
AdaptUbiFlow: Selection and Adaptation in Workflows for Ubiquitous Computing

Frederico Lopes, Thiago Pereira,
Everton Cavalcante, Thais Batista
DIMAp – Federal University of Rio

Grande do Norte
Natal, RN, Brazil

{fred.lopes, evertonranielly,
thiagosilva.inf}@gmail.com,

thais@ufrnet.br

Flavia C. Delicato,
Paulo F. Pires

NCE – Federal University of Rio de
Janeiro

Rio de Janeiro, RJ, Brazil
{fdelicato,

paulo.f.pires}@gmail.com

Paulo Ferreira
INESC-ID – Technical University of

Lisbon
Lisbon, Portugal

paulo.ferreira@inesc-id.pt

Abstract—Ubiquitous environments still suffer from low
availability given that any device may fail and it is hard to
replace a failed element. In this paper we present
AdaptUbiFlow (Adaptive Ubiquitous Workflow), an
OpenCOPI´s element that aims to increase the availability of
an ubiquitous system. When a device fails, AdaptUbiFlow
supports the automatic reconfiguration of the system replacing
the failed device (or service) by an equivalent one; this makes
the system fault-tolerant without the need of any manual
intervention. The replacing of a device/service is chosen taking
into account not only the QoS and QoC (Quality of Context)
provided but also the application’s execution flow to ensure
that the best adaptation option will be chosen. AdaptUbiFlow
evaluation showed encouraging results

Keywords—Ubiquitous computing, platform integration,
context provision middleware, service selection, adaptation,
semantic workflows.

I. INTRODUCTION
The current trend in ubiquitous computing is the

emergence of complex context-aware applications in which
platforms based on heterogeneous networks technologies are
used to provide user-centric applications. The user-centric
perspective means that ubiquitous environments are aware of
user needs and activities and reactively, or even proactively,
satisfy user demands by composing and deploying the
appropriate services and resources [1]. In this scenario,
service is a consistent piece of functionality made available
over the network by a software entity and accessed by others
– customer – software entities [2]. Thus, ubiquitous
applications are built through a process of service
composition, where those services are available from various
service providers. In such scenario, it is common that
different providers offer services with the same functionality.
In such situations, the composition process can consider the
Quality of Service (QoS) and Quality of Context (QoC) to
decide which services are the best ones to be selected to
fulfill the client needs. QoC denotes “any data that describes
the quality of information that is used as context, for
instance, precision, probability of correctness, resolution, up-
to-dateness, etc” [3].

Unlike services which are hosted by high-end servers and
data centers, where service failures are rare, services in a
ubiquitous computing system need to embrace service
failures as the normal case [4]. Thus, there is a need of an

adaptation process to handle failures in order to avoid the
interruption of the execution. Moreover, an adaptation
process can be started in case services with better QoS
become available in the environment or when the QoS of a
service used in a composition degrades. Adaptation process
also can be started in case of user mobility. Consequently, a
ubiquitous platform must consider both requirements (used
to specify the initial composition of services to meet an
application request and the adaptation of existing composite
services) at runtime [5].

The goal of this work is to support automatic service
selection and adaptation in ubiquitous environments to
increase availability, better QoS and deal with user mobility.
To meet this goal, this paper presents AdaptUbiFlow, the
OpenCOPI’s (Open Context Platform Integration) [6, 7]
component to support added-value service selection, service
composition, and adaptation in ubiquitous environments.
OpenCOPI is a platform based on semantic workflows and
SOA (Service Oriented Architecture) that integrates context
provision services and provides an environment that allows
quick and easy context-aware application development. SOA
combined with workflow management are promising
technologies to meet such requirements. SOA refers to
policies, practices, and frameworks that enable application
functionality to be provided and consumed as set of services,
which can be invoked by consumers through service
interface descriptions published by service providers.
Workflow is the automation of a business process in which
tasks and goals are passed from one participant to another
according to a set of procedural rules [8]. Specifically,
workflow describes the order that a set of activities is
attended by various services to complete a given procedure
[9]. Workflows are useful in environments in which several
services provided by different sources are available, where
some of such services have similar functionality. Moreover,
workflows can handle environmental changes at runtime
according to resources availability, service quality, and
context changes. They can specify ways of undoing previous
operations and going back to a legal state from where
another path can be taken to reach the stated goal. This is
essential in ubiquitous environments which are characterized
by uncertainties and faults, and where a set of service
provider are often available to offer multiple ways of
reaching a same goal [8]. AdaptUbiFlow is the OpenCOPI’s
component responsible for the adaptation process in

2011 Ninth IEEE/IFIP International Conference on Embedded and Ubiquitous Computing

978-0-7695-4552-3/11 $26.00 © 2011 IEEE

DOI 10.1109/EUC.2011.12

63

2011 Ninth IEEE/IFIP International Conference on Embedded and Ubiquitous Computing

978-0-7695-4552-3/11 $26.00 © 2011 IEEE

DOI 10.1109/EUC.2011.12

63

2011 IFIP Ninth International Conference on Embedded and Ubiquitous Computing

978-0-7695-4552-3/11 $26.00 © 2011 IEEE

DOI 10.1109/EUC.2011.12

63

ubiquitous environments. As it was previously mentioned,
ubiquitous computing environments are highly susceptible to
changes, several of them unpredictable. AdaptUbiFlow was
specifically designed to deal with the requirements of
composition, selection, and adaptation based on service
quality to increase the availability at highly heterogeneous
environments typical of ubiquitous computing.

