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ABSTRACT 
The emergence of more powerful and resourceful mobile devices, as well as new wireless communication 
technologies, is turning the concept of mobile ad-hoc networking into a viable and promising possibility for 
ubiquitous information sharing. However, the inherent characteristics of mobile ad-hoc networks bring up 
important challenges for any embedded application developed with the goal of information sharing in the novel 
usage scenarios enabled by mobile ad-hoc environments. This paper proposes transparent system-level support 
for Windows CE .Net applications by means of a replicated file system, Haddock-FS. Haddock-FS is based on 
an adaptable optimistic consistency protocol that provides a highly available access to a weakly consistent view 
of file, while delivering a strongly consistent view to more demanding applications. In order to effectively cope 
with the network bandwidth and device memory constraints of these environments, Haddock-FS employs a 
cross-file, cross-version content similarity exploitation mechanism. 
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1. INTRODUCTION 
The evolution of the computational power and 

memory capacity of mobile devices, combined with 
their increasing portability, is creating computers that 
are more and more suited to support the concept of 
ubiquitous computation [Wei91]. As a result, users 
are progressively using mobile devices, such as 
handheld or palmtop PCs, not only to perform many 
of the tasks that, in the past, required a desktop PC, 
but also to support innovative ways of working that 
are now possible. At the same time, novel wireless 
communication technologies have provided these 
portable devices with the ability of easily interacting 
with other devices through wireless network links. 
Inevitably, effective ubiquitous information access is 
a highly desirable goal. 

Many real life situations already suggest that 
users could benefit substantially if allowed to 

cooperatively interact using their mobile devices and 
without the requirement of a pre-existing 
infrastructure. A face-to-face work meeting is an 
example of such a scenario. The meeting participants 
usually co-exist within a limited space, possibly for a 
short period of time and may not have access to any 
pre-existing fixed infrastructure. 12

If each participant holds a mobile device with 
wireless capabilities, a mobile ad-hoc network 
[Cor99] may serve the purposes of the meeting. This 
way, a report held at one participant’s handheld 
device might be shared with the remaining meeting 
participants’ devices, while its contents are analyzed 
and discussed. Furthermore, each participant might 
even update the shared report’s contents, thus 
contributing on the ongoing collaborative activity. 

One interesting solution for ubiquitous 
information sharing is through the use of a 
distributed file system. This approach allows already 
existing applications to access shared files in a 
transparent manner, using the same programming 
interface as that of the local file system. However, 
the nature of the scenarios we are addressing entails 
significant challenges to an effective DFS solution to 
be devised. The following lines introduce the main 
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requirements imposed by such challenges, which 
determined the architectural options of our 
contribution. 

High availability. The high topological 
dynamism of mobile ad-hoc networks entails 
frequent network partitions. Moreover, the possible 
absence of a fixed infrastructure means that most 
situations will require the services within the network 
to be offered by mobile devices themselves. Such 
devices are typically severely energy constrained. As 
a result, the services they offer are susceptible of 
frequent suspension periods in order to save battery 
life of the server's device. From the client's 
viewpoint, such occurrences are similar to server 
failures.  

These aspects emphasize the need for high 
availability replication services, so as to minimize the 
effects of the expectable network partitions and 
device suspension periods. Pessimistic replication 
approaches, employed by conventional distributed 
file systems, such as NFS [Now98] or AFS [Mor86], 
are too restrictive to fulfill such a requirement.  

Adaptability to different correctness criteria. 
Optimistic replication strategies offer high 
availability as a trade-off for consistency. While 
certain applications are able to benefit from such 
increased availability, some application semantics 
demand stronger consistency guarantees. In order to 
be adaptable to a wider set of applications, replicated 
systems should offer multiple consistency levels: 
from a relaxed consistency, highly-available to a 
sequentially consistent mode of replica access. 

Adaptation to resource-constrained devices. 
Whichever strategy is taken, the memory and 
bandwidth limitations of mobile devices and wireless 
links, respectively, must be taken into account. For 
optimistic strategies, the update log is the main 
memory overhead, while network usage is typically 
dominated by replica synchronization.  

This paper describes Haddock-FS, a transparent 
replicated file system for Windows CE .Net 
collaborative applications, including .Net Compact 
Framework  applications. Haddock-FS is based on a 
highly available optimistic consistency protocol. In 
order to cope with the resource constraints of mobile 
devices, Haddock-FS employs content similarity 
exploitation mechanisms. The paper focuses on the 
main implementation issues regarding Haddock-FS 
and the Windows CE .Net development environment. 
Furthermore, a thorough experimental evaluation 
using actual embedded devices is presented. 

