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ABSTRACT 

The emergence of more powerful and resourceful mobile devices, as well as new wireless communication technologies, 
is turning the concept of ad-hoc networking into a viable and promising possibility for ubiquitous information sharing. 
However, the inherent characteristics of ad-hoc networks bring up new challenges for which most conventional systems 
don't provide an appropriate response. Namely, the lack of a pre-existing infrastructure, the high topological dynamism of 
these networks, the relatively low bandwidth of wireless links, as well as the limited storage and energy resources of 
mobile devices are issues that strongly affect the efficiency of any distributed system intended to provide ubiquitous 
information sharing. 
In this paper we describe Haddock-FS, a transparent replicated file system designed to support collaboration in the novel 
usage scenarios enabled by mobile ad-hoc environments. Haddock-FS is based on a highly available optimistic 
consistency protocol. In order to support co-present collaborative activities in mobile ad-hoc environments, it provides 
stronger consistency guarantees during operation within highly connected ad-hoc groups of mobile devices. In order to 
effectively cope with the network bandwidth and device memory constraints of these environments, Haddock-FS 
employs a limited size log truncation scheme and a cross-file, cross-version content similarity exploitation mechanism. 
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1. INTRODUCTION 

The evolution of the computational power and memory capacity of mobile devices, combined with their 
increasing portability, is creating computers that are more and more suited to support the concept of 
ubiquitous computation (Weiser 1991). As a result, users are progressively using mobile devices, such as 
handheld or palmtop PCs, not only to perform many of the tasks that, in the past, required a desktop PC, but 
also to support innovative ways of working that are now possible. 

At the same time, novel wireless communication technologies have provided these portable devices with 
the ability of easily interacting with other devices through wireless network links. Inevitably, effective 
ubiquitous information access is a highly desirable goal. 

Many real life situations already suggest that users could benefit substantially if allowed to cooperatively 
interact using their mobile devices and without the requirement of a pre-existing infrastructure. A face-to-
face work meeting is an example of such a scenario. The meeting participants usually co-exist within a 
limited space, possibly for a short period of time and may not have access to any pre-existing fixed 
infrastructure. Under such co-present collaborative activities (Luff and Heath 1998), participants hold, 
manipulate and exchange documents that are relevant to the purposes of the meeting. 

If each participant holds a mobile device with wireless capabilities, a spontaneously formed wireless 
network can serve the purposes of the meeting. This way, a report held at one participant’s handheld device 
might be shared with the remaining meeting participants’ devices, while its contents are analyzed and 
discussed. Furthermore, each participant might even update the shared report’s contents, thus contributing on 
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the ongoing collaborative activity. These wireless networks, possibly short-lived and formed just for the 
needs of the moment, without any assistance from a pre-existing infrastructure, are normally referred to as 
mobile ad-hoc networks (Corson and Macker 1999). 

One interesting solution for ubiquitous information sharing and manipulation for mobile networks and, in 
particular, ad-hoc environments, is through the use of a distributed file system. This approach allows already 
existing applications to access shared files in a transparent manner, using the same programming interface as 
that of the local file system. However, the nature of the scenarios we are addressing entails significant 
challenges to an effective DFS solution to be devised. 

The high topological dynamism of mobile ad-hoc networks entails frequent network partitions. On the 
other hand, the possible absence of a fixed infrastructure means that most situations will require the network 
services to be offered by mobile devices themselves. Such devices are typically severely energy constrained. 
As a result, the services they offer are susceptible of frequent suspension periods in order to save battery life 
of the server's device. From the client's viewpoint, such occurrences are similar to server failures. 

These aspects call for solutions that offer high availability, in spite of the expectedly frequent network 
partitions and device suspension periods. Pessimistic replication approaches, employed by conventional 
distributed file systems, such as NFS (Nowicki 1998) or AFS (Morris et al 1986), are too restrictive to fulfill 
such a requirement. On the other hand, optimistic replication strategies offer weak consistency guarantees, 
which may not reflect the expectations of users and applications, mainly in co-present collaborative activities. 
Hence, they ought to be complemented with stronger consistency guarantees in order to be adaptable to a 
wide spectrum of application domains, with differing correctness criteria and, consequently, distinct 
consistency requirements. 

