
(O3)
2: From "poor-man’s persistence" to Transparent

Clustering for Java Applications∗

Pedro Sampaio, Paulo Ferreira, and Luís Veiga
psampaio@gsd.inesc-id.pt, {paulo.ferreira, luis.veiga}@inesc-id.pt

INESC ID/IST, Technical University of Lisbon, Portugal

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications;
D.3.4 [Processors]: Run-time environments; D.3.2 [Language
Classifications]: Object-oriented languages

Keywords
Virtual machines, single-system image, transparent cluster

1. INTRODUCTION
Since object-oriented programming has become dominant

in application development, there has been the recurring
issue of an impedance mismatch between the way program-
mers manipulate objects in memory, and the way they are
made persistent in secondary storage. To address the afore-
mentioned mismatch, a number of object-oriented database
(OODB) systems were developed that embodied transpar-
ent (or orthogonal) persistence in existing programming lan-
guages (e.g., Gemstone in 1987), with current albeit simpli-
fied successors such as OJB and Hibernate.

A few more years after, a kind of back-to-the-future trend
emerged with the development of new Java-related object
persistence standards, such as JDO (Java Data Objects)
and related technology, with similar efforts in .NET LINQ.
A similar trend has also been taking place with the redis-
covery of the notion of a single-system image provided by
the transparent clustering of distributed OO storage systems
(e.g., from [4, 6] with caching and transactions ca. 1992,
to [1] and present distributed VM systems such as Terra-
cotta).

The two-decade long history of events relating object-
oriented programming, the development of persistence and
transactional support, and the aggregation of multiple nodes
in a single-system image cluster, appears to convey the fol-
lowing conclusion: programmers ideally would develop and
deploy applications against a single shared global memory
space (heap of objects) of mostly unbounded capacity, with
implicit support for persistence and concurrency, transpar-

∗
This work was supported by FCT (INESC-ID multiannual fund-

ing) through the PIDDAC Program funds, and FCT research project
PROSOPON PTDC/EIA-EIA/102250/2008.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Middleware’10 Posters and Demos Track December 1, 2010 Bangalore, In-
dia
Copyright 2010 ACM 978-1-4503-0601-0/10/12 ...$10.00.

ently backed by a possibly large number of clustered phys-
ical machines. Example applications include web, business,
science and engineering (e.g., architecture, engineering, elec-
tronic system design, network analysis, molecular modeling),
and even games, virtual simulation environments.

While existing popular OODB systems and persistence
frameworks (e.g., Hibernate, JDO compliant) allow program-
mers to query the object store with declarative languages
(e.g., OQL, JDOQL), they do not accommodate the dis-
tribution/partition of object graphs across different clus-
ter machines. Replication is sometimes supported only for
fault-tolerance purposes, therefore the object heap cannot
be increased by aggregating the memory of several machines.
Some earlier distributed shared-memory OO systems (such
as [4, 6]) partially supported this but, while offering persis-
tence and some transactional support, they forced program-
mers to state the location of root objects, not offering any
support for queries. A current distributed VM system enjoy-
ing moderate success with developers, Terracotta, provides
a single-system image to programs but employs local mem-
ory only for caching, and secondary storage solely for object
swapping purposes at the coordinating node. Furthermore,
it offers no support for queries over the objects stored.

We propose a new approach to the design of OODB sys-
tems for Java applications: (O3)

2 [5] (ozone squared). It
aims at providing to developers a single-system image of vir-
tually unbounded object space/heap with support for object
persistence, object querying, transactions and concurrency
enforcement, backed by a cluster of multi-core machines with
Java VMs that is kept transparent to the user/developer.
Transparency regarding developers and their interface with
the OODB system is untouched. Our approach has been
validated by employing a benchmark (OO7) relevant in the
literature.

2. (O3)
2ARCHITECTURE

The architecture of (O3)
2 is an extension of an existing

middleware, ozone-db [3], simply because it is open-source
and we can leverage some of its properties: persistence in
object storage, transparency to developers who just have to
code Java applications [2], support for transversal on object
graphs using both a programmatic, as well as a declarative
and query-based approach (using XML, W3C-DOM, and
allowing XPapth/XQuery usage).

While embodying some of the principal goals of the origi-
nal OODB systems (orthogonal persistence, transparency to
developers, transactional support), it reprises them in the
context of contemporary computing infrastructures (such as
cluster, grid and cloud computing), execution environments

Figure 1: application scenario in (O3)
2 architecture.

(namely Java VM), and application development models.
However, ozone-db lacks support for single-system image

semantics, i.e., currently an object store must reside fully in
a single server machine, and objects cannot be cached out-
side this central server (in some small installations, applica-
tions and object server are collocated in the same physical
machine).

