
Service and Resource Discovery in Cycle-Sharing Environments

with a Utility Algebra

João Nuno Silva Paulo Ferreira Luı́s Veiga

INESC-ID / Instituto Superior Técnico - Technical University of Lisbon

Rua Alves Redol No 9, 1000 Lisboa, Portugal

Email: {joao.n.silva, paulo.ferreira, luis.veiga}@inesc-id.pt

Abstract—The Internet has witnessed a steady and
widespread increase in available idle computing cycles and
computing resources in general. Such available cycles simul-
taneously allow and foster the increase in development of
existing and new computationally demanding applications,
driven by algorithm complexity, intensive data processing, or
both. Available cycles may be harvested from several scenarios,
ranging from college or office LANs, cluster, grid and utility
or cloud computing infrastructures, to peer-to-peer overlay
networks.

Existing resource discovery protocols have a number of
shortcomings for the existing variety of cycle sharing scenarios.
They either i) were designed to return only a binary answer
stating whether a remote computer fulfills the requirements, ii)
rely on centralized schedulers (or coherently replicated) that
are impractical in certain environments such as peer-to-peer
computing, iii) they are not extensible as it is impossible to
define new resources to be discovered and evaluated or new
ways to evaluate them.

In this paper we present a novel, extensible, expressive,
and flexible requirement specification algebra and resource
discovery middleware. Besides standard resources (CPU, mem-
ory, network bandwidth,. . .), application developers may define
new resource requirements and new ways to evaluate them.
Application programmers can write complex requirements
(that evaluate several resources) using fuzzy logic operators.
Each resource evaluation (either standard or specially coded)
returns a value between 0.0 and 1.0 stating the capacity to
(partially) fulfill the requirement, considering client-specific
utility depreciation (i.e., partial-utility, a downgraded measure
of how the user assesses the available resources) and policies for
combined utility evaluation. By comparing the values obtained
from the various hosts, it is possible to precisely know which
ones best fulfill each client’s needs, regarding a set of required
resources.

I. INTRODUCTION

Currently, there is increasingly greater offer of computing

cycles and computing resources in general, whether paid

or free. There is a myriad of alternative approaches and

technologies encompassing: computing clusters (possibly

virtualized), idle time of computers in office or college

LANs, academic and scientific institutional grids creating

virtual organizations with coordinated scheduling, utility

and cloud computing infrastructures, distributed computing

on opportunistic or desktop grids, and peer-to-peer (fully

decentralized or federated) cycle-sharing topologies. At the

same time, and also motivated by that, there are more

and more applications designed to take advantage of such

available resources.

Regardless of the underlying cycle-providing infrastruc-

ture and the applications, resource discovery (e.g., CPU,

memory, bandwidth, specific hardware installed) is a key

enabling mechanism. It serves a double purpose of enabling

application execution as well as driving overall system

usefulness. Service discovery, viewed broadly, may be con-

sidered as a higher-level abstraction of resource discovery

where resources also include: available services and installed

applications at the host. Discovery should also be driven by

other criteria regarding software such as versions, packages,

libraries, licences, etc.

Today, there are many systems supporting the discovery

of resources; e.g., grid infrastructure schedulers [1], [2],

[3], resource monitoring systems [4] with possible resource

aggregation [5], [6], [7], service discovery protocols [8], [9],

and web service discovery [10]. These protocols and systems

have a number of shortcomings for the wide variety of

present cycle sharing scenarios. They either i) were designed

to return only a binary answer stating whether a remote

computer fulfills the requirements, ii) rely on centralized

schedulers (or coherently replicated) that are impractical in

certain environments such as peer-to-peer computing, iii)

they are not extensible as it is impossible to define new

types of resources to be discovered and evaluated, or iv)

they are inflexible in the sense that users and administrators

are unable to set alternative ways to evaluate and assess

available resources.

Therefore, we designed a middleware platform (STARC)

to make resource discovery more adaptive via extensibil-

ity (ability to incorporate new resources) and increased

flexibility (expressiveness in requirement description, utility

function depreciation on partial fulfillment, and employing

fuzzy-logic to combine multiple requirements). STARC is

able to interface with different network topologies e.g.,

LAN, peer-to-peer (P2P). STARC extensibility stems not

only from allowing the evaluation of most usual resources

(e.g., CPU speed and number of cores, memory) but also

from the dynamic inclusion of new characteristics (presence

of specific applications, services, libraries, licenses or hard-

ware) to be evaluated.

Regarding flexibility, STARC uses XML files to describe

application requirements stating, with logic operators, the

relation between the several resource characteristics that are

relevant, with associated value ranges, and utility depreci-

ations in the case of only partial fulfillment being possible

(i.e., sets of resource availability ranges and associated utility

depreciation or partial-utility). Hosts may return information

ranging from no availability (0.0), to requirements fully

met (1.0). If requirements are only partially met, a value

between 0.0 and 1.0 is returned (partial-utility), taking into

account the partial fulfillment ranges and associated utility

depreciations (not necessarily strict linear mappings), as well

as evaluation policies provided by the client. Utility depreci-

ations are also applicable to individual resource alternatives

not enclosed within ranges (e.g., OS family).

In the next section we present some available systems

that allow the evaluation of remote computer resources,

comparing their shortcoming with our solution. In Sec-

tion III we present STARC architecture, components, and

resource discovery protocol employing a utility algebra that

aggregates the utility of each individual resource included

in a resource discovery request. In Sections IV and V we

describe STARC implementation and evaluation. Section VI

closes the paper with conclusions and future work.

II. RELATED WORK

Currently, there are a number of systems that allow the

discovery of resources in network-connected computers.

Such systems fall into the following categories: cycle shar-

ing systems, resource management in grid infra-structures,

service discovery protocols, or utility-based scheduling. In

this section we describe these systems and present their

limitations regarding the intended flexibility, expressiveness

and extensibility.