Whichever strategy is taken, it must take into account the important limitations in memory resources and 
processing power of typical mobile devices, as well as the reduced bandwidth of wireless links, when 
compared to other wired technologies. 

In this paper we describe Haddock-FS, a transparent peer-to-peer replicated file system. Each mobile 
device is able to offer file system services upon the files it locally stores. The flexibility brought by a peer-to-
peer model enables Haddock-FS to support a broad set of mobile ad-hoc network usage scenarios. 

Namely, mobile peers may operate in isolation upon their local file replicas, when network connectivity 
to other mobile peers is weak or non-existent. Furthermore, multiple mobile devices may form, in an ad-hoc 
fashion, a group of peers that cooperatively share and manipulate common files, without any assistance from 
a fixed infrastructure. 

Haddock-FS is based on a highly available optimistic consistency protocol. In order to support co-present 
collaborative activities in mobile ad-hoc environments, it provides stronger consistency guarantees during 
operation within highly connected ad-hoc groups of peers. Furthermore, in order to effectively cope with the 
resource constraints of mobile devices, Haddock-FS employs mechanisms to reduce the main memory and 
network usage needed; namely, the update log and update content propagation between peers. A limited size 
log truncation scheme and a cross-file, cross-version content similarity exploitation mechanism are used for 
such purposes. 

The rest of the paper is organized as follows: Section 2 discusses the architecture, while Section 3 
describes the actual implementation that was used to obtain the experimental results that are presented in 
Section 4. Finally, Section 5 describes related work and Section 6 draws some conclusions. 

2. ARCHITECTURE 

2.1. File System Consistency 

Each Haddock-FS mobile peer constitutes a replica manager, which is able to receive file system requests 
and perform them upon its local replicas. The underlying replication mechanisms are transparent to 
applications, which may access Haddock-FS's services by using the same API as the one exported by the 
local file system. Provided the accessed files are locally replicated at a given Haddock-FS peer, the file 
system services will be available, independently of its current network connectivity. The following sections 
describe how consistency amongst file replicas is achieved. 



2.1.1. Optimistic consistency protocol 
Haddock-FS's consistency protocol relies on dynamic version vectors (DVV) (Ratner, Reiher and Popek 

1999) to identify replica versions and detect conflicts. A DVV is a variation of a version vector (Parker et al 
1983) that allows the collection of replicas of each file to dynamically change over time. The DVVs of two 
replica versions, v1 and v2, can be compared to assert if v1 causally precedes v2, according to the happened-
before relationship (Lamport 1978). 

 For each file replica, an Haddock-FS replica manager maintains a collection of data structures, depicted 
in Figure 1: a stable value, which holds a version of the file's stable contents, as described in Section 2.1.2; 
and an update log, which records the data specifications of most recent update requests that have been 
accepted by the file replica. Each logged update is assigned a DVV that identifies the file version that results 
from the update. Within the log, updates are causally ordered by their DVVs. Furthermore, logged updates 
are labeled as stable or tentative, as described in Section 2.1.2. 

Overall system consistency is eventually achieved by pair-wise reconciliation sessions between replica 
managers, where replica updates are epidemically propagated. Such reconciliation sessions occur whenever a 
pair of replica managers becomes mutually accessible. 

Relying on an optimistic replication strategy, update conflicts may occur if the same file is updated at 
distinct replicas. Haddock-FS's replication protocol enforces each file update to be applied only on the 
context upon which it was initially issued. This means that, if a client issues a file update at a given replica, 
no file update that hasn't yet been applied to such replica will ever precede the issued update at any other 
replica of that file. Formally, this states that, given the update sequence that is applied at a given file replica, 
all updates must be causally related, according to the happened-before relationship defined by Lamport 
(1978). Hereafter, we shall designate such consistency guarantee as strict causal consistency. 