(O3)
2 provides single-system image semantics by employ-

ing a cluster of machines executing middleware that: i) ag-
gregates the memory of all machines into a global uniformly
addressed object heap, ii) modifies how object references are
handled in order to maintain transparency to developers,
regardless of where objects are located across the cluster,
iii) manages object allocation and placement in the cluster
globally, with support for inclusion of more specific policies
(e.g., caching objects in client machines for disconnection
support). We first describe the fundamental aspects regard-
ing original ozone-db architecture and then describe the ar-
chitecture of (O3)

2, and the referred mechanisms.
Figure 1 describes a typical scenario of application execu-

tion in (O3)
2, with relevant differences from ozone-db: i) the

object graph is distributed in main memory and in storage,
partitioned among a group of servers (for simplicity, only
three are shown), this being completely transparent to ap-
plications that need not know the server group membership,
and ii) a set of heavily accessed objects can reside in a local
caches at clients, for improved performance and bandwidth
savings (and, additionally some support for disconnection).
In Figure 1, the application while connected to Server 1 has
accessed objects A, B, C and D of the graph with relevant
frequency. Therefore, these objects are cached at the client
in order to improve performance.

The extensions to ozone-db required by the (O3)
2 archi-

tecture are performed at the following levels: i) transport,
ii) server, and iii) storage, leaving the application interface
unchanged for transparency w.r.t. developers.

Regarding transport, its architecture must be extended in
order to be able to fulfill the following additional require-
ments. Method invocations on objects (originally simply re-
layed always to servers via proxies) must be registered to de-
termine frequently accessed objects that could (and should)
be cached locally. Subsequent invocations are performed
against the cache and do not result in immediate communi-
cation with the servers, reducing server load and increasing
execution speed. Several replacement policies may be used
(not the topic of this work); currently a threshold of invoca-

tions is used to trigger caching of an object and the cache is
preemptively flushed periodically.

The (O3)
2middleware running at servers is designed in

the following manner. Each server now holds in its main
memory only a fraction of the objects currently in use. The
graph of objects is thus scattered across all servers to im-
prove scalability w.r.t. available memory capacity and per-
formance by employing extra CPUs to perform object invo-
cation. Regarding storage, the persistent storage of objects
is also balanced among the servers in the cluster using sub-
sets of objects as the quanta of deployment. The servers
are launched in sequence and join a group before the clus-
ter becomes available for client access. Regardless of object
placement strategy, once a client gets a reference to an ob-
ject, its proxy targets directly the server where the object is
loaded.

Two strategies may be adopted for object management
and placement. First, one of the servers acts as a coordina-
tor holds a primary copy of metadata in memory, registering
object location (indexed by objectID) and locking informa-
tion (clients can be connected to any server, though, e.g.,
with some server side redirecting scheme). This information
is lazily replicated to the other servers in the cluster. Mod-
ifications to this information (namely for locking) are only
performed by the primary. This enables greater flexibility
at the expense of some overhead.

Alternatively, no server needs to act as coordinator for
the metadata. When an object is about to be loaded from
persistent store, its objectID is fed to a hash function that
determines the server where it must be placed, and where
its metadata will reside. This is a deterministic operation
that all servers in the cluster can perform independently. A
simple round-robin approach would be correct but utterly
inefficient as it would not any locality of reference. Instead,
a tunable parameter in the hashing function decides broadly
how many objects created in sequence (i.e., a subset of ob-
jects with very high probability of having references among
them) are placed at a server before allocation is performed
at another server. When objects are invoked later, this lo-
cality will be preserved. The overhead in this approach is
lower at the expense of reduced flexibility as objects may
not be migrated among servers.

In the implementation of (O3)
2, the application interface

of ozone-db is unchanged, therefore applications need not be
modified, nor even recompiled.

3. REFERENCES
[1] M. Aguilera, A. Merchant, M. Shah, A. Veitch, and

C. Karamanolis. Sinfonia: a new paradigm for building scalable
distributed systems. 21 st ACM SOSP, 2007.

[2] Richard T. Baldwin. Views, objects, and persistence for
accessing a high volume global data set. In MSS ’03:
Proceedings of the 20 th IEEE/11 th NASA Goddard
Conference on Mass Storage Systems and Technologies
(MSS’03), page 77, Washington, DC, USA, 2003. IEEE
Computer Society.

[3] Falko Braeutigam and Gerd Mueller and Per Nyfelt and Leo
Mekenkamp. The ozone-db Object Database System,
www.ozone-db.org, 2002.

[4] Barbara Liskov, Mark Day, and Liuba Shrira. Distributed object
management in thor. In International Workshop on Distributed
Object Management, pages 79–91, 1992.

[5] Pedro Sampaio, Paulo Ferreira, and Luis Veiga. Ozone-squared :
From ”poor-man´s persistence” to transparent clustering for java
applications. Technical Report 38, INESC-ID, August 2010.

[6] L. Veiga and P. Ferreira. Incremental replication for mobility
support in OBIWAN. In Distributed Computing Systems, 2002.
Proceedings. 22nd International Conference on, pages 249–256,
2002.