There are many SOA-based and workflow-based
platforms for ubiquitous computing in the literature [10-14]
but in general they do not provide service selection and
composition based on quality metadata. Moreover, although
a few of these platforms have an adaptation mechanism, they
do not consider some factors that can make the adaptation
process more efficient (i.e. rollbacks, avoidance of service
re-execution, etc). Finally, these recent platforms do not
intent to provide support for heterogeneity, and
consequently, they do not enable the access to different
context provision middleware platforms in a transparent and
uniform way. The use of AdaptUbiFlow along with other
features supported by OpenCOPI provides the ability to deal
with requirements such service composition, selection, and
adaptation in ubiquitous environments since OpenCOPI
provides the required heterogeneity and workflow support
and the AdaptUbiFlow complements OpenCOPI with an
efficient and added-value service selection and adaptation
process.

This paper is organized as follows. Section II presents an
overview of OpenCOPI. Section III contains the
AdaptUbiFlow’s service selection algorithm. Section IV
shows how AdaptUbiFlow performs workflow adaptation.
Section V presents an evaluation focusing on service
selection and workflow adaptation. Section VI discusses
related works. Finally, Section VII contains final remarks.

II. OPENCOPI OVERVIEW
OpenCOPI is a platform at the middleware level that

integrates different service providers including, but not
limited to, context-provision middleware platforms to make
easier the task of developing context-aware adaptive
ubiquitous applications. OpenCOPI provides its own API
and an OWL ontology-based context model, in which
context is handled by adopting the Semantic Web Services
perspective. In this perspective, service providers (including,
but not restricted to, context provision middleware) publish
their services using the OWL-S technology. Ubiquitous
applications are services consumers; and OpenCOPI is a
mediator, enabling that applications only need to know the
OpenCOPI context model and interfaces.

A. Terminology.
This sub-section presents important terms and features

necessary to fully understand OpenCOPI.
Services. Services are the basic elements in the

OpenCOPI architecture and their features and functionality
are described by inputs, outputs, preconditions and effects
(IOPEs) through OWL-S ontologies. There are two types of
services in OpenCOPI: traditional services and context
services. Such classification is not necessarily visible to final
users but it is important to OpenCOPI service composition

process. Traditional services are services provided by
databases, legacy systems, message systems (SMS, e-mail,
twitter), among others. They are selected through services
IOPEs and QoS parameters. Context services are services
that handle context information. They are provided by
context provision middleware. In order to perform service
selection with context services, additional quality metadata is
required, for example, the values of QoC provided by the
service.

Service dependency. In some cases, services may be
dependent on other services. In OpenCOPI, dependency
between services denotes a relationship in which the
dependent service can be executed only if the service that is
being depended upon is previously executed.

Semantic workflow. It is an abstract representation of a
workflow described in terms of activities, representing the
application execution flow, i.e., a workflow defines the
sequence in which these activities must be executed.
Activities are described in terms of Semantic Web services
descriptions. Workflows are used to perform automatic
service selection, composition, and orchestration. In
OpenCOPI, each application has its own workflow and each
workflow activity is a high level description of an
application task. A workflow is independent of specific
concrete services. This approach separating the abstract
activity from the concrete services that are able to achieve it.
This is useful mainly in cases where there are several similar
services available, offered by different providers and
consequently increasing the availability and QoS. In such
cases, the service that best meets the user requirements can
be chosen to be executed based on a given high level
workflow activity.

Execution plan (EP). In order to execute a semantic
workflow, it is necessary to create at least one concrete
specification for the workflow, which is called execution
plan. Such EP contains a set of concrete Web services that
are orchestrated through the execution of services in a
particular order. EPs are built through an on the fly process
of service discovery and composition, according to the
semantic enriched interface of the selected services and the
semantic workflow specification.

B. Architecture.
As mentioned before, OpenCOPI is a new middleware

layer localized between applications and the integrated
underlay context provision middleware platforms. This
characteristic allows that applications consume services
provided by these context provision middleware via the
mediation of OpenCOPI. A more detailed description of
OpenCOPI architecture can be found at [6] and
http://www.ppgsc.ufrn.br/~fred/opencopi/.

OpenCOPI architecture encompasses two layers
(ServiceLayer and UnderlayIntegrationLayer) as depicted in
Figure 1. ServiceLayer is responsible for managing the
abstractions of services (OWL-S descriptions) supplied by
service providers. The components of the ServiceLayer use
such abstractions to support workflow creation and
execution, service selection, service composition and
adaptation. Such components also support context reasoning,

646464

context storing, among other functionalities related to
ubiquitous applications. IApp interface links applications
with the OpenCOPI ServiceLayer. The UnderlayIntegration
Layer is responsible for integrating service providers,
performing context conversion whenever is needed (from
each specific middleware context model to OpenCOPI
context model) and conversion of the communication
protocol (if necessary). The IUnderlayIntegration interface
links service providers and OpenCOPI’s
UnderlayIntegrationLayer.

The WorkflowManager component manages the
abstraction of available context services provided by context
provision middleware platforms that are interacting with
OpenCOPI. It supports the specification of semantic
workflows and the generation of EPs. That component is
responsible for discovering and composing Web services
according to semantic workflow specifications, i.e., it maps
workflow activities into Web services. The function of the
MetadataMonitor component is to acquire metadata about
services and context provided by context provision
middleware to feed the ContextInformationRepository with
metadata information. OpenCOPI adopts an SLA (Service
Level Agreements) approach in which the service providers
publish the quality metadata of their services and these
metadata are used to select the services to be provided to the
consumers.

