
A Highly Available Replicated File System for
Resource-Constrained Windows CE .Net Devices1

João Barreto2 and Paulo Ferreira

INESC-ID/IST
Rua Alves Redol N.º 9

1000-029 Lisboa, Portugal

{joao.barreto, paulo.ferreira}@inesc-id.pt

ABSTRACT
The emergence of more powerful and resourceful mobile devices, as well as new wireless communication
technologies, is turning the concept of mobile ad-hoc networking into a viable and promising possibility for
ubiquitous information sharing. However, the inherent characteristics of mobile ad-hoc networks bring up
important challenges for any embedded application developed with the goal of information sharing in the novel
usage scenarios enabled by mobile ad-hoc environments. This paper proposes transparent system-level support
for Windows CE .Net applications by means of a replicated file system, Haddock-FS. Haddock-FS is based on
an adaptable optimistic consistency protocol that provides a highly available access to a weakly consistent view
of file, while delivering a strongly consistent view to more demanding applications. In order to effectively cope
with the network bandwidth and device memory constraints of these environments, Haddock-FS employs a
cross-file, cross-version content similarity exploitation mechanism.

Keywords
Distributed file systems, optimistic replication, mobile ad-hoc networks, Windows CE .Net.

1. INTRODUCTION
The evolution of the computational power and

memory capacity of mobile devices, combined with
their increasing portability, is creating computers that
are more and more suited to support the concept of
ubiquitous computation [Wei91]. As a result, users
are progressively using mobile devices, such as
handheld or palmtop PCs, not only to perform many
of the tasks that, in the past, required a desktop PC,
but also to support innovative ways of working that
are now possible. At the same time, novel wireless
communication technologies have provided these
portable devices with the ability of easily interacting
with other devices through wireless network links.
Inevitably, effective ubiquitous information access is
a highly desirable goal.

Many real life situations already suggest that
users could benefit substantially if allowed to

cooperatively interact using their mobile devices and
without the requirement of a pre-existing
infrastructure. A face-to-face work meeting is an
example of such a scenario. The meeting participants
usually co-exist within a limited space, possibly for a
short period of time and may not have access to any
pre-existing fixed infrastructure. 12

If each participant holds a mobile device with
wireless capabilities, a mobile ad-hoc network
[Cor99] may serve the purposes of the meeting. This
way, a report held at one participant’s handheld
device might be shared with the remaining meeting
participants’ devices, while its contents are analyzed
and discussed. Furthermore, each participant might
even update the shared report’s contents, thus
contributing on the ongoing collaborative activity.

One interesting solution for ubiquitous
information sharing is through the use of a
distributed file system. This approach allows already
existing applications to access shared files in a
transparent manner, using the same programming
interface as that of the local file system. However,
the nature of the scenarios we are addressing entails
significant challenges to an effective DFS solution to
be devised. The following lines introduce the main

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-903100-4-4
Copyright UNION Agency – Science Press, Plzen, Czech Republic

1 This work was partially funded by Microsoft Research.
2 Funded by FCT Grant SFRH/BD/13859.

requirements imposed by such challenges, which
determined the architectural options of our
contribution.

High availability. The high topological
dynamism of mobile ad-hoc networks entails
frequent network partitions. Moreover, the possible
absence of a fixed infrastructure means that most
situations will require the services within the network
to be offered by mobile devices themselves. Such
devices are typically severely energy constrained. As
a result, the services they offer are susceptible of
frequent suspension periods in order to save battery
life of the server's device. From the client's
viewpoint, such occurrences are similar to server
failures.

These aspects emphasize the need for high
availability replication services, so as to minimize the
effects of the expectable network partitions and
device suspension periods. Pessimistic replication
approaches, employed by conventional distributed
file systems, such as NFS [Now98] or AFS [Mor86],
are too restrictive to fulfill such a requirement.

Adaptability to different correctness criteria.
Optimistic replication strategies offer high
availability as a trade-off for consistency. While
certain applications are able to benefit from such
increased availability, some application semantics
demand stronger consistency guarantees. In order to
be adaptable to a wider set of applications, replicated
systems should offer multiple consistency levels:
from a relaxed consistency, highly-available to a
sequentially consistent mode of replica access.

