
The Obscure Nature of Epidemic Quorum Systems

João Barreto
INESC-ID and Technical University of Lisbon

Rua Alves Redol 9
1000–029 Lisboa, Portugal

joao.barreto@inesc-id.pt

Paulo Ferreira
INESC-ID and Technical University of Lisbon

Rua Alves Redol 9
1000–029 Lisboa, Portugal

paulo.ferreira@inesc-id.pt

ABSTRACT
Epidemic quorum systems enable highly available agreement
even when a quorum is not simultaneously connected, and
are therefore very interesting for mobile networks. Although
recent work has proposed epidemic quorum algorithms, their
properties and trade-offs are not well studied. This paper
sheds some light on less known aspects of epidemic quorum
systems. With simple counter-examples and combinatorial
exercises, we contradict common misbeliefs that are often
associated with epidemic quorum systems. Our claims ad-
vocate the need for a deeper study of these promising sys-
tems.

1. INTRODUCTION
Quorum systems are a basic tool for reliable agreement in
distributed systems [11]. Their applicability is wide, ranging
from data replication protocols, distributed mutual exclu-
sion, name servers, selective dissemination of data, to dis-
tributed access control and signatures [1]. Classical quorum
systems (CQS) require agreement on a value to be accepted
by a quorum of live processes, which are typically assumed
to be simultaneously connected in the same network parti-
tion. This is not adequate in weakly connected networks,
e.g. mobile or sensor networks, where connected quorums
may be improbable.

Recent work [9, 5] has proposed epidemic quorum systems
(EQS) to eliminate such a shortcoming by allowing uncon-
nected quorums. An EQS tries to ensure agreement by run-
ning a finite number of elections. Intuitively, on each elec-
tion, each process may vote for one proposed value. By epi-
demic propagation of votes, eventually each process should
be able to determine, from its local state, whether the EQS
has agreed on a given value w, or the current election has
reached an inconclusive state; where, in the latter, a new
election starts. EQSs, hence, seem a powerful tool for coor-
dination in mobile computing.

A common fallacy that may cross one’s mind is that EQSs

behave similarly to CQSs; with the superficial distinction
that the former are better adapted to weakly connected en-
vironments and the latter to strongly connected ones. In
fact, the absence of any deep study, either empirical or for-
mal, of EQSs (to the best of our knowledge) may seem con-
sistent with such a misbelief: after all, if both approaches
were fundamentally similar, then the extensive studies and
results that are available on CQSs [7, 3, 6, 11, 8] would also
apply to the epidemic variant.

This paper exposes such a fallacy. Our contribution com-
prises a series of counter-examples and simple exercises that
unveil EQS-specific properties and trade-offs that related lit-
erature, to the best of our knowledge, does not document.
As corollaries:

1. We show that known, fundamental results for CQSs
are not valid with EQSs.

2. We question the environments where EQSs are com-
monly assumed to be more appropriate than classical
quorums, and vice-versa. In particular, we argue that
EQSs may not always be advantageous over CQSs in
mobile networks, while EQSs can outperform CQSs in
high-throughput agreement in strongly-connected en-
vironments.

3. We raise open questions that need to be answered be-
fore EQSs can be clearly understood.

Section 2 starts by describing epidemic quorum algorithms
and coteries, clarifying some less obvious, yet fundamental,
aspects that distinguish EQSs from their classical counter-
part. Departing from such an analysis, Sections 3 to 6 draw
and discuss individual, novel statements about the nature of
EQSs, which support our position. Section 7 concludes.

2. EPIDEMIC AND CLASSICAL QUORUM
SYSTEMS

We consider a set of distributed processes in an asynchronous
system. Processes may fail permanently. Failures are non-
byzantine. Transient network partitions may also occur, for
instance due to mobility, restricting communication to pro-
cesses inside the same partition.

The distributed processes wish to agree on a single value,
taken from a set of values, proposed during the agreement



process. For an easier comparison between CQSs and EQSs,
we use the voting metaphor to describe both systems. A
quorum algorithm tries to agree on a single value by having
each process vote for a proposed value. Roughly speaking,
the algorithm reaches agreement when it is sure that the
system has reached a safe configuration of votes. A coterie
defines the set of such configurations. As we clarify next,
the notion of coterie is different from CQSs to EQSs. The
corresponding quorum algorithms are different, too.