OpenCOPI

Apps

AppFacade
ServiceLayer

ContextInformation
Repository

WorkflowManager ContextReasonerMetadataMonitor

AdaptUbiFlow

IApp

IUnderlayIntegration

MiddlewareYService
Provider X

MiddlewareZ

MiddYDriver MiddZDriver

CompEntity

Driver

Device
Monitor

Device
Controller

Devices
Manager

UnderlayIntegrationFacade

Service
Discoverer ServiceBridgeServiceFactory

UnderlayIntegrationLayer

Figure 1. OpenCOPI Architecture.

The ContextReasoner component makes inferences about
context data (low-level context), acquired through the several
context provision middleware, to supply high-level and
consistent context information for the applications. Context-
InformationRepository component stores context data and
context metadata.

AdaptUbiFlow component is responsible for the
adaptation process in OpenCOPI. In AdaptUbiFlow, an
adaptation of an application means the replacement of the
running EP by another EP (that achieves the same stated
activities).This component works directly with the
MetadataMonitor and WorkflowManager components to
identify a fault (or other condition that triggers an adaptation,
as for instance the availability of a new service with best

quality) and automatically change the execution flow to use
another EP.

The DevicesManager component manages the user
computational entities to allow the applications migration
from a device to another in case of user mobility or in case of
resource limitations of the currently active device (e g., low
level of energy, low level of free memory). These devices
can provide services to be consumed by applications,
including services to provide device’s context information (e
.g, location, battery level, free memory level), with each
device type having its own set of context information. Each
computational entity in ubiquitous systems (e.g. laptops,
smartphones, tablets, and so on) has a DeviceController
responsible for controlling and monitoring the entity activity.
DeviceController sends the actual device’s status to
DevicesManager. This allows OpenCOPI to change the
execution from the actual device to another one if it is
needed. DeviceController is also responsible for supporting
communication between the device and OpenCOPI.

The components of UnderlayIntegrationLayer are in
charge of integrating service providers. ServiceDiscovery is
the component that discovers services in the environment
and registers them in OpenCOPI. When discovered, Web
services need to be integrated with OpenCOPI. For each
context provision middleware, it is necessary to build a
driver (at development time) to implement the context model
transformation (from the middleware context model to the
OpenCOPI context model), if necessary, the driver needs to
abstract away such different APIs and to allow the
transparent access to the context data provided by these
context provision middleware. So, the driver is also
responsible for issuing context queries and subscriptions
from OpenCOPI to the underlying context provision
middleware. Since drivers and platform integration is not the
focus of this paper, please visit
http://www.ppgsc.ufrn.br/~fred/opencopi/architecture.html
for more details about the process of creating drivers.

The ServiceFactory component is responsible for
creating context services that encapsulate the specific
middleware APIs while the ServiceBridge component makes
the link between these context services and the
WorkflowManager co§mponent. Thus, each service provided
by the middleware API is represented by a Web service,
created by OpenCOPI, to represent the respective service
API. Each OpenCOPI Web service created by the
ServiceFactory uses the driver tailored for the specific
underlying middleware.

C. Workflow Representation.
In OpenCOPI, a workflow is represented by a direct

acyclic graph (DAG) in which each intermediary node
represents a specific service and each directed edge
represents the execution direction between two services.
Each complete path between initial node and final node is an
execution route, and an execution route represents a possible
EP in the workflow. So, the graph represents the workflow
with all possible EPs. Figure 2 shows a graph with some
possible execution routes, for example, (i) S1 � S2 � S3 �
S4 � S5, (ii) S1 � S2’ � S3 � S4’’ � S5, etc.

656565

Figure 2. Example of graph representation.

III. ADAPTUBIFLOW’S SERVICE SELECTION
As mentioned before, OpenCOPI’s workflows are

abstract descriptions of applications and the generated EPs
contain a set of concrete services that satisfy the respective
abstract workflow. In general, there is more than one EP for
each workflow and the number of these EPs depends on the
amount of available services with the same functionality in
the environment (at a given moment). Thus, it is necessary a
service selection algorithm to choose which EP from the
available ones should be executed. This section presents the
service selection algorithm supported by AdaptUbiFlow.

The process of EP selection begins with the calculation
of the quality of each EP. The quality of an EP is determined
by quality parameters (QoS and QoC) values of all services
contained in the EP. Before computing the EP’s quality, it is
necessary compute the global quality of each quality
parameter. Global quality of a parameter means the quality
parameter value for whole EP, i e., the value that represents
the parameter of all services of an EP. This computation is
needed to find the quality for the whole EP. The global
quality of each parameter can be computed by aggregating
the corresponding values for this parameter of all services in
the respective EP. Different aggregation functions [15] are
necessary to compute the global value of each parameter.
Typical quality parameter aggregation functions are
summation, multiplication, minimum and average relation
(see Table 1). For example, Responsing is the QoS
parameter used to measure the response time to execute
each service. Thus, the value of the Responsing parameter
for an EP is the sum of the Responsing values of all services
(qR(S)) that compose the EP (qEP(R)). Another QoS parameter,
Availability, can be aggregated (qEP(A)) through a
multiplication function of availability value of each EP’s
service (qR(A)). Performance QoS parameter describes the
number of service requests served by the service provider at
a given period of time. Thus, the performance of EP is
limited for the service with the smaller value for
Performance attribute. Finally, Freshness QoC parameter
describes the context information life span, i e., how long
time ago the context information was created. Thus, the
value of that QoC parameter is the average of context life
span of all services of an EP.