Enforcing strict causal consistency requires that, in the presence of causally concurrent updates, only one 
of them will be selected at a given replica. This differs from some alternative approaches that resolve such 
conflicts by ordering the concurrent updates (Demers et al 1994, Ladin et al 1992). Haddock-FS's decision 
argues that, in the absence of any semantic knowledge to rely on, an acceptable ordering resolution cannot be 
guaranteed and, therefore, should not be made. 

2.1.2. Reaching a common stable value 
Given a particular logical file, one can consider the global state of Haddock-FS replicated system as a 

directed acyclic version graph, whose nodes represent replica versions that are linked by updates. The root 
node is the initial file version. 

Due to the optimistic nature of Haddock-FS's consistency protocol, multiple terminal nodes may exist. 
Each one corresponds to a divergent tentative value of the file. The consistency protocol is responsible for 
reaching a consensus on which of such divergent values the system replicas should converge into. Such value 
is defined as stable. 

Throughout time, the set of stable values evolves monotonically from the root node to a single terminal 
node, hence defining a non-decreasing stable path in the version graph (Figure 2.a). The consistency protocol 
ensures that all replicas of a given logical file will eventually hold the updates that are contained by the stable 
path in their logs, designated as stable updates. Hence, their values are guaranteed to eventually yield a 
common stable value that is sequentially consistent. Since replicas enforce strict causal consistency, evolving 
to a common stable value at all replicas entails that every path that diverges from the stable path will 
eventually be discarded (Figure 2.b). 

The stable path is increased when one of the tentative updates whose source is the path's terminal node is 
consensually selected as a stable update. Haddock-FS uses a primary commit scheme (Terry et al 1995), in 

Figure 1. Replica state maintained by Haddock-FS: stable 
value and update log, containing both stable and tentative 

updates, ordered by their DVVs. 

Figure 2. Example of optimistic evolution of replicas A, 
B,..,F of the same file (a) towards an eventual common 

stable value (b). A is the current primary replica. 

 
  

 



which a single replica of each file, the primary replica, is responsible for selecting new stable updates and 
propagating such decision back to the remaining replicas. 

Hence, each replica manager is able to offer two possibly distinct views upon a file replica: its stable and 
tentative values. The former is simply the same as stored in the stable replica value. The latter results from 
the application of the tentative updates included in the log to the stable value. 

Each file is initially assigned a unique primary replica, at which it was originally created. After creation, 
primary replica rights may be transferred to other replicas, by exchanging a token that identifies the current 
primary replica. 

2.1.3. Intra-group consistency 
When high connectivity is available, even if temporarily, amongst a group of peers, intra-group 

consistency mode is used. A group of mutually accessible mobile peers working cooperatively on a set of 
shared files within an ad-hoc network is an example of such scenarios. 

Under such scenarios, the expectations of mobile users may assume strong consistency guarantees due to 
the connectivity that exists within the group. For this case, Haddock-FS enforces a pessimistic single-writer 
multiple-readers (Li and Hudak 1986) token scheme on top of the base optimistic consistency protocol, 
similar to that proposed by (Boulkenafed and Issarny 2003). 

Obtaining a token upon a replica requires the replica manager that requests the token to reconcile with its 
previous owner. This means that, in an intra-group scope, mobile users and applications benefit from 
sequential consistency guarantees (Davidson, Garcia-Molina and Skeen 1985). From a system-wide 
viewpoint, however, a group of peers working in intra-group consistency mode is regarded as a single 
optimistic replica manager. Therefore, in a system-wide scope, weak consistency guarantees still prevail. 

2.2. Replica content storage and propagation 

The inherent memory and bandwidth constraints of mobile devices and wireless links are severe 
limitations to the effectiveness of a distributed file system for ad-hoc environments. For this reason, 
Haddock-FS tries to reduce the size of update logs stored at each device, as well as of update data to be 
transferred during replica reconciliation. 