Adaptation to resource-constrained devices.
Whichever strategy is taken, the memory and
bandwidth limitations of mobile devices and wireless
links, respectively, must be taken into account. For
optimistic strategies, the update log is the main
memory overhead, while network usage is typically
dominated by replica synchronization.

This paper describes Haddock-FS, a transparent
replicated file system for Windows CE .Net
collaborative applications, including .Net Compact
Framework applications. Haddock-FS is based on a
highly available optimistic consistency protocol. In
order to cope with the resource constraints of mobile
devices, Haddock-FS employs content similarity
exploitation mechanisms. The paper focuses on the
main implementation issues regarding Haddock-FS
and the Windows CE .Net development environment.
Furthermore, a thorough experimental evaluation
using actual embedded devices is presented.

The rest of the paper is organized as follows:
Section 2 introduces the main architectural aspects.
Section 3 addresses application programming
interface aspects, while Section 4 describes the
implementation of Haddock-FS. Section 5 presents

experimental results. Finally, Section 6 describes
related work and Section 7 draws some conclusions.

2. ARCHITECTURE
This section briefly introduces the architecture

of Haddock-FS, as originally proposed in [Bar04a].

File System Consistency
Haddock-FS is a transparent, peer-to-peer

replicated file system designed to support a broad set
of usage scenarios that are made possible by mobile
networks. It relies on a hybrid consistency
architecture, based on epidemic propagation of
replica updates, that accommodates for applications
with differing consistency demands: a tentative view,
supporting any-time, anywhere read and write access
to shared files, at the cost of weak consistency
guarantees; and stable view, offering sequentially
consistent [Lam79] access to shared files as a trade-
off for reduced write availability.

Each Haddock-FS mobile peer constitutes a
replica manager, which is able to receive file system
requests and perform them upon its local replicas.
The underlying replication mechanisms are
transparent to applications, which may access
Haddock-FS's services by using the same API as the
one exported by the local file system. Provided the
accessed files are locally replicated at a given
Haddock-FS peer, the file system services will be
available, independently of the current network
connectivity.

Update propagation is achieved by pair-wise
reconciliation sessions between mutually accessible
replica managers, where replica updates are
epidemically propagated. Complementarily,
Haddock-FS uses a primary commit scheme [Ter95],
in which a single replica of each file, the primary
replica, is responsible for selecting new stable
updates and propagating such decision back to the
remaining replicas. Each file is initially assigned a
unique primary replica, at which it was originally
created. After creation, primary replica rights may be
transferred to other replicas, by exchanging a token
that identifies the current primary replica.

For each file replica, a replica manager
maintains: a stable value, which holds a version of
the file's stable contents and an update log, which
records the data specifications of most recent update
requests that have been accepted by the file replica.

.
Figure 1. Example of replica content storage

Content storage and propagation
The inherent memory and bandwidth constraints

of mobile devices and wireless links are severe
limitations to the effectiveness of a distributed file
system for ad-hoc environments. For this reason,
Haddock-FS tries to reduce the size of update logs
stored at each device, as well as of update data to be
transferred during replica reconciliation.

This is achieved by exploiting the cross-file and
cross-version similarities that exist within the
replicated data held by Haddock-FS's mobile peers.
Such approach is based on that of the Low-
Bandwidth File System (LBFS) [Mut01].

The basic idea of the content storage and
transference scheme consists of applying the SHA-1
[NIS95] hash function to portions of each replica's
contents; each portion is called a chunk. The
obtained hash values can be used to univocally
identify their corresponding chunk contents. From
this assumption, if two chunks produce the same
output upon application of the SHA-1 hash function,
then they are considered to have the same contents.

A content-based approach is employed to divide
replica contents into a set of variable-size non-
overlapping chunks, in order to minimize the effect
of insert-and-shift operations in the global chunk
structure of a replica [Mut01].