Table 1. Aggregation functions examples.

Type Example Function
Summation Responsing

qEP(R) = qR (s)
s=1

m

∑

Multiplication Availability
qEP(A) = q

s=1

m

∏ A (s)

Minimum Performance qEP(P) = mins=1
m qP (s)

Average Freshness ∑ =
×=

m

s
sFFEP qmq

1
)()(/1)(

Once the value of all global (or aggregated) quality

parameters were calculated, and considering that different
quality parameters have different units and range, it is
necessary to normalize these attributes into the same range to
allow a unified and uniform measurement of EP’s quality.
Some quality parameters could be positive, i e., a parameter
in which the quality is better if the value is greater (for
example, correctness parameter). Other parameters are
negative, i e., the quality is better if the quality value is
smaller (for example, the Responsing parameter). This
process normalization of quality parameters is used by many
authors [15, 16].

⎩
⎨
⎧

==

≠−−=

minmax

minmaxminmaxmin

,1
),/()(

qqq
qqqqqqq

Ni

iNi

Figure 3. Equation to normalize positive quality parameters (positive
quality criteria).

⎩
⎨
⎧

==

≠−−=

minmax

minmaxminmaxmax

,1
),/()(

qqq
qqqqqqq

Ni

iNi

Figure 4. Equation to normalize negative quality parameters (negative
quality critéria).

Figure 3 and Figure 4 show the equation used in the
normalization process for positive parameters and negative
parameters, respectively. In those figures, qNi represents the
aggregated quality value for parameter q. qmax and qmin are
the maximum and minimum value for parameter q in the
available EPs. In this process, each normalized parameter
results in a value between 0 and 1 by comparing it with the
minimum and maximum possible value according to the
same parameter value about alternative EPs.

The normalization process is then followed by a
weighing process to consider user priority and preferences.
Thus, users can prioritize some quality parameters and
minimize the importance of other quality parameters
according to their needs. The weight (w) of each parameter
(i) should be between 0 and 1 and the sum of weight of all
parameters should be 1. Figure 5 presents the function to
maximize the EP quality according a set of quality
parameters (QoS and QoC). qEP is the EP quality and it is
calculated by the sum of the products between each quality
parameter (where each parameter i ∈ {1, …, m}) and its
respective weight.

qEP = (qiN ∗wi
i=1

m

∑)
Figure 5. Function to maximize the execution plan quality.

At the selection phase, the utility of each EP is just the
quality of the respective EP. The EP with biggest quality is
selected. At the adaptation phase, the utility is represented for
both: EP quality and adaptation cost for the respective EP
(see Section IV).

666666

IV. ADAPTUBIFLOW’S ADAPTATION PROCESS
As it was previously mentioned, ubiquitous computing

environments are highly susceptible to changes, several of
them unpredictable. In AdaptUbiFlow, an adaptation of an
application means the replacement of the running EP by
another EP (that achieves the same stated activities).
Changes occurred at execution time may affect the
application execution and performance. When a change
happens, some actions may be needed to ensure that the
applications continue running. If an adaptation is needed,
AdaptUbiFlow analyzes the best strategy for this adaptation
with minimal user awareness (thus, also promoting the
autonomy of the application). This Section shows the types
of changes that can trigger an adaptation process and the
techniques and algorithm used by OpenCOPI to perform the
adaptation.

In OpenCOPI architecture, a service is considered in fault
when there is a problem that prevents it to meet/reply a
received request. Examples of service failures are (i) a
service provider that loses the connection with OpenCOPI
and consequently cannot reply the service requests; (ii) a
service that crashes in consequence of service provider’s
internal errors; (iii) a sensor device that has its energy
depleted; (iv) a service that comes out of reach of the user
due to user mobility. Thus, services failures are hard to
handle, requiring the replacement of faulty services by other
equivalent ones. Besides failures, the services and service
providers are subject to other type of problem: quality
degradation. In highly dynamic environments, the service
quality can degenerate significantly due to network’s
bandwidth fluctuation, extensive use of a service, among
other factors. This is a less severe problem, since such
degradation does not necessarily mean a fault; it means that
some quality parameters (QoS and/or QoC) may deteriorate
at execution time. In addition, the emergence of new
available services also needs to be taken into account since
these new services can have better quality than services
previously selected. Finally, while mobility can make some
services unreachable, other services with better quality may
become reachable. When quality degradation of a service is
detected or new services emerge or yet services become
reachable due to user mobility, it is necessary to assess the
need to reconfigure the application execution.

A. Factors that trigger adaptation
There are four types of environment changes that may

trigger the adaptation process in AdaptUbiFlow strategy.:
Service fault. Service failures can potentially lead to

failure of ubiquitous applications. So, if a service fails, all
running workflows that use this faulty service must be
analyzed and automatically reconfigured.

Quality degradation. AdaptUbiFlow can reconfigure the
application execution whenever there is a significant
degradation in the quality of a service quality and there is an
equivalent service option with higher quality to run the
application. The decision about adaptation in these cases can
be influenced by the user and sometimes a replacement of
the EP leads to services re-execution, etc (meaning that there
is a cost associated with the adaptation process).

Emerging of new services. New services and service
providers can be added in the ubiquitous environment during
execution time. These services can be used to give a better
option of EP for a specific application already running. So, it
is also necessary assessing the need of adaptation in these
cases.

User mobility. Some context services are dependent on
the user location. For example, a service that provides
context information about the current user’s room. If a user
changes room, perhaps he/she can leave from radio range of
a service in which he/she is using. At the same time, he/she
can arrive at a new place covered by other services. In these
cases, the workflow must automatically change the EP in use
to another one that makes use of the services related with the
new current location.