A. Cycle sharing systems

Currently available cycle sharing systems allow the de-

velopment of parallel applications that execute in remote

computers. Projects like BOINC [11] provide a centralized

infrastructure for code distribution and result gathering,

while work in [12] and CCOF [13] provide a truly P2P

access to computing cycles available remotely, employing

advertisement propagation, expanding ring search, and ren-

dezvous supernodes.

In either set of systems the processing power or other rel-

evant resources are not taken into consideration. In projects

such as BOINC or CCOF, only the processor state is relevant

when selecting the remote host that will execute the code.

This solution is easy to implement, fair to the owner of

the remote computer, but may slow the overall application,

while being restrictive by not considering other resources

and partial fulfillment of the requested resources.

B. Grid Resource Management

In order to optimize the use of grid resources it is

necessary to choose the hosts that best answer to the

resource requirements of applications. The work described

in [14] offers a study on the performance and scalability

of most widely deployed approaches to resource monitoring

in existing grid middleware (MDS, R-GMA and Hawkeye).

They are found to offer similar functionality and perfor-

mance with good scaling behavior w.r.t. the number of

clients making simultaneous requests to the system. Next,

we describe some important features of resource discovery in

Grid infrastructures and their limitations w.r.t. our proposal.

MDS4 [5] describes a Resource Aggregator Framework that

could allow implementations to calculate combined utility

of a set of resources. To the best of our knowledge, we have

found none that implements the utility algebra we propose

in this paper and described in Section III.

Both Condor [15], Condor-G [3] and Legion [16] pro-

vide mechanisms to state what requirements must be meet

in order to execute efficiently some code. Legion uses

Collections [1]: repositories of information describing the

resources of the system, that are queried to find the host

having the required resources. Collection queries are built

with the usual relational and logical operators. Condor,

Condor-G and Hawkeye use ClassAd [2], [3], [7] objects

in order to describe computing nodes’ resources (providers)

and define requirements and characteristics of programs

(customers). ClassAd is a dictionary where each attribute

has a corresponding expression. These attributes describe

the owner of the ClassAd. Matchmaking of requirements and

resources is accomplished using customers’ and providers’

ClassAds. The rank attribute allows ordering customers and

providers with matching attributes. Such systems allow the

description of application requirements and the discovery of

a computer that supports its efficient execution. However,

if a host does not completely satisfies a requirement, it is

simply considered as not eligible. Furthermore, aggregation

of several ClassAd with configurable weights by users is not

available.

Current Globus GRAM[17] implementations, as described

in [18], suffer from the same problems: usually, a fixed

infrastructure is needed to collect and monitor resource

information. Although this information may be replicated for

higher reliability and throughput, this is often done resorting

to additional institutional servers, frequently co-located. The

set of resources to monitor, evaluate, and aggregate, although

configurable, is pre-determined within a virtual organization.

This renders Grid Resource Management systems inadequate

to dynamic environments, where there is no centralized in-

frastructure and the resources to evaluate are highly variable.

In the work described in [19], clients are able to se-

lect hosts based on user-provided ranking expressions, in

order to evaluate resources considering peak and off-peak

periods, sustained availability over a period of time, time

of day. In [20], an adaptive resource broker estimates job

completion time based on periodically sampling available

resources (CPU) in order to trigger job migration. However,

both systems are designed to speedup execution and trigger

job migration, bearing no information on how multiple

resource requirements (besides CPU) and their partial ful-

fillment could be described and evaluated. Furthermore, in

the scenario targeted by STARC (embarrassingly parallel

applications), tasks can be made much smaller and job

migration becomes almost a non-requirement.

C. Service Discovery Protocols

Service discovery protocols, such as SSDP [8] and

SLP [9], allow a client computer to search and discover other

computers that are service providers. These protocols allow

a service provider to advertise its presence. In this advertise-

ment the service provider sends a description of the exported

service. A client receiving such a message compares the

service description with the desired service requirement. If

the requirements match the service description, the client

can start using the service. The discovery of the services

can also be initiated by the client, by broadcasting a message

with the requirements the service provider must comply to.

Every service provider that has a service that matches the

requirements answers with its identification.

SLP [9] also allows the existence of Directory Agents,

central servers that are contacted by the client when looking

for services and by the Service Providers to publicize its

services. Web service discovery [10] can be employed in

distributed computing scenarios to find locations where

remote functionality may be executed. Even if it is possible

to find devices and hosts that have a certain service, it is

not possible to easily evaluate the available resources given

that these protocols were designed to ease the discovery

(i.e., mere presence) of services. The requirements are tested

against the static characteristics of the service, not allow-

ing the evaluation of available resources at the computer.

Whenever several versions of the same service could be

used by the client, these protocols still do not allow the

association of utility depreciations to outdated versions (i.e.,

accepting some outdated versions while preferring current

one), therefore being inflexible.

D. Utility-based Scheduling

There are systems that perform scheduling based on utility

functions [21], [22], [23], [24] aiming at maximizing overall

system utility or usefulness. However, these solutions suffer

from a number of drawbacks. They assume there is a

coordinator or scheduler node that receives and processes all

resource discovery requests and therefore is able to employ

complex pricing models that globally optimize resource

usage as well as maximize user utility. The way they

incorporate utility functions is rather inflexible as they either:

i) consider only complete requirement fulfillment and award

it a utility (possibly weighted), or ii) they assume a nearly

constant elasticity model where the lack of availability of

one resource can be supplanted by a surplus of others

for equal utility (clearly a system-centric approach and not

user-driven), or iii) provide no support for hints regarding

resource or service adaptation in case of partially unfulfilled

requirements.

III. SERVICE AND RESOURCE DISCOVERY

Applications need to discover, evaluate and select the

resources present and available in remote computers as well

as services and software provided by them. This is achieved

via a middleware platform (STARC), an assemblage of com-

ponents (STARC daemons), that execute both in clients and

in resource providers, all regarded as peers. Each daemon

handles all requirement evaluation requests: those generated

from a local application and remote requests generated

by other remote daemons. The architecture of STARC is

presented in Fig. 1 and is described briefly next.