We begin with the classical case. A classical coterie is a
set of sets of processes (quorums), Q1, ..Qm, such that, for
all Qi and Qj , Qi ∩ Qj 6= (intersection property).1 In a
CQS, a process proposing a value tries to make a quorum
of processes vote for its value. Such a step must complete
atomically. A common solution is to employ an atomic com-
mit protocol, such as two-phase commit (2PC), for quorum
obtention (e.g. [4]). Taking the example of 2PC, a coor-
dinator (typically the process proposing the value) requests
each other accessible process to vote for the value (or pre-
commit). While having a vote cast (i.e., pre-committed),
a process cannot vote for any other value. Once the coor-
dinator has obtained a quorum of processes that voted for
its value, it then requests each of them to commit, hence
deciding the value. If, otherwise, the coordinator is not able
to obtain a quorum of votes, it may, at any time, request
the processes voting for its value to abort. Upon abort, a
process withdraws its vote and regains the right to vote for
any value.

EQSs adopt a radically different strategy to obtain a quo-
rum. Here, processes are no longer allowed to withdraw
votes. Such a restriction has important consequences. A co-
ordinator is no longer required. Instead, the proposer pro-
cess votes for its value and propagates information about
such a vote to other processes. Upon receiving vote infor-
mation about one or more proposed values, a process that
has not yet voted in the current election casts its vote for
one of such values.2 Therefore, votes flow epidemically, and
the election decision is taken in a purely decentralized man-
ner. Each process inspects its local voting knowledge and
determines if a vote configuration in the coterie has already
been reached (see below), in which case a value is decided.
It may also occur that a process determines that no config-
uration in the coterie may ever be reached, even after the
missing votes arrive; in such a case, the process regards the
current election as indecisive and starts a new one.

Epidemic coteries (ECs), in contrast to classical coteries,
may not only take the set of voters for a given value (the
quorum) into account, but also the set of voters for the com-
peting values (the anti-quorums3). The reason for this is the
impossibility of vote withdrawal. Note that, in contrast, the
coordinator of a CQS, when inspecting its vote knowledge,
cannot reason about the known votes for other values, as
those votes may change at any time.

We have proposed a formal definition of EC (and proven

1For simplicity, and without loss of generality, we omit the
minimality property from coterie definitions.
2Different policies may drive this choice (e.g. [9]). For sim-
plicity, we assume the choice is random.
3The expression is due to Holliday et al [5].

it safe), which is out the scope of this paper, in [2]. We
instead give an intuitive description. Each configuration of
votes in an EC includes a quorum and a set of anti-quorums.
We say that a given vote configuration in the EC has been
reached once its quorum has voted for a value; while all the
anti-quorums of the vote configuration have each voted for
a distinct value.

Intuitively, the condition that determines which vote config-
urations may co-exist in an EC ensures the following. Con-
sider that, given a set of votes, a vote configuration whose
quorum votes for a value w is reached. No arbitrary assign-
ment of the missing votes may reach another vote configu-
ration whose quorum votes for a value other than w. This
ensures the safety of deciding w. (Note that other vote con-
figurations may be reached, as long as their quorums vote
for w.)

We exemplify with the plurality EC used by the Deno system
[9] which we denote EPlur. Essentially, plurality determines
that a value w is decided when, for each (possibly unknown)
rival value, x, either (a) w is guaranteed to have more votes
than those that x may potentially acquire (with the missing
votes); or (b) w is guaranteed to have as many votes as those
x may potentially acquire and a process p that has voted
for w has a lower identifier than any of the processes that
may potentially vote for x. (The latter is the tie-breaking
condition.)

For a system of five processes, Figure 1 enumerates (the
minimal) EPlur. To illustrate the safety of EPlur, assume
that a given process is aware that a value x has votes from
p1 and p2, value y has votes from p3 and value z has votes
from p4. Clearly, such votes reach vote configuration

〈{p1, p2}|{p3}, {p4}〉,
where x is voted by the quorum; hence, the process decides
x. If either y or z obtain the missing vote (from p5) no other
configuration where a quorum votes for either y or z will be
reached – this condition ensures that any other process will
eventually decide x.