B. Factors that affect adaptation
AdaptUbiFlow’s adaptation process chooses an EP for

replacement in case of workflow adaptation. Section III
presented the computation process for EP’s quality. It was
mentioned that the EP with the best quality is selected to be
executed. In the adaptation process, an optional (not the first
choice) EP needs to be selected to substitute the running EP.
The adaptation selection is based not only on the EP quality
but also on the cost of the adaptation process with the
purpose of reducing the adaptation overhead, i.e., for
improving the efficiency of adaptation. Our adaptation
approach tries to reuse the services execution performed
before the need to adapt. The adaptation cost of optional EPs
is variable and consists in the number of services to be
performed after adaptation (including services to be executed
after the change of EP, services that require rollback and
services that require compensatory action). Thus, we defined
a relationship between the quality of optional EPs and the
cost to replace the actual EP to them. Some important
characteristics for this process:

Quality of execution plan. The quality (QoS / QoC) of
an EP is used in this replacement process. Although it is a
very important factor, it is not sufficient to ensure an
efficient adaptation. In cases where some services had
already run in the application’s workflow, a choice of an EP
very similar to the current one may be a better option than an
EP with the best quality. The similar EP can reuse the output
of the services executed before the fault, without violating
services dependencies, neither perform rollbacks, thus
decreasing the adaptation cost.

Cost of adaptation for each execution plan. The factors
which influence the computation of adaptation cost are: (i)
reuse of service execution -some services can be used in two
or more EPs; in case of adaptation, it may be advantageous
to give priority to EPs that reuse the result of services already
executed by the current EP; (ii) service dependencies - in
case of a service fault, all EPs that use this service and/or its
dependent services cannot be chosen to substitute the current
plan; (iii) rollback - in case of replacement of an EP, some
services that have already been executed may require a
rollback to return to the previous execution state
(rollbackable services); (iv) compensatory action - in case of
replacement of an EP, if a service needs to return to a

676767

previous execution state but this service does not support
rollback, a compensatory action can be provided by the
driver that handles the communication between OpenCOPI
and the respective service provider. Drivers can store the
original state of a service before the service execution and, if
necessary, this state can be recovered.

These factors can have different degree of importance in
the adaptation process and such importance depends on the
application’s configuration made by user. Section IV.C
presents how the user can influence the adaptation process so
that the efficiency (cost) of the adaptation can be trade by the
final quality of service delivered to the user.

C. Adaptation process
The adaptation process is composed of two phases. The

first phase consists of selecting an optional EP to replace the
current EP. The second phase consists in execution
restarting.

Selection of a substitute execution plan. The choice of
a new EP to replace the currently executing plan uses two
categories of parameters: EP’s quality and adaptation cost.
The first one is the quality value calculated in Section III.
For this parameter, the value desired is a high value of
quality. The second parameter means the necessary actions
to be performed in case of adaptation. For this parameter, the
value desired is a low value of adaptation cost. The users can
prioritize the new selection according to their needs. To do
so, AdaptUbiFlow adopts an approach based on assigning
weights to each parameter. Thus, users can choose different
weights for quality and adaptation cost in the decision about
which EP will replace the actual EP, as explained below.
This allows trading quality by cost, tailoring the decision
process to the user’s needs.

Unlike the selection phase, the utility of an EP also is
influenced by the adaptation cost at the adaptation phase.
The utility is defined by a weighted average of EP’s quality
and adaptation cost parameters. There are five possible
configurations for these EP’s quality and adaptation cost
parameters weights, producing what we call an adaptation
profile: (a) full service quality adaptation profile gives full
priority to services quality, with service quality weight (wSQ)
equal to 1 (wSQ = 1.0) and adaptation cost weight (wAC) equal
to zero (wAC = 0.0); (b) service quality profile gives priority
to service quality but adaptation cost has some influence in
the decision, with weights wSQ = 0.75 and wAC = 0.25; (c)
balanced, the default configuration, gives equal weights
between both parameters, i.e., wSQ = wAC = 0.5; (d) low cost
adaptation gives priority to adaptation cost but service
quality has influence in the substitute EP, with weights wSQ =
0.25 and wAC = 0.75; finally, (e) lowest cost adaptation gives
full priority to adaptation cost: wSQ = 0.0 versus wAC = 1.0.
Figure 6 shows the function to maximize the execution
utility (μ) of each EP. This function consists in a weighted
average equation between quality of EP and adaptation cost.
The plan with the maximum EP’s utility (μ max) is chosen to
substitute the current one.

μ = (qEP × wSQ) + (cEP × wAC)
Figure 6. Equation to calculate the execution plan’s utility.

qEP and cEP are respectively the service quality and
adaptation cost relative values of an EP. These relative
values represent the relationship of the best service quality
and adaptation cost among the EPs in the same workflow.
Thus, in a workflow with some EPs (workflow = {ep1, ep2,
…, epn}), the best service quality and adaptation cost among
these EPs are used to calculate the relative quality (biggest
quality value) and cost values of each plan (smallest
adaptation cost means the best adaptation utility). Section III
showed the computation of qEP. Figure 7 present the
equations to compute the relative adaptation cost of an EP
(cEP). Figure 7 (i) shows the function to minimize the relative
adaptation cost since a smaller cEP value means a better
adaptation quality. cEPabs is the absolute adaptation cost value
and cEPmax is the biggest absolute adaptation cost value
among the workflow’s EPs. Figure 7 (ii) presents the cEPabs
computation equation, that is the sum of the number of
services to be executed after the change of EP (e), services
that require rollback (r) and services that require
compensatory action (c). The number of services to be
executed (e) is defined by service reuse and dependences
among services.

