors (i.e., the
ids and IP addresses of the nodes that follow it in the
ring) and a finger table, consisting of the IP addresses
and identifiers of nodes that follow it at power-of-two
distances in the identifier space.

Lookups requests travel through a sequence of nodes
(either iteratively or recursively), where each node in
this sequence answers or forwards the request to the
node from its finger table with highest id still smaller
than the desired key. The lookup will conclude when
the successor of the id is reached, which happens with
high probability after O(log V) routing hops.

3.2 Id Assignment

The id assignment scheme used by Chord does not obey
the principles mentioned in Section 2, since the list
of successors of any given node will typically contain
nodes of both types. Therefore we modify the way ids
are assigned such that the ring is divided into sections,
where each section only contains the ids of nodes of a
particular type. Furthermore, neighboring sections must
always belong to different types. This will cause nodes
of the same type from the same section to have knowl-
edge about themselves (through their successor lists) but
no knowledge of nodes of the same type in other sec-
tions (provided that the number of nodes in each section
is large enough that successor lists never cross more than
one section).

Figure 3: Finger and successor pointers in Verme

Verme’s id assignment achieves this by dividing the
node id in three parts, as depicted in Figure 2. The
lower bits are assigned randomly, and the number of
bits employed here specifies the length of the section.
By adjusting this number properly we can ensure that,
with high probability, successor lists do not cross more
than one section. The middle bits are fixed according to
the node type. With our simplifying assumption of hav-
ing only two types in the system we could use a single
bit. The higher bits are also assigned randomly and they
specify the section number that the node is in.

3.3 Successors and Fingers

Each node maintains pointers to a successor list that are
used and maintained just like in Chord. However, finger
table entries must be modified to point to a node that is
not of the same type as the node itself, to respect the
design principles presented in Section 2.

Thus we need to change the way that fingers are de-
fined. Instead of a finger table entry pointing to the node
that follow it at power-of-two distances in the identifier
space, the finger entry will now correspond to the first
successor of the ids at the same distance that belongs to
the opposite type. Figure 3 shows a Verme ring with the
successors and fingers of a node.

3.4 Lookups

Lookup is the crucial abstraction provided by the rout-
ing overlay. In Chord (as in most peer-to-peer overlays)
any node in the system can issue a lookup(id) operation.
As mentioned, this returns the address of a node (or set
of nodes) that are responsible for the data with that id
(in this case these are the successors of the id).

This is used not only by applications, but also in the
overlay maintenance protocols: finger table entries are



refreshed periodically by performing a lookup to the ap-
propriate point in the id space; and joins of nodes in-
coming to the overlay are also initiated by performing
a lookup to the id of the incoming node, who then con-
tacts its new successor to update its routing information.
We will begin by discussing how lookups are modified
for overlay maintenance operations, and we discuss how
applications can use lookups in Section 4.

Lookup is an operation that poses high risk for worm
propagation. The current abstraction allows a worm to
crawl the overlay, by making lookups with different ids,
to obtain addresses to attack. We address this issue by
changing several aspects of the lookup operation. First,
the lookup message must carry the certificate of the node
that is performing the lookup. This will allow the suc-
cessor of the id to verify the legitimacy of the initia-
tor in looking up this id. When lookups are being used
for joining the overlay or calculating finger table entries,
this is straightforward: the node must verify if it is the
successor or a correct finger of the id in the certificate.

The second aspect we need to address in lookups is
that they cannot be iterative, since many nodes in a
lookup path have the same type as the node perform-
ing the lookup. Therefore we change the lookup to be
either recursive (i.e., the reply travels back through the
reverse lookup path) or transitive (i.e., the forward path
is identical to a recursive lookup, but the replier contacts
the initiator directly). If the lookup is recursive, the re-
ply must be encrypted with the public key of the initiator
(present in the certificate sent with the lookup) to keep
the IP address in the reply from being disclosed to the
nodes in the lookup path.