To use STARC, an application, must provide to the local

STARC daemon a XML Requirement File containing a

logical description of the hardware and software require-

ments and alternatives (Step 1 in Fig. 1). The STARC

daemon reads the requirements and executes the relevant

Environment Probing Classes (Step 2) in order to know

how the resources fulfill the requirements. The logical de-

scriptions are evaluated against the values returned by the

Environment Probing Classes according to specified partial-

utility functions and combined utility evaluation policies

defined by a utility algebra (more details in Section III-B2).

After local resource evaluation, if the request was origi-

nated from a local application, the STARC daemon contacts

the remote daemons (Steps 3) by means of the Commu-

nication component. Each contacted daemon evaluates the

requirements (Step 4) and returns the resulting value (Step

5). The Remote Host Discovery module finds hosts that

have a STARC daemon running. This component abstracts

the middleware from different network topologies. It inter-

faces with the rest of the middleware uniquely by providing

for each request a list of available hosts. These hosts are

later contacted by the Communication component. Further

details on remote host discovery when addressing different

network topologies (e.g., LAN, coordinator/scheduler-based

grids or virtual organizations, peer-to-peer overlays) are

addressed in Section IV.

A. Requirement Specification

In order to use STARC, the user or programmer writes

a XML file stating application requirements and feeds it to

a locally running STARC daemon by invocation of a single

method. The XML file defining application requirements has

the syntax presented in Fig. 2. These requirements can be

physical resources (e.g., available memory, processor speed,

STARC Daemon

Evaluate

Local Host
(Client)

STARC Daemon

Remote Evaluation

Remote Host
(resource provider)

.

Memory

Environment
probbing

class

Disk

Environment
probbing

class

Disk

Environment
probbing

class

Memory

Environment
probbing

class

Comunication

Remote Host
Discovery

Comunication

Application
6

1

1 3

4

5

2

Remote Host
Discovery

XML
Requirement

File

Requirement
Evaluator

Requirement
Evaluator

Figure 1. STARC Middleware Architecture

<!ELEMENT requirement (resource | and | or | not)>

<!ELEMENT and (requirement+)>

<!ELEMENT or (requirement+)>

<!ELEMENT not (requirement)>

<!ELEMENT resource (config+)>

<!ELEMENT config (#PCDATA)>

<!ATTLIST resource name CDATA #REQUIRED>

<!ATTLIST requirement policy (userclass | priority|

strict | balanced|elastic)

"userclass">

<!ATTLIST requirement weight CDATA "1.0">

Figure 2. XML requirement DTD

GPU installed), installed software (e.g., certain operating

systems, virtual machines, libraries, helping applications) or

availability of specific services (e.g., logging, checkpointing,

specific web services). On completion of discovery, the

application will receive a list identifying available hosts and

how fit they are to fulfill those requirements.

An example requirement is presented in Fig. 3 and will be

used as a prototypical example hereafter. A requirement

can refer a simple resource (CPU in Fig. 3) or it

can be a complex composition of other requirements

using logical operators. The composition of requirements

is accomplished by using usual logical operators (and, or,

not) whose evaluation will be described later in the Section.

In order to precisely define a required resource, it is

necessary to state its name and, if necessary, the ranges of

resource values and associated utility depreciation, in the

config element. This config element (e.g. proces-

sorCores, processorSpeed, version in Fig. 3) will

be used during resource evaluation. From this expression it

is possible to know whether the computer is adequate.

Using the prescribed syntax it is possible to write complex

requirements with the conjunction or disjunction of the

characteristics of the resources. For instance, it is possible

to state that a program needs a certain number of processor

cores, with specified speed, and either one of two libraries,

as illustrated in Fig. 3. In this example, we want to know if

a certain computer has an ideal configuration of at least 16

available processor cores preferably with speed of at least

3000 MHz, and has either the NumPy (an updated version)

or the PyGPU library installed. In this case, two versions

of the application can be uploaded to hosts, one using the

NumPy library and the other using PyGPU.

To state this information we use the or and the and

logical operators and three different resources. Inside the

CPU resource element we state the required configuration

for processorCores and processorSpeed (an im-

plicit conjunction): we use the range, minnumber XML

elements to specify that information.

B. Utility Algebra

In addition to specifying requirements, XML files allow

users to employ a utility algebra, described next, comprised

of: i) ranges of resource values with associated client-

specific utility depreciations (partial-utility), ii) alternative

resource options with associated utility depreciation, and iii)

policies for combined satisfaction evaluation.

1) User-defined Partial-Utility Criteria: If a host can

completely fulfill the requirement, it returns the highest

possible value (i.e., 1.0 which is made explicit in the XML

files but is assumed if a range has no utility defined), it

surely is among those that best fit the requirement. However,

this kind of binary answer to the evaluation of requirements

is rather inflexible, therefore a host that cannot fulfill a re-

quirement completely is not necessarily considered as having

utility 0.0. As it returns information (e.g., a numerical value)

stating its partial capacity to meet the requirement, this can

be evaluated against a client-specific utility depreciation.

Such depreciation is supplied in the requirement XML file

provided by the client, stating how (un-)willing the client is

to accept a lower amount or quality of the required resources.