(i) : cEP =1− (cEPabs /cEP max)

(ii) : cEPabs = e + r + c
 Figure 7. Formule to calculate the adaptation quality of execution

plans.

Execution restarting. Since the selection of a new EP
process is finished, the process responsible for changing to
the new EP starts. This process consists in making all
necessary actions (rollbacks, compensatory actions and
restart execution) in a seamless way for the user.

V. EVALUATION
The main purpose of the evaluation of AdaptUbiFlow

presented in this paper is to assess its service selection and
workflow adaptation approach. To achieve this goal, services
used in a case study (see Section V.A) are forced to fail so
that the adaptation process is triggered. Regarding our
approach for service selection, it was evaluated by
comparing it with a random selection approach. We also
evaluated if the prioritization of specific quality parameters
really selects the EP according to our expectative, i e, if the
selected EP really is the best available one regarding the
specific parameter. We also assessed the effect of using
different adaptation profiles, changing the weights for EPs’
quality and adaptation efficiency (adaptation cost) to
evaluate if the prioritization of one of them properly selects
the substitute EP. Finally, we evaluated the overhead
generated by composition, selection, adaptation and
execution processes considering different number of EPs for
the same workflow.

 A. Case study
The conducted case study is an application from the Gas

& Oil Industry domain. Specifically, it is an application that
monitors an oil well in production through a pumping unit
machine to detect the need to change the pumping unit
settings. These modifications may be necessary to increase

686868

the oil production and/or decrease the abrasion of the
equipment. Depending on the situation, the application can
trigger necessary actions to make changes or directly notify
the responsible (human) for taking decisions about the
pumping unit reconfiguration. This application was chosen
because it uses different types of context information
provided by many sources. To exemplify the use of
OpenCOPI in the context of this application, we selected the
Burden variable to be monitored, which denotes the charge
of oil extracted from a well at each cycle of movement of a
pumping unit. Each pumping unit has a specific maximum
value (maxBurden) of burden for its correct operation. If this
value is reached abruptly, the pumping unit operation must
be stopped quickly to prevent its damage (a reactive
strategy). Furthermore, there is an intermediary value
(intermValue), that calls for attention, where actions can be
taken (in a proactive way) to prevent the pumping unit to be
stopped, consequently avoiding loss of production and risks
to the equipment. The complete case study description,
including service providers and their respective services,
possible EPs and services metadata can be found at
http://www.ppgsc.ufrn.br/~fred/opencopi/case_studies.html.

SUBSCRIBEBURDEN SEARCHREGIMEOPTIONS SEARCHPREVIOUSCHANGES CHOISEREGIMEOPTION

UPDATECHANGE

SEARCHTECHNICIANS

SENDMSGTOEMPLOYEE

STOPOILWELLOPERATION

GETRESPONSIBLEENGINEER

CHANGEREGIME

FLOW1:
INTERMVALUE < BURDEN < MAXVALUE

FLOW2:
BURDEN > MAXVALUE

WAITING

Legend:

Generic
activity

Flow2
activity

Flow1
activity

Figure 8. Case study workflow.

Figure 8 shows the semantic workflow representing the
case study application in which each activity is realized at
least by one service. The execution starts in the first activity:
subscribe to monitor the value of pumping unit burden. If the
current burden value is between pumping unit’s intermediary
burden value and maximum value, the workflow follows
Flow1. If the burden value is greater than the maximum
value, the workflow follows Flow2. Flow1 encompasses
activities to automatically change the regime of the pumping
unit operation, where regime is the relation between the
length of pumping unit’s stem and the cycles per minute of
this stem. First, the searchRegimeOptions activity looks for
possible regimes of pumping unit operation, in which each
regime variable is composed of a stem length value and
cycles per minute value. Then searchPreviousChanges
activity is performed to find the regimes previously used in
this pumping unit. The next step is to change the regime and
update this information in the registry of changes provided
by ChangeControlSystem (stores and retrieves the changes
made earlier in the pumping units). Finally, a search for
technicians available in the vicinity of the oil well is

performed and a message is sent to them so they can check if
everything is running as expected. Flow2 describes the
situation in which burden is greater than the maximum limit
of the pumping unit. To avoid the pumping unit damage, the
operation of the well is stopped. After this, a search is
performed to find the engineer responsible for this oil well
and the technicians near to the oil well. At last, warning
messages are sent to them.

B. Evaluation results
To evaluate AdaptUbiflow, we made replicas of some

services to enable the generation of multiple EPs. The
services replicated were four services that perform the
SearchTechnicians activity (four replicas representing
different technologies for user location) and
SendMsgToEmployee activity (two replicas). Each service
replica has different values for quality metadata. This
configuration resulted in eight distinct EPs (different replicas
combination) with different qualities. We named each EP as
EP1, EP2,…, EP8 to facilitate the explanation of the
evaluation. We divided AdaptUbiFlow evaluation in three
distinct aspects to be analyzed: (i) selection process; (ii)
adaptation process, and (iii) generated overhead.

Selection process evaluation. We compared the
AdaptUbiFLow selection approach with EPs randomly
selection. Considering that there are 8 possible executions
plans, we executed the selection process one hundred times
for each approach (random and AdaptUbiFlow’s) and the
results are: the best EP was selected in 13.33% of cases for
the random approach. Using AdaptUbiFlow, the best EP was
selected for all (100%) execution rounds.

