Operating System Support for Task-Aware
Applications

Joao Garcia and Paulo Ferreira

Distributed Systems Group, INESC ID Lisboa, Portugal
www.gsd.inesc-id.pt

1 Introduction

All widely used operating systems, such as UNIX and Microsoft Windows, base
their user interaction on the manipulation of applications and files. Users wanting
to perform a particular task have to navigate the file system of one or more
devices to find their data and may have to know which applications to use (and
where to find it).

If users were freed from file and application management they would be
allowed to interact with their computers simply by giving commands such as "1
want to write report A”, ”I want to continue drawing component B” or even
”1 want to go back to what I was doing before this phone call”. Better still,
computers should know, based on the users previous activity which task, or at
least which set of tasks, the user is interested in.

Providing a computer with task-awareness requires monitoring the comput-
ing and physical environment and trying to capturing user intent. Developments
in ubiquitous computing and sensing technology have created an opportunity to
move away from user interaction based on the file/application paradigm and in-
troduce task-orientation as an alternative user interaction and data management
paradigm.

The file/application paradigms hampers user activity because:

— Users generally view their work activity as a sequence of tasks

— Users should be provided with an execution context that is adapted to the
task their are performing.

— Disk storage should be a transparent resource and not a binding form of data
organization. For example, in contrast to file systems, computer users are
constantly accessing primary memory but are however completely unaware
of memory management.

To address these issues we have built an operating system component which
lets applications interact with users using a task-centered model. We also show
how this can be applied to a file explorer in order to make it truly task-aware.

2 Support for Task Awareness

We developed an operating system task-awareness module that monitors en-
vironment properties and associates the use people make of their computing

devices (such as accessing files and applications) with their personal work tasks.
It lets users and applications use tasks as first class concepts and aims to signif-
icantly reduce task management actions.

2.1 Relevant Environment Characteristics for Task Awareness

There are both computer and environment characteristics that are important to
identify user task activity:

— Time is a main source of user activity patterns. People are known to do
particular tasks on specific times of the day, week or month.

— Location: The same logic applies to location. There are certain jobs that
people do at their offices while others are performed at home, etc...

— Communication: Knowing with whom a user is communicating and which
device she is using may give away what the user is doing.

— GUI activity: Finally, detecting which application is being used or is access-
ing data also helps detect which task is being performed.

The task-awareness module monitors time, location (which device is being
used) and the user’s computing activity. Currently, communication has to be
explicitly monitored at application level (see for example Fig. 2).

2.2 Architecture

The task-awareness module is composed of: i) an API; ii) a monitor of file system
accesses, and process and GUI activity; iii) a log of file and task activity; iv) a
registry of application callbacks; v) a repository of users’ profiles and tasks.

Applications are provided with an API that allows them to manipulate (cre-
ate, delete and rename) tasks and associate files, applications, processes or ex-
tensions with particular tasks. Applications register callbacks which include a set
of notification criteria. Hence, they are notified when specific folders, processes,
extensions or combinations thereof are accessed.

File system accesses monitoring is based on an Windows Installable File
System (IFS) filter driver [1]. This IFS is inserted in the file system’s stack
(Fig. 1) and intercepts all operating system calls to the file system. It is the
only component that is placed at kernel level. Naturally, only accesses that are
relevant for existing callbacks are reported to the task-awareness module and
then to applications.

File accesses are reported from the IFS to the task-awareness module. The
module logs the access, checks if any application is interested in this particular
access. If that is the case the relevant application is called back.

The task-awareness module maintains a time log of file accesses and task
changes. It also manages the association of files to tasks. Task information is
stored persistently in an XML file. If a user moves tasks and their files to another
device, this file can be moved along with the tasks and updated at that location
taking into account the place in that device’s file system where the tasks where
placed.

Legacy
application

Task-aware
application

Task-aware
File Explorer

Task-awareness ||
user-level module

H
User Level HUIMER 1PN ‘

Kernel Level

other IFS driver

Task-awareness
filter driver

other IFS driver
¥

/o
Manager

‘ Hardware Abstraction Layer |

Fig. 1. Placement of the task-aware components within the Windows operating system

2.3 Task Explorer

The task explorer (Fig. 2) allows users to manage their work tasks and access
their data accordingly. It uses the task-awareness module to manage tasks and
get callbacks regarding file accesses. When it is unclear the user is asked which
task a file belongs to. It is extremely difficult to eliminate user intervention in
task management. The task explorer is a example of how to complement user
activity monitoring with user guidance regarding the meaning of that activity.
The aim of this explorer is that the user gradually does not have to say which
task she is working on and consequently which files and applications she needs.

=) taskoscope
File Task View Tools

SE]

OFF Telephone ‘ Meeting ‘ Messenger
Tasks Files
No Task = og \nates other,
Al Tasks e:\joghnotes work bd
Read\WWrite Email e \jognotes'folder'page html
Web Browsing
Personal Information Manager
Media Playsr
notas

Fig. 2. Screenshot of the task explorer

The task explorer is configurable. It supports: the selection of which drives or
folders to consider as storage location for task data; the association of particular
tasks and applications (for example, whenever a user uses a RSS aggregator she
is performing the task "Reading News”); and the selection of which extensions
to be aware of (in order to exclude for example system and temporary files).

3 Related Work

The most relevant projects to have attempted to center user-computer inter-
action around tasks or activities are Activity-Based Computing (ABC, [2]) and
the Aura project[3, 4]. Aura is geared towards moving a user’s execution environ-
ment when she moves and choosing the best available applications for each file
and/or task. ABC focuses on providing context aware information to doctors in
a hospital setting. Another example is Cogenia [5], a system that provides users
with location and device aware replication.

4 Conclusions & Future Work

Task-awareness simplifies users’ interaction with computing devices. It is pos-
sible to use environment properties to detect which task a user is performing.
Correctly and automatically identifying user tasks opens the door to simplifying
many data management activities such as hoarding, staging and adaptation to
devices.

In the future, we will develop applications that automate the kind of func-
tionality proposed by Cogenia by using the task-awareness module’s learning
abilities to provide data replication in an automated and decentralized way.

Besides the detection of relevant environment characteristics, learning user
activity patterns is important to develop task-awareness. We are developing a
learning component within the task-awareness module that, based on a Bayesian
network that is fed with users’ task access patterns and context information,
predicts which tasks a user is most likely to use in the future.

References

1. Nagar, R.: Windows NT File System Internals: a developer’s guide. O’Reilly (1997)

2. Christensen, H.B., Bardram, J.: Supporting human activities — Exploring activity-
centered computing. In: Fourth International Conference on Ubiquitous Comput-
ing UBICOMP 2002, Goteborg, Sweden, Lecture Notes in Computer Science 2401,
Springer Verlag (2002)

3. Sousa, J.P., Garlan, D.: Aura: An architectural framework for user mobility in
ubiquitous computing environments. In: 3rd IEEE/IFIP Conference on Software
Architecture, Montreal (2002)

4. Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P.: Project Aura: Towards
distraction-free pervasive computing. IEEE Pervasive Computing, special issue on
?Integrated Pervasive Computing Environments” 1(2) (2002) 22-31

5. Rangan, M., Swierk, E., Terry, D.B.: Contextual replication for mobile users. In:
International Conference on Mobile Business (ICMB’05). (2005) 457-463