The universe of ECs is larger than the classical one. On the
one hand, the former includes coteries to which CQSs cannot
resort to. On the other hand, it is easy to prove that the
intersection property is stronger than the condition for ECs
[2]. Hence, any classical coterie may also be used by an EQS,
as proposed in [5]. We designate the EC that directly results
from a classical coterie as the latter’s epidemic-equivalent.

As a second EC example, consider the epidemic-equivalent
of the classical majority coterie, which we denote by EMaj ,
in our 5-process system (i.e. a value must obtain 3 votes
to be decided). EMaj comprises all the vote configurations
with majority quorums (i.e. 3-process quorums). It is worth
noting that EMaj , as well as any epidemic-equivalent of a
classical coterie, has empty anti-quorums; here, a quorum
always ensures decision, no matter how many other votes
any rival value obtains. It is easy to show that EMaj is a
subset of EPlur, as Figure 1 shows.

As a final remark before the next sections, it may be helpful
to look at EQSs from the perspective of CQSs. EQSs may be



Quorum Anti-Quorums
p1, p2, p3

p1, p2, p4

p1, p2, p5

p1, p3, p4

p1, p3, p5

p1, p4, p5

p2, p3, p4

p2, p3, p5

p2, p4, p5

p3, p4, p5

Quorum Anti-Quorums
p1, p2 {p3}, {p4}
p1, p2 {p3}, {p5}
p1, p2 {p4}, {p5}
p1, p3 {p2}, {p4}
p1, p3 {p2}, {p5}
p1, p3 {p4}, {p5}

Quorum Anti-Quorums
p1, p4 {p2}, {p3}
p1, p4 {p2}, {p5}
p1, p4 {p3}, {p5}
p1, p5 {p2}, {p3}
p1, p5 {p2}, {p4}
p1, p5 {p3}, {p4}

Quorum Anti-Quorums
p2, p3 {p1}, {p4, p5}
p2, p3 {p1}, {p4}, {p5}
p2, p4 {p1}, {p3, p5}
p2, p4 {p1}, {p3}, {p5}
p2, p5 {p1}, {p3, p4}
p2, p5 {p1}, {p3}, {p4}
p3, p4 {p1}, {p2}, {p5}
p3, p5 {p1}, {p2}, {p4}
p4, p5 {p1}, {p2}, {p3}

p1 {p2}, {p3}, {p4}, {p5}

Figure 1: Q-vote configurations of the plurality EC, EPlur, in a system with 5 processes. The majority EC,
EMaj, is a subset of EPlur, which comprises only the leftmost column of q-vote configurations.

regarded as an enhanced variant of a CQS using One-Phase
Commit. In the absence of faults, a CQS based on 1PC
can decide in one round and cannot abort (i.e., withdraw
votes), similarly to EQSs. The advantage of EQSs is the
ability to exploit the impossibility of vote withdrawal, and
hence use a wider universe of coteries, with both quorums
and anti-quorums.

3. EQSS AREN’T ALWAYS BETTER IN MO-
BILE NETWORKS

CQSs are normally regarded as working in partition-free con-
ditions. However, saying that CQSs may only decide when
the quorum is simultaneously connected is not entirely true.
The precise requirement, in fact, is that, at each phase of
the vote obtention stage (e.g. via 2PC), each single process
in the quorum be accessible to the coordinator at some mo-
ment. Simultaneous availability of the quorum as a whole
is not necessary. Temporary inaccessibility of any of the
processes involved may indeed happen, with the sole conse-
quence of delaying agreement.

Having observed that, in fact, both options are valid for
transiently-partitioned networks, which one is the best choice?
The answer depends on an important trade-off between two
distinctive advantages of each approach. On the one hand,
EQSs are truly decentralized, while CQSs base agreement
on interactions with the coordinator. Hence, should the co-
ordinator become inaccessible from a quorum that has al-
ready completed the first 2PC phase, then agreement on any
value will always halt until the coordinator becomes accessi-
ble again. That is not the case with EQSs, where agreement
may (although possibly not always) complete in spite of the
inaccessibility of any individual process.