Transitive lookups are more efficient, but in this case
the certificate sent in the lookup must contain the IP ad-
dress of the initiator node, to allow the replier to contact
him. This will open an avenue for an infected node to
collect a large number of IP addresses of any type, sim-
ply by inspecting the IP addresses in certificates that are
sent through it. Since overlay maintenance messages are
small and relatively infrequent, we made the choice of
using recursive lookups for this kind of operations. We
discuss lookups performed by applications next.

4 Upper Layers

The layers above the lookup substrate also need to be
modified to preserve the design principles and properties
subjacent to our scheme, like not propagating network
information about peers.

In this section we will focus on a particular layer that
uses the lookup infrastructure: a distributed hash table
(DHT) that supports get and put operations, similar to

Figure 4: Replication of data items in a DHT

the DHash layer built on top of Chord lookups [7]. We
believe this is representative of how other applications
can be adapted.

DHash uses lookups to get or put data in the overlay.
In this system data is replicated in the set of n succes-
sors of the identifier of the data item. Get and put opera-
tions are preceded by a lookup that returns the address of
one or more nodes responsible for the data. Then these
nodes are contacted directly to store or retrieve the data.

This poses a risk to worm propagation because the re-
sponsible node may be from the same type of the node
making the request. The first step to address this prob-
lem is to change the way that replicas are assigned. In-
stead of replicating in the n successors of the identifier
of the data item, we make n/2 replicas at that point in
the id space, and another n/2 in the same position of the
subsequent section of the ring (of the opposite type).

This design is depicted in Figure 4. In this case the
lookup will only return the addresses of the replicas that
are of the opposite type of the node that issued the re-
quest. Then these nodes can be contacted directly to
perform the get operation. In the case of puts, the client
node should not contact directly the replicas of its own
type. Instead, it contacts the remaining replicas, which
are then responsible for replicating the data on the repli-
cas of same type as the client.

This design feature also has the advantage of increas-
ing reliability, since a worm outbreak that affects nodes
from one type will not be able to wipe out all copies of a
given object. We intend to further explore the increased
availability and reliability guarantees of our system.

In the next section we discuss some implications of
this design when the assumptions we stated previously
(namely when nodes may obtain many or incorrect cer-
tificates) are not met.



5 Discussion

In this section we question the validity some of the
assumptions made previously, and discuss other issues
that remain open.

5.1 Sybil Attacks

In our design we assumed that nodes had certificates
containing a correct indication of the type of node.

Issuing such certificates and limiting Sybil attacks [8]
are issues that have been solved with some degree of
success in deployed systems like Credence [15] (by ask-
ing joining nodes to download a large file or solve cryp-
tographic puzzles). Also, in some cases where the client
hardware allows it, we can use remote attestation to ver-
ify the identity and platform where the client is running.

However, a more problematic type of impersonation
would happen if even a single bad node would obtain a
certificate for a type that is different from the vulnera-
ble machines (even, if needed, by acquiring a machine
of that type), and perform lookups to several ids to col-
lect a series of IP addresses of the intended type. For
instance, a single node pretending to be running Linux
could obtain many IP addresses of Windows machines
by joining the overlay and looking up ids at random.

Our take on this problem is that we cannot solve it
entirely, as there always may be a small fraction of im-
personating nodes in the system, so we should minimize
the damage caused by these nodes.

The impact of this attack can be limited if we only use
recursive operations (i.e., an operation request is routed
recursively like a lookup, and the reply travels back
through the reverse lookup path), precluding lookups
that return an IP address. This way, a node’s knowledge
of nodes of the opposite type is limited to its successors,
fingers, and the nodes to whom it may be a successor
or finger. The number of such nodes is O(log N ), and
therefore is quite limited.

Note, however, that there is a tradeoff between perfor-
mance and security: Performance is maximized if the
responsible node replies directly to the initiator of the
lookup, while security is maximized if lookups carry an
operation request with them, and the reply travels back
through the reverse lookup path (without any informa-
tion about the address of who produced the reply). In
between these two design points we can have interme-
diate solutions, like choosing a single intermediate node
to relay the reply back to the client, i.e., the reply takes
two hops to travel back to the client.