The rest of the paper is organized as follows: 
Section 2 introduces the main architectural aspects. 
Section 3 addresses application programming 
interface aspects, while Section 4 describes the 
implementation of Haddock-FS. Section 5 presents 

experimental results. Finally, Section 6 describes 
related work and Section 7 draws some conclusions. 

2. ARCHITECTURE 
This section briefly introduces the architecture 

of Haddock-FS, as originally proposed in [Bar04a]. 

File System Consistency 
Haddock-FS is a transparent, peer-to-peer 

replicated file system designed to support a broad set 
of usage scenarios that are made possible by mobile 
networks. It relies on a hybrid consistency 
architecture, based on epidemic propagation of 
replica updates, that accommodates for applications 
with differing consistency demands: a tentative view, 
supporting any-time, anywhere read and write access 
to shared files, at the cost of weak consistency 
guarantees; and stable view, offering sequentially 
consistent [Lam79] access to shared files as a trade-
off for reduced write availability.  

Each Haddock-FS mobile peer constitutes a 
replica manager, which is able to receive file system 
requests and perform them upon its local replicas. 
The underlying replication mechanisms are 
transparent to applications, which may access 
Haddock-FS's services by using the same API as the 
one exported by the local file system. Provided the 
accessed files are locally replicated at a given 
Haddock-FS peer, the file system services will be 
available, independently of the current network 
connectivity. 

Update propagation is achieved by pair-wise 
reconciliation sessions between mutually accessible 
replica managers, where replica updates are 
epidemically propagated. Complementarily, 
Haddock-FS uses a primary commit scheme [Ter95], 
in which a single replica of each file, the primary 
replica, is responsible for selecting new stable 
updates and propagating such decision back to the 
remaining replicas. Each file is initially assigned a 
unique primary replica, at which it was originally 
created. After creation, primary replica rights may be 
transferred to other replicas, by exchanging a token 
that identifies the current primary replica. 

For each file replica, a replica manager 
maintains: a stable value, which holds a version of 
the file's stable contents and an update log, which 
records the data specifications of most recent update 
requests that have been accepted by the file replica. 

.
Figure 1. Example of replica content storage



Content storage and propagation 
The inherent memory and bandwidth constraints 

of mobile devices and wireless links are severe 
limitations to the effectiveness of a distributed file 
system for ad-hoc environments. For this reason, 
Haddock-FS tries to reduce the size of update logs 
stored at each device, as well as of update data to be 
transferred during replica reconciliation. 

This is achieved by exploiting the cross-file and 
cross-version similarities that exist within the 
replicated data held by Haddock-FS's mobile peers. 
Such approach is based on that of the Low-
Bandwidth File System (LBFS) [Mut01]. 

The basic idea of the content storage and 
transference scheme consists of applying the SHA-1 
[NIS95] hash function to portions of each replica's 
contents; each portion is called a chunk. The 
obtained hash values can be used to univocally 
identify their corresponding chunk contents. From 
this assumption, if two chunks produce the same 
output upon application of the SHA-1 hash function, 
then they are considered to have the same contents.  

A content-based approach is employed to divide 
replica contents into a set of variable-size non-
overlapping chunks, in order to minimize the effect 
of insert-and-shift operations in the global chunk 
structure of a replica [Mut01]. 

Haddock-FS extends the use of LBFS's strategy 
to both local storage and network transference of 
replicated file data. Our solution considers the 
existence, on each file system peer, of a common 
chunk repository which stores all data chunks, 
indexed by their hash value, that comprise the 
contents of the files that are locally replicated at that 
peer. The data structures associated with the content 
of locally replicated files simply store references to 
chunks in the chunk repository. This applies both to 
the update log and the stable value of each replicated 
file. Hence, the contents of an update or replica value 
consist of a singly linked list of references to data 
chunks, stored in the chunk repository (see Figure 1). 
So, if different files or versions of the same file 
contain data chunks with similar contents, then they 
will share references to the same entry in the chunk 
repository, thus reducing memory usage. 