This is achieved by exploiting the cross-file and cross-version similarities that exist within the replicated 
data held by Haddock-FS's mobile peers. Such approach is similar to that of the Low-Bandwidth File System 
(LBFS) (Muthitacharoen, Chen and Mazieres 2001). 

Our solution differs from the latter because file content similarity is exploited, not just for reducing 
network usage when transferring file contents between replicas, as it happens with LBFS, but also for the 
storage of all replicated file content-related data structures. Namely, these are the update log and the stable 
value of each replicated file. 

2.2.1. File Chunks 
The basic idea of the content storage and transference scheme consists of applying the SHA-1 hash 

function to portions of each replica's contents; each portion is called a chunk. The probability of two distinct 
inputs to SHA-1 producing the same hash value is far lower than the probability of hardware bit errors (NIST 
1995). Relying on this fact, the obtained hash values can be used to univocally identify their corresponding 
chunk contents. From this assumption, if two chunks produce the same output upon application of the SHA-1 
hash function, then they are considered to have the same contents. If both chunks are to be stored locally at 
the same computer, then only the contents of one of them needs to be effectively stored. In a similar way, if 
one of the chunks is to be sent to a remote machine that is holding the other chunk, the actual transference of 
the contents over the network can be avoided. 

A content-based approach is employed to divide replica contents into a set of non-overlapping chunks, 
based on Rabin's fingerprints (Rabin 1981). As a result, chunks may have variable sizes, depending on their 
contents. An important property of such chunk division approach is that it minimizes the consequences of 
insert-and-shift operations in the global chunk structure of a replica. 

The expected average chunk size may, however, be parameterized by controlling the number of low-order 
bits from the fingerprint's output that are considered by the chunk division algorithm. Moreover, to prevent 



cases where abnormally sized chunks might be identified, a minimum and maximum chunk dimension is 
imposed. 

2.2.2.  Chunk Repository 
Haddock-FS extends the use of LBFS's strategy to both local storage and network transference of 

replicated file data. 
Our solution considers the existence, on each file system peer, of a common chunk repository which 

stores all data chunks, indexed by their hash value, that comprise the contents of the files that are locally 
replicated at that peer. The data structures associated with the content of locally replicated files simply store 
references to chunks in the chunk repository. This applies both to the update log and the stable value of each 
replicated file. Hence, the contents of an update or replica value consist of a sequence of references to data 
chunks, stored in the chunk repository (Figure 3). 

When a data chunk is created or modified, either by a newly issued update or by applying some stable 
update to the stable value of a file, its hash value is calculated and the chunk repository is examined to 
determine if an equally hashed chunk is already stored. If not, a new entry corresponding to the new chunk is 
inserted in the repository and a reference to it is used. If a similar chunk already exists, then a new reference 
to that chunk is used. So, if different files or versions of the same file contain data chunks with similar 
contents, then they will share references to the same entry in the chunk repository, thus reducing memory 
usage by the file system. 

As a consequence of the variable length character of data chunks, seeking a given position within the 
contents of a file requires traversing the chunk sequence list to determine the chunk that contains such 
position. This operation takes O(N) time, where N is the number of chunks that compose the file contents. 
Therefore, the performance of random accesses to replicated files may be compromised should the number of 
chunks be significantly high. Nevertheless, this aspect shouldn't be important due to the typically small 
dimensions of the files that the resource constrained devices addressed by Haddock-FS are expected to hold. 

Update propagation between peers also makes use of the chunk repositories of each peer. When a chunk 
has to be sent across the network to another peer, only its hash value is firstly sent. The receiving peer then 
looks up its chunk repository to see if that chunk is already stored locally. If so, it avoids the transference of 
that chunk's content and simply stores a reference to the already existing chunk. Otherwise, the chunk 
contents are sent and a new chunk is added to the repository. 