Thus, regarding the prototypical example, the same given

host CPU configuration (processor cores and speed) and the

same CPU evaluation code will produce different levels of

1 <requirement policy="strict"> <and>

2 <requirement> <resource name="CPU" >

3 <config> <processorCores>

4 <range>

5 <minnumber>16</minnumber>

6 <util>1.0</util>

7 </range>

8 <range>

9 <minnumber>10</minnumber>

10 <util>0.5</util>

11 </range>

12 <range>

13 <minnumber>4</minnumber>

14 <util>0</util>

15 </range>

16 </processorCores> </config>

17 <config> <processorSpeed>

18 <range>

19 <minnumber>3000</minnumber>

20 <util>1.0</util>

21 </range>

22 <range>

23 <minnumber>2600</minnumber>

24 <util>0.5</util>

25 </range>

26 <range>

27 <minnumber>2400</minnumber>

28 <util>0</util>

29 </range>

30 </processorSpeed> </config>

31 </resource> </requirement>

32 <requirement policy="strict"> <and>

33 <requirement> <or>

34 <requirement> <resource name="NumPy">

35 <config> <version>

36 <range>

37 <minnumber>4</minnumber>

38 <util>1.0</util>

39 </range>

40 <range>

41 <minnumber>3/minnumber>

42 <util>0.5</util>

43 </range>

44 </version> </config>

45 </resource> </requirement>

46 <requirement>

47 <resource name="PyGPU"> </resource>

48 </requirement>

49 </or> </requirement>

50 </and> </requirement>

51 </and> </requirement>

Figure 3. Prototypical example of XML requirements description, including: i) nonlinear depreciation of utility values in processorCores and version
number for partial fulfillment ranges, and ii) the combined utility evaluation policy selected (strict) described in detail in Section III-B

partial fulfillment w.r.t. resource availability (partial-utility

values), according to the specifics of each client’s request.

Moreover, XML requirement files issued by clients contain

additional information specifying alternatives and associated

utility depreciation, that can be used to drive resource

and service adaptation at contributing hosts. This way, the

overall system is rendered more flexible and assurance of

requirement satisfaction is improved.

Furthermore, as illustrated in the example in Fig. 4,

users can also valuate the utility depreciation (i.e., partial-

utility) of the individual alternatives available (resources,

applications, services) to the same requirement (e.g., operat-

ing system family, OSFamily) to express their preference

in a flexible way. In the example, an hypothetical non-

institutional user (e.g., one using some kind of open cycle-

sharing facility) can specify the requirements of a movie

rendering job by stating useful CPU configurations (number

of cores and speed), installed operating system (e.g., accord-

ing to his acquaintance or known application performance

on that platform), and both w.r.t. rendering tool and version

employed (Blender or POVRay).

The example of Fig. 4 portrays a situation where the user

is non-registered and non-paying. Therefore, the combined

evaluation policy employed is elastic (more details later in

the Section). The user is only allowed to inform the system

of the required resources and the perceived depreciation

(partial-utility) of individual options (e.g., operating system,

render application), and variations within accepted ranges.

These include render application version, minimum number

of cores required for the job to complete in useful time span,

and number of cores above which the user has not a keen

interest in. As mentioned earlier, expressing partial-utility

using ranges allows non-linear depreciation.

2) Policies for Combined Satisfaction Evaluation: Natu-

rally, given a XML requirement file with a set of resource

and service requirements, it is necessary to select the host(s)

best fit for it. This must take into account not only the

(partial-)utility w.r.t. each requirement but also an evaluation

of combined satisfaction regarding the set of requirements as

a whole, i.e. a global (possibly weighted) measure of utility

resulting from aggregating each set of (possibly adapted)

resources proposed by hosts.

As discussed earlier in Section II, resource management

and job scheduling in grids do not consider partial re-

quirement satisfaction and employ complex utility functions

to optimize scheduling within a virtual organization, i.e.,

considering system utility based on budgets and deadlines.

With STARC, we propose a utility algebra that takes user-

perceived values of partial-utility into account in a flexible

and expressive manner without resorting to complex tailored

economic models that often also assume only elasticity of

substitution. The evaluation of these logical expressions is

accomplished resorting to the following operators: and,

or and not. The or operator always returns the largest

operand, the resource alternative providing the highest util-

ity. With the and operator, the user wants all requirements

to be met, so the result of this operator is an aggregate value

of the combined satisfaction for all requirements offered by

a host, subject to a policy (described next). The operator

not allows a user to specifically value a resource negatively.

1 <requirement policy="elastic"> <and>

2 <requirement> <resource name="CPU">

3 <config> <processorCores>

4 <range>

5 <minnumber>4</minnumber>

6 <util>1.0</util>

7 </range>

8 <range>

9 <minnumber>2</minnumber>

10 <util>0.25</util>

11 </range>

12 </processorCores> </config>

13 <config> <processorSpeed>

14 <range>

15 <minnumber>3000</minnumber>

16 <util>1.0</util>

17 </range>

18 <range>

19 <minnumber>2500</minnumber>

20 <util>0.5</util>

21 </range>

22 <range>

23 <minnumber>1000</minnumber>

24 <util>0</util>

25 </range>

26 </processorSpeed> </config>

27 </resource> </requirement>

28 <requirement> <resource name="OS">

29 <config> <OSFamily>

30 <option>

31 <value> Linux </value>

32 <util> 1.0 </util>

33 </option>

34 <option>

35 <value> Windows </value>

36 <util> 0.8 </util>

37 </option>

38 </OSFamily> </config>

39 </resource> </requirement>

40 <requirement> <or>

41 <requirement> <resource name="Blender">

42 <config> <version>

43 <range>

44 <minnumber>2.49</minnumber>

45 <util>1.0</util>

46 </range>

47 <range>

48 <minnumber>2.25/minnumber>

49 <util>0.7</util>

50 </range>

51 </version> </config>

52 </resource> </requirement>

53 <requirement> <resource name="POVRay">

54 <config> <version>

55 <range>

56 <minnumber>3.6</minnumber>

57 <util>0.8</util>

58 </range>

59 <range>

60 <minnumber>3.5</minnumber>

61 <util>0.5</util>

62 </range>

63 </version> </config>

64 </resource> </requirement>

65 </or> </requirement>

66 </and> </requirement>

Figure 4. Extended prototypical example of XML requirements description, including: i) nonlinear depreciation of utility values in processorCores and
processorSpeed number for partial fulfillment ranges, ii) utility depreciation associated with individual alternative options (OSFamily), iii) combination of
both (renderer application and utilities), and iv) combined utility evaluation policy selected (elastic)

This may happen when a user wants that a specific undesired

resource alternative may actually contribute negatively to the

combined utility, in a multiple requirement request.