Haddock-FS extends the use of LBFS's strategy
to both local storage and network transference of
replicated file data. Our solution considers the
existence, on each file system peer, of a common
chunk repository which stores all data chunks,
indexed by their hash value, that comprise the
contents of the files that are locally replicated at that
peer. The data structures associated with the content
of locally replicated files simply store references to
chunks in the chunk repository. This applies both to
the update log and the stable value of each replicated
file. Hence, the contents of an update or replica value
consist of a singly linked list of references to data
chunks, stored in the chunk repository (see Figure 1).
So, if different files or versions of the same file
contain data chunks with similar contents, then they
will share references to the same entry in the chunk
repository, thus reducing memory usage.

Read accesses to a file's contents can be served
by a single indirect memory access to the chunks
referenced by the chunk references stored in the file's
data structures. Serving a write request upon a local
replica is, in turn, a more expensive operation. In
order to optimize situations where already stored
contents are modified in a partial region, an
incremental chunk update algorithm [Bar04b] is
used. Such algorithm ensures that only a minimum
set of affected chunks, from the original contents
chunk list, is actually re-evaluated.

Update propagation between peers also makes
use of the chunk repositories of each peer. When a
chunk has to be sent across the network to another
peer, only its hash value is firstly sent. The receiving
peer then looks up its chunk repository to see if that
chunk is already stored locally. If so, it avoids the
transference of that chunk's content and simply stores
a reference to the already existing chunk. Otherwise,
the chunk contents are sent and a new chunk is added
to the repository.

3. Application Programming Interface
Haddock-FS exports the same application

programming interface (API) as the standard file
system API of Windows CE .Net. Examples of such
interfaces are the standard CreateFile, CloseFile,
ReadFile and WriteFile. Therefore, any existing
Windows CE .Net application that is originally built
to access the local file system may transparently use
Haddock-FS’s replicated file services.

In particular, if one considers application
programming using the .NET Compact Framework,
programmers may continue to use conventional class
libraries such as System.IO.FileStream or
System.IO.File to access and manipulate file system
objects of Haddock-FS. Since the implementation of
these classes relies on the standard file system API,
file system objects located within Haddock-FS’s
name space may be transparently accessed.

Nevertheless, some specific aspects of Haddock-
FS’s behavior are not controllable by the
conventional file system API; namely, the aspects
related to the replication protocol. This implies that
some extended control must be provided beyond the
conventional file system API. Such control should
allow users to perform replication operations while
running replication-blind applications that solely rely
on the conventional file system API to manipulate
Haddock-FS’s objects. Examples of such operations
are switching from a tentative to a stable view of an
opened file, and vice-versa, and to transfer primary
replica rights to another accessible replica.
Replication control should also be granted to
programmers that wish to develop replication-aware
applications for use with Haddock-FS.

Replication control is provided by means of
reserved control codes passed to the standard
DeviceIoControl interface, also exported by
Haddock-FS. The actual calls to DeviceIoControl are
performed by a replication control class library,
which replaces the interaction with DeviceIoControl
with a more programmer-friendly interface.
Currently, a replication control class library is
available for use by .Net Compact Framework
applications, which extends the standard
System.IO.FileStream class. Illustrative methods of
the class are shown in Table 1.

bool switchToTentativeView();
bool switchToStableView();
bool grantPrimaryRights(RepId destRep);
Table 1. Example of replica control class methods.

4. Implementation
Haddock-FS is an Installable File System Driver

[Mur98] for the MS Windows CE .Net embedded
operating system. The current version supports the
replica consistency protocol, as well as cross-file and
cross-version similarity storage and network usage
optimizations. All relevant file system functions are
implemented. Interaction between peers is achieved
using a remote procedure call library that was
developed along with Haddock-FS.

Installable File System Driver
Haddock-FS’s API is exported by an installable

file system driver (IFSD), in the form of a dynamic
link library. Such programming interface is
comprised of file system functions, which form the
client side of each Haddock-FS’s peer. Using the
LoadFSD function of the FSD Manager service of
Windows CE, the file system can be mounted at run
time.

The server side of each peer resides in a thread
of the Device Manager process that is created when
the file system is mounted. The server thread is
continually waiting for remote procedure call
requests from other peers across the network. Such
requests are served upon access to the file system
data structures stored in the address space of Device
Manager process. On the other hand, the file system
functions that are exported by the dynamic link
library constitute the client side of each peer. Most of
such functions access the shared data structures of
the server thread.