Read accesses to a file's contents can be served 
by a single indirect memory access to the chunks 
referenced by the chunk references stored in the file's 
data structures. Serving a write request upon a local 
replica is, in turn, a more expensive operation. In 
order to optimize situations where already stored 
contents are modified in a partial region, an 
incremental chunk update algorithm [Bar04b] is 
used. Such algorithm ensures that only a minimum 
set of affected chunks, from the original contents 
chunk list, is actually re-evaluated. 

Update propagation between peers also makes 
use of the chunk repositories of each peer. When a 
chunk has to be sent across the network to another 
peer, only its hash value is firstly sent. The receiving 
peer then looks up its chunk repository to see if that 
chunk is already stored locally. If so, it avoids the 
transference of that chunk's content and simply stores 
a reference to the already existing chunk. Otherwise, 
the chunk contents are sent and a new chunk is added 
to the repository. 

3. Application Programming Interface 
Haddock-FS exports the same application 

programming interface (API) as the standard file 
system API of Windows CE .Net. Examples of such 
interfaces are the standard CreateFile, CloseFile, 
ReadFile and WriteFile. Therefore, any existing 
Windows CE .Net application that is originally built 
to access the local file system may transparently use 
Haddock-FS’s replicated file services. 

In particular, if one considers application 
programming using the .NET Compact Framework, 
programmers may continue to use conventional class 
libraries such as System.IO.FileStream or 
System.IO.File to access and manipulate file system 
objects of Haddock-FS. Since the implementation of 
these classes relies on the standard file system API, 
file system objects located within Haddock-FS’s 
name space may be transparently accessed. 

Nevertheless, some specific aspects of Haddock-
FS’s behavior are not controllable by the 
conventional file system API; namely, the aspects 
related to the replication protocol. This implies that 
some extended control must be provided beyond the 
conventional file system API. Such control should 
allow users to perform replication operations while 
running replication-blind applications that solely rely 
on the conventional file system API to manipulate 
Haddock-FS’s objects. Examples of such operations 
are switching from a tentative to a stable view of an 
opened file, and vice-versa, and to transfer primary 
replica rights to another accessible replica. 
Replication control should also be granted to 
programmers that wish to develop replication-aware 
applications for use with Haddock-FS. 

Replication control is provided by means of 
reserved control codes passed to the standard 
DeviceIoControl interface, also exported by 
Haddock-FS. The actual calls to DeviceIoControl are 
performed by a replication control class library, 
which replaces the interaction with DeviceIoControl 
with a more programmer-friendly interface. 
Currently, a replication control class library is 
available for use by .Net Compact Framework 
applications, which extends the standard 
System.IO.FileStream class. Illustrative methods of 
the class are shown in Table 1. 



bool switchToTentativeView(); 
bool switchToStableView(); 
bool grantPrimaryRights(RepId destRep); 
Table 1. Example of replica control class methods. 

4. Implementation 
Haddock-FS is an Installable File System Driver 

[Mur98] for the MS Windows CE .Net embedded 
operating system. The current version supports the 
replica consistency protocol, as well as cross-file and 
cross-version similarity storage and network usage 
optimizations. All relevant file system functions are 
implemented. Interaction between peers is achieved 
using a remote procedure call library that was 
developed along with Haddock-FS. 

Installable File System Driver 
Haddock-FS’s API is exported by an installable 

file system driver (IFSD), in the form of a dynamic 
link library. Such programming interface is 
comprised of file system functions, which form the 
client side of each Haddock-FS’s peer. Using the 
LoadFSD function of the FSD Manager service of 
Windows CE, the file system can be mounted at run 
time. 

The server side of each peer resides in a thread 
of the Device Manager process that is created when 
the file system is mounted. The server thread is 
continually waiting for remote procedure call 
requests from other peers across the network. Such 
requests are served upon access to the file system 
data structures stored in the address space of Device 
Manager process. On the other hand, the file system 
functions that are exported by the dynamic link 
library constitute the client side of each peer. Most of 
such functions access the shared data structures of 
the server thread. 

4.1.1 Data structures 
Haddock-FS maintains a collection of data 

structures in the address space of the Device 
Manager process, where the IFSD is loaded. Most of 
the exported file system functions access and modify 
such data structures when called. The most relevant 
data structures are as follows. 
 Chunk repository, as described in Section 2. 
 Root directory, which contains a hierarchical 

representation of the file system objects 
(directories and files) that are currently known 
by the local peer, including their relevant file 
system attributes; their creation, modification 
and access times and read-only, hidden or 
archive flags. In the case of locally replicated 
file objects, replication information is also 
included. 