To achieve acceptable chunk lookup times, a hash-table is used to implement the chunk repository, 
indexed by the chunk hash values. This way, obtaining a chunk given its hash value is performed in O(lg N) 
time, where N is the number of stored chunks. On the other hand, read accesses to a file's contents can be 
served by a single indirect memory access to the chunks referenced by the chunk references stored in the 
file's data structures. 

Serving a write request upon a local replica is an expensive operation. First, the newly written data is 
sequentially fingerprinted in order to determine chunk boundaries. Then, a SHA-1 hash value is calculated 
for each found chunk. Finally, a chunk lookup is performed in order to determine if each chunk should be 
added to or already exists in the chunk repository. In contrast, read operations do not have any associated 
processing overhead for accessing data in the chunk repository. 

Experimental results on file systems (Baker et al 1991) show that write accesses are significantly rare 
when compared to read accesses. Relying on this assumption, the overall performance of local file accesses 
should not be significantly affected by the processing overhead of write operations. 

To deal with the deletion of unused chunks from the repository, each chunk maintains a reference counter 
that is incremented each time a new reference is set to that chunk. Conversely, that counter is decremented 
when a reference to it is removed from the file system's structures. This can occur when a previously 
replicated file is removed from the set of replicated files or as a result of update log truncation, described in 
Section 2.2.3. 

Figure 3. Example of replica content storage using the chunk repository. 



2.2.3. Log truncation 
A fundamental requirement imposed by the typically scarce memory resources of mobile devices is that 

the storage overhead associated with update logs must be kept low. Haddock-FS uses a log truncation scheme 
that ensures that the total memory requirements of update logs are limited by a configurable constant size. 
Depending on each device's memory resources, such maximum value should be set to an adequate amount. 

In order to attain high availability, replicas must be able to continuously receive update requests, despite 
such log size limit. Thus, in order to accept new updates, the oldest logged updates may have to be discarded. 

An update that has already been received at all replicas of the logical file may be safely discarded from 
their logs. Hereafter, we will designate such updates as safe. A non-safe stable update, in turn, is not 
guaranteed to have been received at all replicas but has been applied onto the stable value of, at least, the 
replica that holds it in its log. As a consequence, incremental reconciliation between replicas becomes 
disabled if the version delta includes the discarded update. Since the stable value contents can still be copied 
between the reconciling replicas, consistency is not affected. 

In the case of a tentative update, however, a replica manager must ensure that it is applied to its stable 
replica value before discarding it. Otherwise, the update information might be lost, since that replica may be 
the only one holding the update in consideration. Moreover, the missing tentative update would disallow 
access to the replica's tentative value. 

Upon application of the tentative update the replica's stable value ceases to be stable, since it is no longer 
guaranteed to reflect a stable value. Hence, the replica manager looses its ability to provide a stable view of 
the file. Such ability may be later regained if the replica manager receives information that every tentative 
update that was applied to the replica value has become stable. 

When necessary, in order to bound the memory usage of update logs to a maximum amount, Haddock-FS 
automatically discards safe and stable updates. In the case of tentative updates, the decision is left to the user: 
allow tentative updates to be discarded to achieve high availability; or prohibit it and thus ensure that both 
stable and tentative values always remain accessible. 

3. IMPLEMENTATION 

Haddock-FS is an Installable File System Driver (Murray 1998) for the MS Windows CE.Net 4.2 
embedded operating system. The current version supports the replica consistency protocol, as well as cross-
file and cross-version similarity exploitation optimizations for storage and network usage. Most of the file 
system functions were implemented, which enables using the office applications that are typically bundled 
with Windows CE to access the replicated file system. No modification to the application's code was 
necessary, due to the transparency provided by Haddock-FS's design. This is a very important aspect for 
portability reasons. 

The distributed file system consists of a dynamic link library that exports all the function calls that exist 
in the generic Windows CE file system API. Examples of such functions are CreateFile, CloseFile, ReadFile 
or WriteFile. Using the LoadFSD function of the FSD Manager service of Windows CE, the file system can 
be mounted at run time. 