4.1.1 Data structures
Haddock-FS maintains a collection of data

structures in the address space of the Device
Manager process, where the IFSD is loaded. Most of
the exported file system functions access and modify
such data structures when called. The most relevant
data structures are as follows.
 Chunk repository, as described in Section 2.
 Root directory, which contains a hierarchical

representation of the file system objects
(directories and files) that are currently known
by the local peer, including their relevant file
system attributes; their creation, modification
and access times and read-only, hidden or
archive flags. In the case of locally replicated
file objects, replication information is also
included.

 Open file table, holds entries for the files that are
currently opened by some process. Each entry
contains information about the current file

pointer position, as well as the share mode and
access type, specified when the file was opened.

4.1.2 Exported File System Interfaces
The file system interfaces that are exported and

implemented by Haddock-FS’s IFSD may be
grouped into the following categories [Mur98]:

1. Device event interfaces, which handle the
initialization and termination procedures of the file
system driver. These events correspond, respectively,
to the MountDisk and UnmountDisk functions. Such
functions are not available to applications through
the file system API. Instead, they are only called by
FSD Manager in order to mount or unmount the
IFSD. The MountDisk function is responsible for:
registering a volume where Haddock-FS’s shared file
system structure will be accessible to applications;
initializing the local file system data structures and
RPC services; and creating a server thread, which
will handle all remote requests from other Haddock-
FS peers. Inversely, the UnmountDisk function
handles deregistration of the file system volume and
termination of the server thread.

2. Path-based interfaces, which access or modify
file system objects that are identified by their
alphanumeric path names when the interface is called
by applications, such as CreateDirectoryW. Every
path-based function first decomposes and analyzes
each path name argument so as to locate the
corresponding element in the root directory structure.
The requested operation is then performed.

3. Handle-based interfaces, which access or
modify files that are identified by a previously
obtained file handle, such as ReadFile or WriteFile.
A file handle is obtained by a call to the CreateFileW
function, in which a path name is passed as an
argument to identify the desired file. Additionally,
other relevant arguments specify the intended share
mode and type of access. Similarly to any path-based
function, the supplied path name is used to obtain a
reference to the corresponding file element in the
root directory structure. If found, the open file table
is examined to verify that no sharing conflicts will
occur with the current entries in that table. Finally, if
such requirement is fulfilled, a new entry is then
inserted into an empty slot of the open file table and
its position within the table is returned. Such integer
value is a file handle that must be used by succeeding
calls to handle-based file system functions to the
same opened file.

4. Find interfaces, which allow applications to
iterate through the list of file system objects whose
path name matches a given search string. Namely,
FindFirstFileW, FindNextFileW and FindClose.

Remote Procedure Call Library
The developed RPC library is based on the

Winsock 2.0 network programming interface and

incorporates an interface description language (IDL)
and its respective compiler. The IDL allows
programmers to specify the remote procedures that
will constitute their distributed application (in this
case, the Haddock-FS driver itself). Accordingly, the
compiler automatically generates program code that
allows the distributed application to call and serve
the specified remote procedures.

It should be emphasized the absence of any
available native RPC services in Windows CE.
Although the available DCOM services of Windows
CE are based on an underlying RPC library, its
interfaces are not directly available to programmers.
Furthermore, the RPC components that support
DCOM are reduced to the subset of features that are
strictly required by DCOM.
5. Evaluation

Haddock-FS was evaluated through several
experiments. All measurements were obtained while
running one or more Haddock-FS peers on the
Arcom VIPER development board, which includes a
400MHz Intel Xscale-based PXA255 processor with
64MBytes of RAM and a 32MB of an Intel
StrataFlash drive. It is worthy to note that such
experimental platform provides testing conditions
very similar to the memory and processor
characteristics found in typical real world settings.

To evaluate Haddock-FS's performance with
practical workloads, we used an unmodified version
of the MS WordPad word processing application to
access replicated files. This application is typically
bundled with Windows CE.Net devices.