In the same manner as the Environment Probing Classes

return values between 0.0 and 1.0, these logical operators

return values in the same range, indicating how capable a

host is to satisfy the requirements. Using these operators

and comparing the values returned from the evaluation of a

requirement on different computers, it is possible to find the

one(s) more capable: the one(s) with the highest requirement

evaluation value(s).

STARC allows users to select how combined requirements

(operator and), alternatives (operator or), and disapproval

(operator not) are evaluated according to a number of

different policies described next (priority, strict,

balanced, elastic, and userclass as a default value

mapped to one of the others as decided by the system). Each

policy is inspired by a specific scenario and targets a class of

intended users (summarized in Table I). A policy embodies

a specific aim or goal on how to engage available resources

to fulfill resource discovery requirements. This aim is imple-

mented in the way aggregate utilities are calculated in order

to evaluate how a set of available resources satisfies a given

request (i.e., a numeric measure of combined satisfaction).

and (A, B) = min{A, B}
or(A, B) = max{A, B}

not(A) = (1 - A)

Figure 5. Zadeh Logical operators

Nonetheless, a daemon running at a host may override the

selected policies offering different quality-of-service con-

sidering user information (e.g., user class, rank, reputation)

while notifying the requesting user. Each of the policies is

described in the reminder of the Section, by increasing order

of flexibility, in essence, user willingness to accept lack of

one required resource in exchange for increased availability

of others.

• Priority: This policy enforces guarantees of resource

selection according to user-supplied priorities. It

aims at satisfying lexicographic preferences that

are not representable by utility functions based on

formulæ. This happens when a user wants to prioritize

alternatives to resource requirements and is not willing

to accept hosts where one or more of the required

resources are absent (employing operator and). This

is the most rigid of evaluation policies and should only

be used in service-critical scenarios. Requirements

Table I
COMBINED EVALUATION POLICIES OF AGGREGATE UTILITY IN STARC

Policy Intended Calculation AND OR NOT

users (aggregation) (adaptation) (disapproval)

priority administrators lexicographic must follow reject

all occur priority list and fail

strict SLA Zadeh min max complement

users fuzzy logic (1-x)

balanced registered geometric product max inverse

members average (1/x)

elastic best-effort arithmetic sum max opposite

average (averaged) (-x)

combined with operator or (in this case representing

a simple alternative) will be tried in sequence by order

of appearance (priority) in the XML file. Operator not

results in the rejection of any host where the resource

resides (normally, to reject a certain architecture or

software considered unfit or unsafe).

• Strict: This policy aims at minimizing dissatisfaction

on every resource requirement. Thus, at each host, for

a given set of requirements, when complete fulfilment

is not possible, each requirement will be assessed with

its partial utility. Then, the combined evaluation will

result in the lowest of the combined operands. This

follows the fuzzy logic Zadeh [25] depicted in Fig. 5.

Thus, operator and returns the minimum partial utility

in a set of requirements and operator or returns the

maximum. Operator not returns the complementary

utility (1-x), typically as a means to lower combined

utility (since and always returns the minimum value).

A common scenario for this policy would be the case

of users with service-level agreements that, even when

a single one is partially unmet, impose penalties in

the aggregate utility (once again due to and returning

the minimum). This is the background scenario for the

requirement specification depicted in Fig. 3.

• Balanced: This policy aims at selecting the most

balanced host, that is, the host whose combination of

available resources satisfies user requests in a more

favorable and balanced manner. This policy is based

on geometric averages. Operator and will return the

product of all partial utilities and operator not its

inverse. A common scenario for this policy would

be the case of registered users that, when a resource

is partially unmet, this will impose a proportional

penalty in the aggregate utility (once again due to

and returning the product). This way, if a resource

requirement is only satisfied in half, this will bring the

overall combined utility also to half. With this policy,

hosts that can fully satisfy certain requirements but can

only produce a very poor alternative in others, will not

be so highly considered. Hosts that partially satisfy all

requirements at a good level will be preferred instead.

Of course, hosts with well balanced yet low availability

in most/all resources should still be awarded lower

utility. Typical users will be regular members of a

virtual organization such as in a Grid.

• Elastic: This policy aims at maximizing engagement

of resources by the system, employing an eager-like

approach by assuming full elasticity or resources, that

is, any non-satisfied resource can be compensated by a

good utility in another resource. This is usually not the

case since resources are not interchangeable (e.g., CPU

for memory and vice-versa). Thus, this policy simply

offers a best-effort approach to requirement fulfilling.

Combined evaluation is based then on simple arithmetic

averages. Operator and will return the averaged sum

of all partial utilities and operator not its opposite

(additive inverse). With this approach, the system can

take advantage of any resource because unfulfillment

of a requirement can never bring down the utility value

resulting from a combined requirement evaluation. This

policy may be used for non-registered users in a peer-

to-peer cycle sharing scenario. This is the scenario for

the requirement specification in Fig. 4.

IV. IMPLEMENTATION

STARC is implemented in Python. The Python standard

XML processing library is used to parse the requirement

files and generate an internal representation of the logical

expressions. The Communication module uses the Pyro [26]

remote object invocation library. To simplify our system, the

interaction between any application and its local STARC

daemon is also made by means of a Pyro invocation.

Although we used Python, any other language that supports

dynamic code loading, remote method invocation, and re-

mote code loading could have been used.

In order to easily extend our system we use the reflective

mechanisms and class loading provided by the Python

runtime. The reflective dynamic loading of the Environ-

ment Probing Classes supports the addition of types of

new resources to be evaluated. Any programmer can define

new proprietary, user-specific, or compound resources to be

evaluated, and software or services to be discovered simply

by developing a new Environment Probing Class.