The server side of each peer resides in a thread of Device Manager process, which is created when the file 
system is mounted. The server thread is continually waiting for remote procedure call requests from other 
peers across the network. Such requests are served upon access to the file system data structures stored in the 
address space of Device Manager process. On the other hand, the file system functions that are exported by 
the dynamic link library constitute the client side of each peer. Most of those functions access the shared data 
structures of the server thread. Interaction between peers is achieved using a remote procedure call library 
developed along with Haddock-FS. 

4. EVALUATION 

Haddock-FS was evaluated through several experiments. All measurements were obtained while running 
one or more Haddock-FS peers on the Windows CE.Net 4.2 Emulator on a Pentium III 1GHz computer. The 



emulated platform provided an equivalent to an x86 embedded device with 48MBytes RAM, running 
Windows CE.Net 4.2.3 

To evaluate Haddock-FS's performance with practical workloads, we used an unmodified version of the 
MS WordPad word processing application to access replicated files. This application is typically bundled 
with Windows CE.Net devices. 

The first experiment measured the effectiveness of local replica content storage, based on the use of a 
chunk repository. In order to obtain realistic measurements, we simulated the composition of the present 
paper using 19 different backup versions of its source text, ordered chronologically. Each version contents 
were individually applied to a local file replica by using the WordPad application to open, write and close 
such contents to the replica. 

The results show that the optimal expected chunk size for the used workload is 512 bytes, which achieved 
a 47% reduction in memory usage by use of the chunk repository, in comparison to a non-optimized 
approach (that is, without cross-file, cross-version content similarity exploitation). On the other hand, the 
performance overhead on file access times were not significant when compared to Windows CE.Net native 
local file system counterpart. Read accesses to a file holding no more than eight updates in its log were, on 
average, 14% slower than if the local file system was used. Write accesses are strongly dependant on whether 
the written chunks are already stored in the chunk repository or not, as shown in Figure 4. Namely, the first 
update was significantly expensive (17 times slower than a similar access to the local file system), since 
every written chunk had to be added to the repository. From then on, file updates were, on average, 39% 
faster than the local file system, due to the previous existence of common chunks in the repository. 

Finally, a more complete experiment was conducted, in which two Haddock-FS peers collaboratively 
issued updates to a shared replicated file using intra-group consistency mode. The considered set of updates 
was the same as the previous experiment, though distributed by both peers. Figure 5 shows the evolution of 
the update log of the non-primary replica throughout the experiment. The obtained results showed that, for a 
total updated content of 532Kbytes, the replica in consideration only had to store 237Kbytes using the chunk 
repository, which represents a 55% reduction in memory usage. Moreover, network usage also observed a 
significant optimization. From a total amount of 460Kbytes that needed to be transmitted during 
reconciliation sessions between peers upon acquisition of the write token, only 237Kbytes were effectively 
sent. Hence, a 48% optimization was accomplished. 

5. RELATED WORK 

The issue of optimistic data replication for loosely coupled environments has been addressed by a number 
of projects. Such previous work has the common goal of achieving high data availability, whether in the form 
of a file system, a database or a collection of objects. 

However, most of the proposed solutions do not assume that their replicas will be held at devices doted 
with poor memory and network bandwidth resources. In particular, effective replica storage and transference 
optimization mechanisms are absent from most of the work that is presented below. Thus, their practical 
application to mobile ad-hoc scenarios is, in practice, inadequate. 

Ladin et al. (1992) proposed a framework for providing highly available optimistic replication services 
for applications with weak consistency requirements. Adaptability to applications with stronger consistency 
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Figure 4. Local file access times. 
Figure 5. Log evolution of non-primary replica throughout 

collaborative intra-group consistency mode experiment. 



needs is provided by two differentiated update types, at the cost of availability: a replica manager is required 
to belong to a majority partition in order to generate such update types. However, convergence to a common 
stable value is not guaranteed, which may be intolerable on most semantic domains. On the other hand, log 
truncation follows the rule that only safe updates may be discarded, which may require large memory 
resources if some replica managers are frequently unavailable. 