5.2 Uneven Distribution of Node Types

Another aspect that will complicate our design is the un-
even distribution among distinct types: e.g., Windows
XP represented 51% of the operating systems used to
access Google’s web site in 2004 [4]. This raises a load-
balancing problem: the “islands” of the most common
types will be much more populated than those of other
types. Consequently, there is much more work to do by
nodes of less common types.

A possible way to alleviate this problem is to per-
form an automatic classification of nodes in different
types according to the output of remote OS fingerprint
tools [9]. Such tools enable the remote collection of in-
formation about the software environment each node is
running (like operating system and services that are run-
ning).

This information could be collected when a node
joins the overlay (and audited periodically) and would
enable a more reliable classification of nodes, and also
the distinction between nodes that may be running on
similar platforms but are less likely to have common
vulnerabilities due the types of services that they run.
The latter might be used to improve the load balancing
by partitioning the most populated sets of node types.

5.3 Generalizing to Other Overlays

Even though DHT's are gaining in popularity, many pop-
ular p2p applications are based on unstructured over-
lays. We believe the design principles stated in section 2
can also be applied to modify the design of unstructured
overlays.

For instance, in BitTorrent the tracker is responsible
for assigning neighbors for peers to download content,
hence for forming the overlay graph. So, if we assume
that the tracker is not vulnerable to worm infection (e.g.,
it will not run any services, run behind a firewall, etc.),
then it will be able to assign neighbors in a way that
forms an overlay graph with the generic structure of Fig-
ure 1.

6 Related Work

The containment of p2p-assisted worms is a recent re-
search area.

One of the first papers to point out the existence of
this problem was the work of Zhou et al. [18]. In this
workshop paper, the authors motivate the problem, and
propose as their main research direction populating p2p
overlays with guardian nodes. These are special nodes
that are running worm-detection software (which the au-
thors later proposed in a separate paper [6]) that tracks



how information from untrusted sources propagates it-
self in memory. These have to be special purpose nodes,
since this detection considerably slows down the exe-
cution. This differs from our vision of a true p2p sys-
tem where all nodes have common responsibilities, and
where the overlay graph is modified to contain the prop-
agation of the worms. In this paper, Zhou et al. also
mention how the existence of immune nodes could slow
down the propagation, but do not propose any reorgani-
zation of the overlay to achieve contention.

Yu et al. [17] propose a model for p2p-assisted
worms, and analyze the propagation of these worms de-
pending on the attack model (e.g., whether the worm
uses the overlay topology or not), and on the structure
of the overlay. They point out that these worms prop-
agate much faster than traditional scanning worms, and
that unstructured overlays can also lead to faster prop-
agation. They do not propose, but mention as future
work, the design of defense systems.

Ramachandran and Sikdar [11] have proposed an an-
alytical model for the dissemination of worms in p2p
overlays. They conclude that an accurate model needs
to take into account user characteristics and communi-
cation patterns.

Chen and Gray [5] have also studied the propagation
of worms in p2p overlays using simulations, but, un-
like the previous two papers, they have considered a dy-
namic peer population instead of a static overlay graph.
They also propose a detection mechanism based on the
observation that worms distort node popularity, reflected
in changes in connection rates.

We contrast with the previous papers in that they fo-
cus on a better understanding of the problem using mod-
els and simulations, whereas our proposal focuses on the
defenses required to contain p2p-assisted worms.

A Warhol worm [16] is a different kind of fast-
spreading worm that uses several optimizations in the
scanning routines like precompiled IP lists. Our work
focuses on worms that also have the potential for fast
spreading, but the reasons for that are quite different.

7 Conclusion

This paper presented a novel overlay called Verme that
is designed to contain, or at least slow down the prop-
agation of p2p-assisted worms. Verme extends Chord
by reorganizing the overlay graph, taking into account
the fact that some overlay nodes may not have common
vulnerabilities, due to their platform diversity. Verme’s
design still presents a large number of challenges and
open issues, some of which were discussed here. In the
future we intend to address these issues and implement
a prototype of the new overlay.
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