We also evaluated if the prioritization of some quality
parameter really selects the EP as expected. Figure 9 presents
the utility (or quality) of each EP and the selected plan for
each different prioritization tested. For example, when the
maximum priority (weight = 1) was given to Availability
parameter, EP4 was selected; when Responsing was
prioritized, EP5 was selected; the prioritization of
Availability (0.5) and Responsing (0.5) resulted in selecting
EP7 (qEP7 = 0.66). When the same priority was assigned for
all parameters, EP1 was selected (qEP1 = 0.78). We found
that, for all parameters prioritization, the selected substitute
plan was the expected plan for that configuration.

Figure 9. Selection based on different parameters prioritization.

Adaptation process evaluation. For the adaptation
process, we evaluated if each possible adaptation profile
(weights of EP’s quality and adaptation cost) really selects
the best candidate for the substitute EP. Note that distinct

696969

adaptation profiles can select distinct substitute EPs.
Considering that EP1 was selected to execute at the selection
phase (same priority – see Fig. 9), we forced the failure of a
service encompassed in EP1 to trigger the adaptation
process. Table 2 presents the selected substitute plan for each
different adaptation profile tested. For example, Full service
quality, in which just EP quality is considered, selected EP4;
Balanced configuration selected EP4 again, but Lowest cost
adaptation selected EP2. We found that, for all assessed
adaptation profiles, the selected substitute plan was the
expected plan for that configuration.

Table 2. Adaptation based on different configurations of weights.

Adaptation profile Selected plan
Full service quality, Service quality, Balanced EP4
Low cost adaptation, Lowest cost adaptation EP2

Overhead evaluation. Since OpenCOPI represents an
additional layer between ubiquitous applications and services
provided by many platforms, it is expected that its use
increases the overall processing time and consequently the
response time for users. So, it is important to measure the
impact of OpenCOPI in the application running time.
Moreover, it is important to relate this time overhead with
the benefits that OpenCOPI provides to the implementation
and the execution of ubiquitous applications. The
experiments conducted to assess the overhead were executed
on Mac OS X operating system, using a computer with
processor Intel® CoreTM 2 Duo 2.4 GHz and 4 GB of RAM
memory. Firstly, we measured the overhead generated by the
service composition, the service selection, and the adaptation
processes. We ran the workflow with a different number of
possible executions plans – 2, 4, 6, and 8. Figure 10 shows
the overhead average (in milliseconds) with a confidence
interval of 95% for composition (Figure 10.A), selection and
adaptation (Figure10.B).

Figure 10. Overhead of service composition, EP selection and
adaptation

The service composition is the process responsible for
discovering services able to perform each workflow activity
and for creating possible EPs. This is the most expensive
process since it requires analyzing the ontologies of each
available service. However, we consider that the spent time
achieved in the results is not relevant for ubiquitous
applications since this process transforms an abstract
specification into concrete service compositions, enabling
late service selection and decoupling the application and

used services. For the simplest configuration (two possible
EPs) the semantic composition spent 1008 ms on average o
build both EPs and for the more complex configuration (8
possible EPs) it spent 1286 ms on average. The EP selection
is the cheapest process. For the simplest configuration the
selection spent 2 ms on average and for the more complex
configuration it spent 6 ms on average. The adaptation
process (presented in Section IV) consists of choosing a
substitute EP and the adaptation preparation (re-start
execution). For the simplest configuration the adaptation
process spent 19 ms on average and the more complex
configuration it spent 27 ms on average.

Another aspect analyzed was the application execution
time. For this purpose, two versions of the case study were
built. The first one is the workflow specified and executed
using OpenCOPI. The second application directly invokes
the same services through Java source code. The services are
executed according to the sequence followed by the
workflow executed by OpenCOPI. The average running time
of the application without OpenCOPI was 1.2 seconds to call
all services involved in the case study. In the application that
uses OpenCOPI, the execution time increased to 1.9 seconds.

We consider the evaluation results very encouraging.
Firstly, AdaptUbiFlow’s selection and adaptation processes
run as expected, always resulting in the best EP selection in
selection and adaptation process. Second, the time intervals
spent in the service composition, EP selection and adaptation
processes were very low. Moreover, the difference (about 0.7
seconds) between the application executed with OpenCOPI
(including the AdaptUbiFlow component) and the
application directly developed in Java was not significant
compared to the benefits provided by OpenCOPI. For
instance, to build the application without the use of
OpenCOPI, 139 lines of code were necessary only to call all
the services specified in the workflow. However, the process
to build the workflow using OpenCOPI is simpler since it
was not necessary to implement source code but only to
build the workflow by defining applications activities,
combining tasks and objects to satisfy the application goal.
Moreover, without OpenCOPI, it is essential to know the
services available in the environment and their interfaces. As
a consequence, the development is harder, reuse is
impracticable, and it is difficult to dynamically select
services and also to support adaptation.

VI. RELATED WORK
Several workflow-based middleware platforms have

emerged over the last years to assist the development of
ubiquitous applications. However, most of them do not meet
the wide range of requirements demanded by the highly
dynamic and heterogeneous ubiquitous environments. In
general, existing proposals do not allow dynamic service
composition and adaptation based in quality metadata. Even
few platforms that enable adaptation do not consider factors
that allow an efficient adaptation, such as dependence
between services, rollbacks, service re-execution, etc.