On the other hand, multiple proposed values, along with the
inaccessibility of one or more processes, may prevent EQSs
from deciding in situations where CQSs do decide. This is
a direct consequence of the possibility of vote withdrawal in
a CQS and of the corresponding impossibility on the epi-
demic side. We illustrate this with an example. Consider a
partition that holds 4 of the 5 processes of the system. Let
us compare the majority CQS and its epidemic-equivalent,
EMaj . Assume that two values, x and y, have been proposed
and each has obtained 2 votes so far. In this situation, the
vote that is missing for a majority of either proposal is held
by the process outside the partition. In fact, EMaj would

wait for such a process to become accessible again, even if
that takes a long time or if the process is permanently failed.
We call this situation a tied indecision.

In the classical approach, however, a given coordinator (e.g.
x’s proposer) may decide, for instance once a reasonable
timeout expires, to withdraw the votes for x. Having with-
drawn such votes, the coordinator of y may now obtain the
missing vote from the free processes, and decide y.

Summing up, the fully decentralized nature of EQSs removes
the need for a distinguished coordinator process (per value
proposed) with relatively good connectivity to the remaining
processes. However, should processes with such connectiv-
ity conditions exist, tied indecisions may cause EQSs to halt
(possibly forever) when CQSs will not. In mobile networks
where a subset of processes has a sufficiently high probability
of having contact with the remaining processes, even if such
contacts are interleaved with periods of lack of connectiv-
ity, the classical approach may indeed perform better. Both
in terms of time to decide and availability. Without a pre-
cise analysis of both approaches, the boundary between the
scenarios where each approach is more appropriate remains
unclear.

4. COTERIE INCLUSION DOES NOT NEC-
ESSARILY MEAN LOWER AVAILABIL-
ITY

It is a known result that, given two classical coteries, C1

and C2, such that C1 ⊂ C2, a CQS using C1 will have a
lower availability than one using C2 [11]. As an example,
C1 might be the classical coterie that includes the quorums
with more than 65% of processes, while C2 is the classical
majority coterie. It is intuitive that a system using C2 will
decide more frequently, as not only will it obtain a quorum
in the same situations as C1, but as well in others.

Perhaps surprisingly, the same reasoning may no longer be
valid in the context of EQSs. As before, an EC, E2, that is a
superset of another, E1, will have a superset of opportunities
to decide.

However, in the epidemic case, a new phenomenon comes
into play, which increases availability as ECs become smaller.
We illustrate it with the following example. Consider a sys-



tem of 10 processes in a single partition, two of which have
permanently failed. Further, assume values x and y have
been proposed and each one one has obtained four votes. If
we consider an EQS using EMaj , then the system is in a tied
indecision. Since the missing votes still allow both candi-
dates to obtain a majority, the system has no choice but to
wait (in this case, forever).

Now, consider that the system was, instead, using the epidemic-
equivalent of the smaller coterie, C1 (quorums with more
than 65% of processes). In the previous situation, the EQS
would then determine that neither x nor y would ever obtain
more than 65% votes from the missing processes. Hence, the
tied indecision would no longer hold. Instead of halting, the
EQS can safely conclude that the current election is inde-
cisive and start a new election. Possibly, a different vote
distribution of the new election would then decide one of
the values.

The example above exposes an inherent trade-off of EQSs
that is not present in CQSs. On the one hand, larger ECs
leverage availability by increasing the probability of decid-
ing in a single election. On the other hand, smaller ECs
contribute to a higher availability by preventing tied inde-
cisions (thus repeating indecisive elections). To the best of
our knowledge, the previous trade-off is neither documented
nor studied in literature. Precisely determining the total
availability that results from both vectors is a non trivial
question that remains open.

5. OPTIMAL CLASSICAL COTERIES DO
NOT NECESSARILY PRODUCE OPTIMAL
EPIDEMIC COTERIES

One might be tempted to believe that the epidemic-equivalent
of the optimal classical coterie under a given system model
is also the optimal EC. This section contradicts such an hy-
pothesis with a simple combinatorial exercise. We analyze a
system of five processes, p1, p2, p3, p4 and p5, all in a single
partition, with a uniform process failure probability f < 0.5.
It is well known that the optimal classical coterie in this case
is the majority coterie [11].