All Environment Probing Classes implement a predefined

interface composed of a constructor with no arguments and

a method called evalResource. This method is invoked

by the Requirement Evaluator and receives as a parameter

the config XML snippet described in Section III-A. The

name of Environment Probing Classes is obtained from the

name element present in the XML (Fig. 2). This name is

used to dynamically load the corresponding module from

disk. When necessary, this class is instantiated and its code

executed. If not present in the remote host, the Resource

Probing Classes can be transferred from the local computer

that initiated the requirement evaluation and executed in a

restricted safe environment, allowing the evaluation of spe-

cific user requirements. If for some reason the Environment

Probing Class associated to a resource can not be executed,

the evaluation of that resource requirement will return 0.0,

meaning the computer does not have the resources to meet

that requirement.

We have developed a set of set of standard Environment

Probing Classes present in every host running STARC

allowing the evaluation of a number of most used resources:

CPU family, cores and frequency, cache size, memory size,

available memory, network link speed available. In the

implementation of these classes we used the WBEM [27]

capabilities provided by Windows and the /proc file sys-

tem [28] in Linux.

Although it is out of the scope of the paper, existing

ontology specifications (e.g., RDF [29], OWL [30]) can be

employed in order to enforce the semantic consistency of

actual classifications and meaning of resource and service

descriptions in large scale deployment scenarios, as well as

describing groups of akin resources and services.

A. Remote Host Discovery

Regarding discovery of remote hosts for resource evalua-

tion, we identify three main network topologies of increasing

scale and membership flexbility/variation: i) clusters and

LAN; ii) grid-based virtual organizations, and iii) peer-to-

peer cycle-sharing desktop grids.

• Cluster/LAN Scenarios: In the LAN implementation,

the Remote Host Discovery module finds remote

computers in the same sub-network. Any other

computer discovery protocols could have been

used (e.g., Jini, UPnP). Each host evaluates the

requirements against its resources and returns the

resulting partial-utility value. These are combined

with host identification in a bounded ordered list by

the local STARC daemon. Most applications need

only pick the first in list or iterate over it for parallel

scheduling.

• Grid Infrastructures: We are currently implementing

a STARC module within the framework of MDS4 [5]

with a set of Resource Providers (namely resorting

to Hawkeye [7] for monitoring node resources and

availability) and integrating the utility algebra in

MDS4 Aggregator Framework (including partial-utility

evaluation and policy enforcement). As mentioned

in the related work section, this approach and

architecture have been previously evaluated and

determined scalable [14]. Therefore, we only need to

ensure that the algebra evaluation does not impose

excessive overhead (more details in the next Section).

A similar approach could be pursued for integration

with R-GMA [6] or other meta-schedulers, such as

Condor-G [3].

• P2P Cycle Sharing: Regarding cycle sharing peer-

to-peer infrastructures [31], the set of hosts made

available to STARC to evaluate should be reduced

and not the entire P2P population as this would

preclude scalability. Therefore, we have integrated

STARC as an additional service on a peer-to-peer

cycle sharing system [32], in order to evaluate only

two complementary sets of hosts: direct neighbors in

routing tables, and those returned by a lower-level

resource discovery mechanism seeking CPU, memory

and bandwidth.

B. Security

STARC middleware has a small code footprint (below 500

KB) and is executed at host nodes within the boundaries of

a virtual machine. Therefore, its access to local resources

(e.g., file system, communication, etc.) can be limited and

configured. This extends to the vast majority of Environment

Probing Classes. If one needs to access the native system

directly, it can be subject to individual configuration and

will not be executed without user’s authorization. Finally,

since STARC only schedules tasks that execute applications

already installed at host nodes, it does not entail additional

security threats than those already inherited from the actual

applications the user has already decided to install.

The dynamic loading of probing classes has two different

usage scenarios. One where the probing classes are stored

Table II
STARC PERFORMANCE COMPARISON (MS).

Approach Local Evaluation

WBEM 36.3

Algebra 38.2

STARC (loopback) 40.1

SNMP (loopback) 110.01

Approach loopback no upload upload

STARC (simple) 40.1 41.0 110.0

SNMP (simple) 110.1 320.7

STARC (complex) 795.3 799.0 878.8

SNMP(complex) 165.5 610.7

in a central repository, but managed and created by one

trusted entity. This case is no worst that the use of locally

installed probing classes. In the second scenario, middleware

users create probing classes to be uploaded. In this case,

it is necessary to execute them in a restricted environment,

such as virtual machine, similar to where the scheduled jobs

would be deployed.

In order to guarantee a timely response from the probing

classes and to prevent denial of service attacks, timeouts are

enforced on probing class execution (returning 0.0).

V. EVALUATION

In this section we describe the evaluation of STARC

resorting to qualitative analysis and micro-benchmark per-

formance results. In qualitative terms, STARC provides a

number of advantages w.r.t. related work. It allows a more

expressive, flexible description of resource requirements for

jobs. It encompasses the notions of user-specified ranges of

(non-linear) partial-utility, and provides different policies to

evaluate combined utility for complex requirements (priority,

strict, balanced, elastic). Such policies can be selected by

users or enforced by the system providing different levels of

quality-of-service. Existing systems rely on: i) binary deci-

sion on requirement fulfillment (as service-level agreements)

not considering partial utility, or ii) adopt solely a system-

centric approach by employing complex, predefined (not

user-specified) utility functions in order to optimize request

scheduling based on budget, deadlines, or iii) combination

of both.

Regarding performance, we designed a micro-benchmark

to evaluate the overhead brought to every host when evalu-

ating a XML requirement file. The measurements consider

a LAN setting as a worst-case scenario where the relative

overhead of requirement evaluation w.r.t. communication is

the highest. In order to measure the requirement evaluation

times we used a 3.2 GHz Pentium 4 personal computer with

1 Gb of memory as a resource provider where all resource

evaluations were made. The client computers, where all

remote evaluations were initiated are Apple Ibook with a

800MHz PowerPC processor, 640Mb of memory and the

Linux operating system. All computers were connected by

a 100Mb switched Ethernet network.