The Bayou System (Demers et al 1994) is an optimistic database replication system, which relies on 
application-specific conflict detection and resolution procedures to attain adaptable consistency guarantees. 
The non-transparent character of Bayou's approach, however, prohibits the use of already existing 
applications, in contrast to Haddock-FS's solution. 

Similarly to Haddock-FS, Bayou adopts a primary commit scheme to achieve eventual convergence to a 
common stable replica value. However, Bayou's replica managers are allowed to discard logged updates only 
when they become stable. Log truncation is, hence, dependent on the operation of a single point of failure 
(the primary replica manager), whose unavailability may imply log sizes that are impractical for resource 
constrained replica managers. 

Keleher (Keleher 1999) proposes a replicated object protocol that eliminates the single point of failure of 
the primary commit scheme by employing an epidemic voting scheme for the purpose of reaching a 
consensus concerning a common stable value. 

Roam (Ratner, Reiher and Popek 1999) is an optimistic replicated file system that provides a serverless 
service, intended for mobile networks. Its consistency protocol does not require replica managers to store an 
update log, which eliminates the significant memory overhead that is typically imposed by such a data 
structure. Nevertheless, Roam's consistency protocol does not regard any notion of a stable replica value. 
This important limitation restricts Roam's applicability to applications whose correctness criteria are 
sufficiently relaxed to tolerate dealing only with tentative data. 

Another proposal for distributed file system for mobile networks is that of AdHocFS (Boulkenafed and 
Issarny 2003), which explicitly addresses the co-present collaborative scenarios that are enabled by mobile 
ad-hoc networks. AdHocFS exploits the high connectivity of such ad-hoc groups of replica managers by 
enforcing a pessimistic strategy amongst the group members. 

Despite supporting such mobile ad-hoc scenarios, AdHocFS's architecture is still based on the existence 
of fixed server infrastructures, where the stable values of files are held. This means that, should that 
infrastructure be unavailable, mobile users and applications are restricted to accessing merely tentative data. 
This limitation may not be acceptable to many application domains. 

Kang, Wilensky and Kubiatowicz (2003) have proposed a log truncation scheme that relies on an aging 
method based on roughly synchronized clocks. Haddock-FS' log truncation scheme resembles such method 
in the sense that any type of update, regardless of its stability state, may be discarded. However, Haddock-
FS's solution is able to determine if a tentative update is about to be discarded, so as to notify the user that 
access to the stable value is no longer possible. In contrast, discarding updates based solely on their roughly 
synchronized age disallows providing such consistency statements. 

6. CONCLUSIONS 

In this paper we present the architecture and implementation of Haddock-FS, a replicated file system for 
resource constrained mobile devices. Our proposal is designed to meet the information sharing requirements 
imposed by mobile ad-hoc scenarios, in order to provide a viable support for co-present collaborative 
activities. 

Namely, such requirements are the lack of a pre-existing infrastructure, the high topological dynamism of 
these networks, the relatively low bandwidth of wireless links, as well as the limited storage and energy 
resources of mobile devices. 

Haddock-FS is based on an optimistic consistency protocol adapted to the network bandwidth and device 
memory constraints of these environments. Namely, through the use of an adaptable log truncation scheme 
and a cross-file, cross-version content similarity exploitation mechanism. Experimental results obtained from 
expected workloads show that Haddock-FS accomplishes significant network and memory usage 
optimizations when compared to traditional solutions. 



As future work, we intend to further evaluate Haddock-FS by deploying it on real handheld mobile 
devices communicating through Bluetooth4 and WiFi5 wireless networks. Moreover, we plan to extend 
Haddock-FS’s consistency model in order to support more adaptable consistency policies that may be better 
suited to potential mobile usage scenarios. 
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