Let us now try to determine the availability of the epidemic-
equivalent of the classical majority coterie, EMaj ; i.e. the
probability that an EQS using EMaj eventually decides. At
each election, an EQS using EMaj in a single partition model
with n correct processes will either (a) decide a value, with
probability decEMaj (n); (b) determine that the current elec-
tion is indecisive and start a new one, with probability repE(n);
or (c) halt. The values of decEMaj (n) and repEMaj (n) may be
obtained by simple combinatorics, depending on the number
of proposed values. Figure 2 presents such probabilities for
EMaj , for 3, 4 and 5 values proposed.4

Therefore, for each n = 1..5, the probability of an eventual
decision corresponds to the probability of any finite (possi-
bly empty) sequence of indecisive elections, followed by one
decisive election. Such a probability is the sum of a geomet-
ric series, given by:

4We omit the cases of 0, 1 and 2 values proposed, where
both EMaj and EPlur behave identically.

0
 0
 0
 0,1111
 0,4815
 1


0
 0
 0
 0
 0
 0


0
 0
 0
 0,1111
 0,3333
 0,6296


0
 0
 0
 0
 0
 0,3704


0
 1
 2
 3
 4
 5


dec

Plur


(n)

rep


Plur

(n)


dec

Maj


(n)


rep
Maj
(n)


n=


0
 0
 0
 0,0625
 0,3906
 1


0
 0
 0
 0
 0
 0


0
 0
 0
 0,0625
 0,2031
 0,4141


0
 0
 0
 0
 0,0938
 0,5859


0
 1
 2
 3
 4
 5


dec
Plur
(n)

rep


Plur

(n)


dec
Maj
(n)


rep
Maj
(n)


n=


0
 0
 0
 0,04
 0,328
 1


0
 0
 0
 0
 0
 0


0
 0
 0
 0,04
 0,136
 0,2896


0
 0
 0
 0
 0,192
 0,7104


0
 1
 2
 3
 4
 5


dec

Plur


(n)


rep
Plur
(n)


dec
Maj
(n)


rep

Maj


(n)


Plurality (3 proposals)


Majority (3 proposals)


Plurality (4 proposals)


Majority (4 proposals)


Plurality (5 proposals)


Majority (5 proposals)


Figure 2: Values of dec(n) and rep(n) for EMaj and
EPlur in a system with five processes. We consider
the cases where 3, 4 and 5 values are proposed; we
omit the cases of 0, 1 and 2 values proposed, since
both EMaj and EPlur behave identically in such cases.

decEMaj (n)

∞∑
i=0

(repEMaj (n))i =
decEMaj (n)

1− repEMaj (n)
.

Since the probability of having exactly n correct processes
(out of five) is (5n)(1 − f)n f (5−n), then the availability of
EMaj is given by:

5∑
n=0

(
5
n

)
(1− f)n f (5−n)decEMaj (n)

1− repEMaj (n)
(1)

As an alternative to EMaj , consider the plurality EC, EPlur.
Obtaining the availability of an EQS running EPlur is sim-
pler than for EMaj , since indecisive elections never occur
in EPlur (as repEP lur (n) is always null). In other words,
EPlur either decides in the first election or halts. Again, by
simple combinatorics, we present decEP lur (n) in Figure 2.

Finally, we may compare the availability of both ECs, as ob-
tained from (1), which Figure 3 presents. We can see that,
for a system of 5 processes, EPlur always achieves a higher
availability (for 0 ≤ f < 0.5). Hence, EMaj is not the op-
timal EC in a single partition model. This evidence raises,
of course, the question of whether EPlur is the optimal epi-
demic coterie or not; not only in the single partition model,
but also in other models.

6. EQSS MAY OUTPERFORM CQSS ALSO
IN PARTITION-FREE SETTINGS

EQSs have been proposed as a solution for highly available
agreement in frequently partitioned environments such as
mobile networks. However, a careful look at EQSs shows
that, under certain circumstances, EQSs are also able to
decide faster than CQSs. Most importantly, such circum-
stances include also partition-free settings such as fixed net-
works.



0


0,1


0,2


0,3


0,4


0,5


0,6


0,7


0,8


0,9


1


0
 0,05
 0,1
 0,15
 0,2
 0,25
 0,3
 0,35
 0,4
 0,45
 0,5


Failure Probability (f)


A

v
a


i
l
a

b


i
l
i

t
y


 Plurality (3 proposals)


Majority (3 proposals)


Plurality (4 proposals)


Majority (4 proposals)


Plurality (5 proposals)


Majority (5 proposals)


Legend


Figure 3: Availability of EMaj and EPlur in a system with five processes.