[10] presents a workflow approach for modeling and
managing the user’s interaction with the ubiquitous
environment. In such approach, users can determine their

707070

overall goal and preferences and the system generates a
customized workflow describing how various services
should interact with one another. [11] presents an
architecture that supports the distributed execution of
workflows in pervasive environments based on decentralized
control. Both proposals lack of mechanisms to allow
dynamic service composition and workflow adaptation. [12]
presents a context-adaptive workflow management algorithm
which can dynamically adjust workflow execution policies in
terms of current context information and supports service
selection based in bandwidth and user location. In such
work, context information is limited to bandwidth and
location and user configuration and workflow adaptation are
not supported. The mechanisms presented in [14] support
workflow adaptation but just in case of service failure. The
adaptation process is modeled before workflow execution. It
does not consider QoS to service selection and workflow
adaptation. [13] presents an interesting set of tools and
principles to support context-aware run-time deviations and
changes in the workflow execution, allowing workflow
adaptation in case of service fail but not allowing the user to
configure the adaptation preferences in case of quality
degradation of the services. Moreover, unlike
AdaptUbiFlow, it does not consider the cost of adaptation to
select the new flow in case of adaptation.

Differently from all the previously mentioned proposals,
this paper investigates how to automatically manage
workflows, selecting the best option of EP and the automatic
adaptation decisions at runtime according to user
preferences. In AdaptUbiFlow, users can configure the
workflow’s service selection and adaptation process in an
easy way through a XML configuration file. This feature
increments the involvement of the end-user with the
application.

VII. CONCLUSIONS
In this paper we introduced AdaptUbiFlow, an automatic

and adaptive mechanism to support service selection, service
composition, and workflow adaptation in ubiquitous
applications. It deals with services failures in these
environments, increasing the availability of such systems.
When a device fails, AdaptUbiFlow supports the adaptation
of the system replacing the failed device (or service) by
another equivalent; this makes the system fault-tolerant
without the need for any manual intervention. The replacing
device/service is chosen taking into account not only the
QoS provided but also the application’s execution flow to
ensure the best adaptation option will be chosen.

Initial experiments performed with AdaptUbiFlow
showed promising results, demonstrating that in the
occurrence of faults, the mechanism selects the best option
for adaptation according to user configuration, considering
the quality of services and the overhead of adaptation
process. Moreover, analyzing AdaptUbiFlow together with

OpenCOPI focusing on service selection and workflow
adaptation, we believe that our approach can effectively
contribute to the leverage the benefits of ubiquitous
computing.

ACKNOWLEDGMENT
The authors wish to thank the Brazilian National Oil and

Biofuels Agency (ANP), through PRH-22 Program, and the
National Council for Scientific and Technological
Development (CNPq), through grants 477229/2009-3,
306938/2008-1, 311515/2009-6 and 480359/2009-1, who
partially supported this work.

REFERENCES
1. Davidyuk, O., et al., MEDUSA: Middleware for End-User Composition
of Ubiquitous Applications. Handbook of Research on Ambient Intelligence
and Smart Environments: Trends and Perspectives, 2010.
2. Hepner, M., R. Baird, and R. Gamble. Dynamically Changing Workflows
of Web Services. in Congress on Services - I. 2009.
3. Buchholz, T., A. Küpper, and M. Schiffers. Quality of Context: What it
is and why we need it. in Workshop of the HP OpenView University
Association. 2003. Geneva, Switzerland.
4. Xia, J., et al. Fault-resilient ubiquitous service composition. in 3rd IET
International Conference on Intelligent Environments. 2007.
5. Funk, C., et al. Adaptation of Composite Services in Pervasive
Computing Environments. in IEEE Int. Conf. on Pervasive Services. 2007,
Turkey.
6. Lopes, F., et al. Context-based Heterogeneous Middleware Integration.
in Workshop on Middleware for Ubiquitous and Pervasive Systems. 2009.
7. Lopes, F., et al. On the Integration of Context-based Heterogeneous
Middleware for Ubiquitous Computing. in Int. Workshop on Middleware
for Pervasive and Ad-hoc Computing (MPAC'08). Leuven.2008.
8. Allen, R., Workflow: An Introduction, in Workflow handbook, L.
Fischer, Editor 2001
9. Abbasi, A. and Z. Shaikh. A Conceptual Framework for Smart Workflow
Management. in Int. Conf. on Info Management and Engineering. 2009.
10. Ranganathan, A. et. al. Using Workflows to Coordinate Web Services in
Pervasive Computing Environments. IEEE Int. Conf. on Web Services.
2004.
11. Montagut, F. and R. Molva. Enabling Pervasive Execution of
Workflows. in Collaborative Computing: Networking, Applications and
Worksharing. 2005. IEEE.
12. Tang, F., et al. Towards Context-Aware Workflow Management for
Ubiquitous Computing. in Int. Conf. on Embedded Software and Systems.
2008.
13. Marconi, A., et al., Enabling Adaptation of Pervasive Flows: Built-in
Contextual Adaptation. LNCS, 2009. 5900/2009: p. 445-454.
14. Mostarda, L., S. Marinovic, and N. Dulay. Distributed Orchestration of
Pervasive Services. in IEEE Int. Conf. on Advanced Information
Networking and Applications 2010. Perth, Australia.
15. Yanwei, Z., et al. A Dynamic Web Services Selection based on
Decomposition of Global QoS Constraints. in IEEE Youth Conference on
Information Computing and Telecommunications. 2010.
16. Ardagna, D. et. al. Per-flow optimal service selection for Web services
based processes. The Journal of Systems and Software, 2010. 83: p. 12.

717171