The micro-benchmark measurements comprise timing

the evaluation of two sample requirements locally and

at remote hosts: i) a very simple requirement, merely

stating a minimum necessary amount of memory; and ii) a

complex requirement which is a conjunction of 20 simple

requirements. These measurements take into account the

need to initially upload code for Environment Probing

Classes and are then compared to two network protocols for

resource evaluation that serve as yardsticks: i) WBEM [27]

used to measure memory locally available at each host, and

ii) using SNMP [33] programmatically to evaluate resources

at each host using GetRequest and GetBulkRequest

methods. The Local experiments were performed accessing

directly the data source, while the STARC experiments

used the proposed platform. The results are depicted in

Table II.

The results allow to conclude that STARC scales w.r.t.

the size of the requirement files (simple vs. complex) and

regarding local and remote evaluation. Uploading the mem-

ory evaluation code takes only 80 milliseconds. Naturally,

other Environment Probing Classes will take different times

to upload. When evaluating simple requirements, STARC

adds a small overhead to WBEM and performs better that

SNMP. In the case of the complex requirements, using the

SNMP API is better than STARC; however the evaluation

of the logical operators must be explicitly programmed.

Figure 6. Concurrent requirements evaluation overload

To evaluate how STARC behaves under load, we mea-

sured the time to evaluate series of complex requirements

concurrently. These results are shown on Fig. 6.

The graph clearly shows that until about 100 concurrent

evaluations there is no performance degradation. Further-

more, the interleaving of the various processes evaluating

requirement policies leads to a reduction of the average

processing time. This is naturally due to the operating system

being able to better utilize the CPU, by executing some

threads while others wait for I/O due to virtual memory.

From that point onwards (about 100 concurrent evalua-

tions) the scheduling and process swapping costs are grater

than the gains from the interleaving of the parallel execution.

Nonetheless, the middleware maintains scalable behavior

since with 200 concurrent processes performing complex

policy evaluations, there is only an increase of about 10%

on the average requirement evaluation time. To access the

WBEM service a Pyro RPC server was implemented, which

has a limit of 200 active network connections, hence the

maximum value of concurrent policies tested. We can con-

clude that requirement evaluation in STARC scales well

to large numbers of concurrent clients based on the same

conclusions of previous studies [14].

By leveraging a P2P infrastructure [32], STARC can also

scale to large numbers of participating nodes (peers).

VI. CONCLUSIONS

STARC is capable of evaluating and comparing different

resource providers with respect to client specific resource

requirements, considering ranges of partial fulfillment and

utility depreciation. We are able to evaluate a set of standard

resources in different computer architectures: number and

speed of CPU cores, available memory, available disk space,

network speed, among others, according to different client

profiles.

With the proposed utility algebra and corresponding XML

DTD it is possible to define any kind of requirement a

module or a complete application may have and that a

resource provider must satisfy. The use of logic operators

eases the comparison of different hosts. By using these

operators the result of the evaluation returns a numeric

value that clearly states how the requirements are totally or

partially fulfilled. The values returned by all hosts are easily

compared to find the one(s) that best fit the client requests,

w.r.t. all required resources and perceived utility depreciation

(partial-utility), according to a combined evaluation policy.

This way, resource discovery is more effective (and will

result in fewer resource discovery failures) than a simple

matching approach.

The architecture of this system allows its extensibility

by allowing the definition of new types of resources to be

discovered and evaluated. The code to evaluate a resource

can be dynamically installed, without system compilation,

and reused on behalf of many clients.

A. Future Work

We are currently implementing a STARC module to

deploy on MDS4 [5] integrating the utility algebra in MDS4

Aggregator Framework. In the future, we plan to use the

STARC in a scenario with job migration, where it is also

necessary to adapt to situations where available resources

in a resource provider change during job execution. Since

periodically polling all hosts is expensive, a possibility is

to register in the remote hosts the threshold or change rate

above which the client wants to be notified. The middleware

architecture we propose easily allows the implementation of

such alternatives.

Some resources can not be easily quantified, hence we

plan to allow the writing of fuzzy set membership expres-

sions close to natural language (is large, is small, is good,

requires, etc.) to ease the specification of the requirements,

in a similar way as the offloading rules presented by Xiaohui

Gu et al. [34]. It will also be necessary to evaluate how

these expressions and other fuzzy logic operators (Yager or

probability product/sum) are close to the perception a user

has of a computer processing power.

REFERENCES

[1] S. J. Chapin, D. Katramatos, J. Karpovich, A. G. Karpovich,
and A. Grimshaw, “Resource management in Legion,” Future
Generation Computer Systems, vol. 15, no. 5-6, pp. 583–
594, 1999. [Online]. Available: http://www.elsevier.com/gej-
ng/10/19/19/30/21/21/abstract.html

[2] R. Raman, M. Livny, and M. H. Solomon, “Matchmaking:
An extensible framework for distributed resource
management.” Cluster Computing, vol. 2, no. 2,
pp. 129–138, June 1999. [Online]. Available:
http://purl.org/CITIDEL/DBLP/db/journals/cluster/cluster2.html

[3] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke,
“Condor-G: A computation management agent for multi-
institutional grids,” Cluster Computing, vol. 5, no. 3, pp. 237–
246, 2002.

[4] S. Zanikolas and R. Sakellariou, “A taxonomy of grid
monitoring systems,” Future Generation Computer Systems,
vol. 21, no. 1, pp. 163–188, 2005.

[5] J. Schopf, L. Pearlman, N. Miller, C. Kesselman, I. Foster,
M. DArcy, and A. Chervenak, “Monitoring the grid with the
Globus Toolkit MDS4,” in Journal of Physics: Conference
Series, vol. 46, no. 1. Institute of Physics Publishing, 2006,
pp. 521–525.