Consider an EQS using the epidemic majority coterie and a
CQS using the classical majority coterie. Further, assume a
situation of no contention (i.e. a single value is proposed)
where a majority of processes is accessible. In an EQS, the
process proposing the single value will have round of con-
tacts with the quorum processes. After such a single round,
the proposer will know that a quorum has voted for the
value and will, thus, decide the value. In contrast, the CQS
requires a number of rounds equal to the number of phases
of the corresponding vote obtention protocol (for instance,
two with 2PC).

The above argument suggests that the scope of EQSs is
wider than the domain of mobile networks, and therefore one
should also consider employing EQSs in strongly-connected
networks. Provided that the probability of contention is
low, as happens with many distributed systems that resort
to quorum systems (e.g. write sharing is rare in replicated
file systems [10]), EQSs are a faster alternative than CQSs
in such networks.

Should contention be sufficiently frequent, then the possibil-
ity of tied indecisions can be too high as a penalty, and the
choice should return to CQSs.

7. CONCLUDING REMARKS
Although recent work has proposed EQSs, they are neither
well defined nor well studied. We have shown evidence of
previously undocumented properties and trade-offs that are
inherent of EQSs and are not observable in their classical
counterpart. We believe our claims call for a deeper analysis
of this promising field of distributed computing and, in par-
ticular, mobile computing. Addressing the open questions
that our discussion exposes is a first step in that direction.
Namely, (1) under which conditions are EQSs effectively ad-
vantageous over CQSs; and (2) which are the optimal ECs.

8. ACKNOWLEDGMENTS
Part of this work was inspired on very meaningful discus-
sions with Nuno Preguiça and Marc Shapiro. We would like
to thank them for that.

Also, we would like to acknowledge Lúıs Veiga, Nuno Santos,
João Garcia and the anonymous reviewers for their valuable
help with reviewing and improving the paper.

9. REFERENCES
[1] Y. Amir and A. Wool. Evaluating quorum systems

over the internet. In Symposium on Fault-Tolerant
Computing, pages 26–35, 1996.

[2] J. Barreto and P. Ferreira. The availability and
performance of epidemic quorum algorithms.
Technical Report 10/2007, INESC-ID, February 2007.

[3] I.-R. Chen and D.-C. Wang. Analyzing dynamic
voting using petri nets. In SRDS ’96: Proceedings of
the 15th Symposium on Reliable Distributed Systems
(SRDS ’96), page 44, Washington, DC, USA, 1996.
IEEE Computer Society.

[4] D. K. Gifford. Weighted voting for replicated data. In
Proceedings of the Seventh Symposium on Operating
System Principles SOSP 7, pages 150–162, Asilomar
Conference Grounds, Pacific Grove CA, 1979.

[5] J. Holliday, R. Steinke, D. Agrawal, and A. E. Abbadi.
Epidemic algorithms for replicated databases. IEEE
Transactions on Knowledge and Data Engineering,
15(5):1218–1238, 2003.

[6] K. Ingols and I. Keidar. Availability study of dynamic
voting algorithms. In ICDCS ’01: Proceedings of the
The 21st International Conference on Distributed
Computing Systems, page 247, Washington, DC, USA,
2001. IEEE Computer Society.

[7] S. Jajodia and D. Mutchler. Dynamic voting
algorithms for maintaining the consistency of a
replicated database. ACM Trans. Database Syst.,
15(2):230–280, 1990.

[8] F. P. Junqueira and K. Marzullo. Coterie availability
in sites. In P. Fraigniaud, editor, 19th International
Symposium on Distributed Computing (DISC), volume
3724 of Lecture Notes in Computer Science, pages
3–17. Springer, 2005.

[9] P. Keleher. Decentralized replicated-object protocols.
In Proc. of the 18th Annual ACM Symp. on Principles
of Distributed Computing (PODC’99), 1999.

[10] E. Levy and A. Silberschatz. Distributed file systems:
Concepts and examples. ACM Computing Surveys,
22(4):321–374, Dec. 1990.

[11] D. Peleg and A. Wool. The availability of quorum
systems. Information and Computation,
123(2):210–223, 1995.