 Open file table, holds entries for the files that are 
currently opened by some process. Each entry 
contains information about the current file 

pointer position, as well as the share mode and 
access type, specified when the file was opened. 

4.1.2 Exported File System Interfaces 
The file system interfaces that are exported and 

implemented by Haddock-FS’s IFSD may be 
grouped into the following categories [Mur98]: 

1. Device event interfaces, which handle the 
initialization and termination procedures of the file 
system driver. These events correspond, respectively, 
to the MountDisk and UnmountDisk functions. Such 
functions are not available to applications through 
the file system API. Instead, they are only called by 
FSD Manager in order to mount or unmount the 
IFSD. The MountDisk function is responsible for: 
registering a volume where Haddock-FS’s shared file 
system structure will be accessible to applications; 
initializing the local file system data structures and 
RPC services; and creating a server thread, which 
will handle all remote requests from other Haddock-
FS peers. Inversely, the UnmountDisk function 
handles deregistration of the file system volume and 
termination of the server thread. 

2. Path-based interfaces, which access or modify 
file system objects that are identified by their 
alphanumeric path names when the interface is called 
by applications, such as CreateDirectoryW. Every 
path-based function first decomposes and analyzes 
each path name argument so as to locate the 
corresponding element in the root directory structure. 
The requested operation is then performed. 

3. Handle-based interfaces, which access or 
modify files that are identified by a previously 
obtained file handle, such as ReadFile or WriteFile. 
A file handle is obtained by a call to the CreateFileW 
function, in which a path name is passed as an 
argument to identify the desired file. Additionally, 
other relevant arguments specify the intended share 
mode and type of access. Similarly to any path-based 
function, the supplied path name is used to obtain a 
reference to the corresponding file element in the 
root directory structure. If found, the open file table 
is examined to verify that no sharing conflicts will 
occur with the current entries in that table. Finally, if 
such requirement is fulfilled, a new entry is then 
inserted into an empty slot of the open file table and 
its position within the table is returned. Such integer 
value is a file handle that must be used by succeeding 
calls to handle-based file system functions to the 
same opened file. 

4. Find interfaces, which allow applications to 
iterate through the list of file system objects whose 
path name matches a given search string. Namely, 
FindFirstFileW, FindNextFileW and FindClose. 

Remote Procedure Call Library 
The developed RPC library is based on the 

Winsock 2.0 network programming interface and 



incorporates an interface description language (IDL) 
and its respective compiler. The IDL allows 
programmers to specify the remote procedures that 
will constitute their distributed application (in this 
case, the Haddock-FS driver itself). Accordingly, the 
compiler automatically generates program code that 
allows the distributed application to call and serve 
the specified remote procedures. 

It should be emphasized the absence of any 
available native RPC services in Windows CE. 
Although the available DCOM services of Windows 
CE are based on an underlying RPC library, its 
interfaces are not directly available to programmers. 
Furthermore, the RPC components that support 
DCOM are reduced to the subset of features that are 
strictly required by DCOM. 
5. Evaluation 

Haddock-FS was evaluated through several 
experiments. All measurements were obtained while 
running one or more Haddock-FS peers on the 
Arcom VIPER development board, which includes a 
400MHz Intel Xscale-based PXA255 processor with 
64MBytes of RAM and a 32MB of an Intel 
StrataFlash drive. It is worthy to note that such 
experimental platform provides testing conditions 
very similar to the memory and processor 
characteristics found in typical real world settings.  

To evaluate Haddock-FS's performance with 
practical workloads, we used an unmodified version 
of the MS WordPad word processing application to 
access replicated files. This application is typically 
bundled with Windows CE.Net devices. 

Chunk Repository Efficiency 
The first experiment measured the effectiveness 

of local replica content storage, based on the use of a 
chunk repository. We simulated the composition of 
an actual scientific paper [Bar04a] using 19 different 
backup versions of its source text, ordered 
chronologically. The set of backup versions 
represents the real evolution of the paper, sampled 
periodically for approximately six months, from an 
initial version with a few paragraphs to a final 
version with eleven pages occupying 33 Kbytes. The 
size of the versions, as well as the character of 
document is considered to be extremely 
representative of the documents that are normally 
accessed by mobile devices. Each version contents 
were individually applied to a local file replica by 
using the WordPad application to open, write and 
close such contents to the replica. The measured 
optimal expected chunk size for the used workload is 
256 bytes, which achieved a substantial reduction of 
47% in memory usage by use of the chunk 
repository, in comparison to a non-optimized 
approach (that is, without cross-file, cross-version 
content similarity exploitation).  