[6] A. Cooke, A. Gray, L. Ma, W. Nutt, J. Magowan, M. Oevers,
P. Taylor, R. Byrom, L. Field, S. Hicks et al., “R-GMA: An
information integration system for grid monitoring,” Lecture
Notes in Computer Science, pp. 462–481, 2003.

[7] Hawkeye A Monitoring and Management Tool for Distributed
Systems, Condor Team, Computer Sciences Department,
University of Wisconsin-Madison. [Online]. Available:
http://www.cs.wisc.edu/condor/hawkeye

[8] Y. Goland, T. Cai, P. Leach, and Y. Gu, Simple Service
Discovery Protocol/1.0 Operating without an Arbiter, Internet
Engineering Task Force, 1999.

[9] E. Guttman, “Service location protocol: Automatic discovery
of ip network services,” IEEE Internet Computing, vol. 3,
no. 4, pp. 71–80, July 1999.

[10] R. Chinnici, M. Gudgin, J. Moreau, and S. Weerawarana,
“Web services description language (WSDL) version 1.2 part
1: Core language,” World Wide Web Consortium, Working
Draft WD-wsdl12-20030611, 2003.

[11] D. P. Anderson and G. Fedak, “The computational and storage
potential of volunteer computing,” in IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid, May
2006.

[12] R. Mason and W. Kelly, “Peer-to-peer cycle sharing via .net
remoting,” in AusWeb 2003. The Ninth Australian World Wide
Web Conference, 2003.

[13] D. Zhou and V. Lo, “Cluster computing on the fly: Resource
discovery in a cycle sharing peer-to-peer system,” in IEEE
International Symposium on Cluster Computing and the Grid,
2004.

[14] X. Zhang, J. Freschl, and J. Schopf, “Scalability analysis
of three monitoring and information systems: MDS2, R-
GMA, and Hawkeye,” Journal of Parallel and Distributed
Computing, vol. 67, no. 8, pp. 883–902, 2007.

[15] M. Litzkow, M. Livny, and M. Mutka, “Condor - a hunter
of idle workstations,” in Proceedings of the 8th Intl.Conf. of
Distributed Computing Systems. IEEE Computer Society,
June 1988.

[16] A. S. Grimshaw and W. A. Wulf, “Legion - A view
from 50, 000 feet.” in HPDC ’96: Proceedings of
the High Performance Distributed Computing (HPDC
’96). IEEE Computer Society, 1996. [Online]. Available:
http://purl.org/CITIDEL/DBLP/db/conf/hpdc/hpdc1996.html

[17] Resource Management (GRAM), The Globus Alliance. [On-
line]. Available: http://www.globus.org/toolkit/docs/2.4/gram/

[18] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Mar-
tin, W. Smith, and S. Tuecke, “A resource management
architecture for metacomputing systems,” Lecture Notes in
Computer Science, vol. 1459, pp. 62–82, 1998.

[19] E. Huedo, R. Montero, and I. Llorente, “Experiences on
adaptive grid scheduling of parameter sweep applications,”
Parallel, Distributed and Network-Based Processing, 2004.
Proceedings. 12th Euromicro Conference on, pp. 28–33, Feb.
2004.

[20] A. Othman, P. Dew, K. Djemamem, and I. Gourlay, “Adaptive
grid resource brokering,” Cluster Computing, 2003. Proceed-
ings. 2003 IEEE International Conference on, pp. 172–179,
Dec. 2003.

[21] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger, “Eco-
nomic models for resource management and scheduling in
Grid computing,” Concurrency and Computation: Practice
and Experience, vol. 14, no. 13-15, pp. 1507–1542, 2002.

[22] D. Abramson, R. Buyya, and J. Giddy, “A computational
economy for grid computing and its implementation in the
Nimrod-G resource broker,” Future Generation Computer
Systems, vol. 18, no. 8, pp. 1061–1074, 2002.

[23] L. Chunlin and L. Layuan, “QoS based resource scheduling
by computational economy in computational grid,” Informa-
tion Processing Letters, vol. 98, no. 3, pp. 119–126, 2006.

[24] C. Li and L. Li, “Utility-based QoS optimisation strategy for
multi-criteria scheduling on the grid,” Journal of Parallel and
Distributed Computing, vol. 67, no. 2, pp. 142–153, 2007.

[25] L. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3,
pp. 338–353, 1965.

[26] I. de Jong, PYRO - Python remote Objects,
http://pyro.sorceforge.net.

[27] DMTF CIM Operations over HTTP, Distributed
Management Task Force, Inc. [Online]. Available:
http://www.dmtf.org/standards/standard wbem.php

[28] R. Faulkner and R. Gomes, “The process file system and
process model in unix system v,” in USENIX Winter, 1991,
pp. 243–252.

[29] G. Klyne, J. Carroll, and B. McBride, “Resource description
framework (RDF): Concepts and abstract syntax,” W3C rec-
ommendation, vol. 10, 2004.

[30] S. Bechhofer, F. Van Harmelen, J. Hendler, I. Horrocks,
D. McGuinness, P. Patel-Schneider, L. Stein et al., “OWL web
ontology language reference,” W3C recommendation, vol. 10,
pp. 2006–01, 2004.

[31] D. Talia and P. Trunfio, “Toward a Synergy Between P2P and
Grids,” Internet Computing, vol. 7, no. 4, pp. 51–62, 2003.

[32] L. Veiga, R. Rodrigues, and P. Ferreira, “Gigi: An ocean of
gridlets on a ”grid-for-the-masses”,” Cluster Computing and
the Grid, 2007. CCGRID 2007. Seventh IEEE International
Symposium on, pp. 783–788, May 2007.

[33] J. Case, M. Fedor, M. Schoffstall, and J. Davin, RFC 1157:
The Simple Network Management Protocol, Internet Activities
Board, 1990.

[34] X. Gu, A. Messer, and K. N. Ira Greenberg, Dejan Milojicic,
“Adaptive offloading for pervasive computing,” IEEE Perva-
sive Computing Magazine, vol. 3, no. 3, July 2004.