Finally, a more complete experiment was 
conducted, in which two Haddock-FS peers 
collaboratively issued updates to a shared replicated 
file. The considered set of updates was the same as 
the previous experiment, though distributed by both 
peers. The obtained results showed that, from a total 
amount of 460Kbytes that needed to be transmitted 
during reconciliation sessions between peers upon 
acquisition of the write token, only 237Kbytes (58%) 
were effectively sent. 

Local Access Times 
One experiment measured the impact of 

Haddock-FS replica storage architecture in the 
performance of local file system calls. The 
performance of Windows CE native file system was 
used as the primary evaluation reference. 
Furthermore, the performance of a Transaction-Safe 
File Allocation Table file system mounted on an 
onboard flash drive was also measured. 

The experiment was conducted by running a test 
application that performed and measured the latency 
of write and read file system calls to different 
versions of the paper. In order to deal with 
occasional deviations induced by external factors 
such as the processor workload, the access time 
measurements were repeated several times in the 
same experimental conditions and the average value 
was then considered. 

Haddock-FS read accesses are, on average, 
16,5% slower than the native file system, as shown in 
Figure 2. However, if one considers only read 
accesses to versions with more than 10KBytes, 
Haddock-FS actually outperforms the latter by 1,7%.  

Figure 2. Local access times. 
 
The measured write performance of Haddock-FS 

reflects the extended complexity that is imposed by 
its content similarity exploitation architecture, as 
shown in Figure 2. Write accesses are, on average, 
92% slower than the native file system counterpart. 
Still, the measured write performance of Haddock-FS 
is, on average, 75% better than that of the FlashDisk 
file system. Since most of today’s commercial 
devices are equipped with secondary storage devices 
with similar access performance, this evidence 



suggests that typical mobile users will tolerate 
Haddock-FS’s write access performance. 
6. Related Work 

The issue of optimistic data replication for 
loosely coupled environments has been addressed by 
a number of projects, most of which not assuming 
that replicas will be held by resource-constrained 
devices. Bayou [Ter95] is an optimistic database 
replication system that relies on application-specific 
conflict detection and resolution procedures to attain 
adaptable consistency guarantees. The non-
transparent character of Bayou's approach prohibits 
the use of already existing applications, in contrast to 
Haddock-FS's solution. 

The Roam [Rat99] optimistically replicated file 
system does not require replica managers to store an 
update log, which eliminates the significant memory 
overhead that is typically imposed by such a data 
structure. Nevertheless, Roam's consistency protocol 
does not regard any notion of a stable replica value. 
This limitation restricts Roam's applicability to 
applications with sufficiently relaxed correctness 
criteria that tolerate dealing only with tentative data. 

AdHocFS [Bou03] exploits the high 
connectivity of ad-hoc groups of replica managers by 
enforcing a pessimistic strategy amongst the group 
members. Nevertheless, AdHocFS's architecture is 
still based on the existence of fixed server 
infrastructures, where the stable values of files are 
held. Therefore, should that infrastructure be 
unavailable, users and applications are restricted to 
accessing merely tentative data.  

Finally, content similarity has already been 
exploited for storage purposes by the Pastiche 
backup system [Cox02], so as to minimize storage 
overhead on backed-up contents. However, 
Pastiche’s file system does not employ incremental 
writes to chunked contents; instead, each write 
operation causes the resulting contents to be re-
processed by the chunk division process. Though 
acceptable for back-up operations, such solution may 
not be adequate for partial content modifications. 
7. Conclusions 

Haddock-FS is a replicated file system designed 
to meet the requirements imposed by mobile ad-hoc 
scenarios, in order to provide a viable support for 
collaborative activities. Namely, high availability, 

adaptability to different correctness criteria and 
adaptation to resource-constrained devices. 

Haddock-FS has been successfully implemented 
in Windows CE .Net and tested in Arcom VIPER 
XScale-based development boards. Experimental 
results show that Haddock-FS accomplishes 
significant network and memory usage reductions 
when compared to traditional solutions, while 
attaining acceptable access times. 
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