Chunk Repository Efficiency
The first experiment measured the effectiveness

of local replica content storage, based on the use of a
chunk repository. We simulated the composition of
an actual scientific paper [Bar04a] using 19 different
backup versions of its source text, ordered
chronologically. The set of backup versions
represents the real evolution of the paper, sampled
periodically for approximately six months, from an
initial version with a few paragraphs to a final
version with eleven pages occupying 33 Kbytes. The
size of the versions, as well as the character of
document is considered to be extremely
representative of the documents that are normally
accessed by mobile devices. Each version contents
were individually applied to a local file replica by
using the WordPad application to open, write and
close such contents to the replica. The measured
optimal expected chunk size for the used workload is
256 bytes, which achieved a substantial reduction of
47% in memory usage by use of the chunk
repository, in comparison to a non-optimized
approach (that is, without cross-file, cross-version
content similarity exploitation).

Finally, a more complete experiment was
conducted, in which two Haddock-FS peers
collaboratively issued updates to a shared replicated
file. The considered set of updates was the same as
the previous experiment, though distributed by both
peers. The obtained results showed that, from a total
amount of 460Kbytes that needed to be transmitted
during reconciliation sessions between peers upon
acquisition of the write token, only 237Kbytes (58%)
were effectively sent.

Local Access Times
One experiment measured the impact of

Haddock-FS replica storage architecture in the
performance of local file system calls. The
performance of Windows CE native file system was
used as the primary evaluation reference.
Furthermore, the performance of a Transaction-Safe
File Allocation Table file system mounted on an
onboard flash drive was also measured.

The experiment was conducted by running a test
application that performed and measured the latency
of write and read file system calls to different
versions of the paper. In order to deal with
occasional deviations induced by external factors
such as the processor workload, the access time
measurements were repeated several times in the
same experimental conditions and the average value
was then considered.

Haddock-FS read accesses are, on average,
16,5% slower than the native file system, as shown in
Figure 2. However, if one considers only read
accesses to versions with more than 10KBytes,
Haddock-FS actually outperforms the latter by 1,7%.

Figure 2. Local access times.

The measured write performance of Haddock-FS

reflects the extended complexity that is imposed by
its content similarity exploitation architecture, as
shown in Figure 2. Write accesses are, on average,
92% slower than the native file system counterpart.
Still, the measured write performance of Haddock-FS
is, on average, 75% better than that of the FlashDisk
file system. Since most of today’s commercial
devices are equipped with secondary storage devices
with similar access performance, this evidence

suggests that typical mobile users will tolerate
Haddock-FS’s write access performance.
6. Related Work

The issue of optimistic data replication for
loosely coupled environments has been addressed by
a number of projects, most of which not assuming
that replicas will be held by resource-constrained
devices. Bayou [Ter95] is an optimistic database
replication system that relies on application-specific
conflict detection and resolution procedures to attain
adaptable consistency guarantees. The non-
transparent character of Bayou's approach prohibits
the use of already existing applications, in contrast to
Haddock-FS's solution.

The Roam [Rat99] optimistically replicated file
system does not require replica managers to store an
update log, which eliminates the significant memory
overhead that is typically imposed by such a data
structure. Nevertheless, Roam's consistency protocol
does not regard any notion of a stable replica value.
This limitation restricts Roam's applicability to
applications with sufficiently relaxed correctness
criteria that tolerate dealing only with tentative data.

AdHocFS [Bou03] exploits the high
connectivity of ad-hoc groups of replica managers by
enforcing a pessimistic strategy amongst the group
members. Nevertheless, AdHocFS's architecture is
still based on the existence of fixed server
infrastructures, where the stable values of files are
held. Therefore, should that infrastructure be
unavailable, users and applications are restricted to
accessing merely tentative data.

Finally, content similarity has already been
exploited for storage purposes by the Pastiche
backup system [Cox02], so as to minimize storage
overhead on backed-up contents. However,
Pastiche’s file system does not employ incremental
writes to chunked contents; instead, each write
operation causes the resulting contents to be re-
processed by the chunk division process. Though
acceptable for back-up operations, such solution may
not be adequate for partial content modifications.
7. Conclusions

Haddock-FS is a replicated file system designed
to meet the requirements imposed by mobile ad-hoc
scenarios, in order to provide a viable support for
collaborative activities. Namely, high availability,

adaptability to different correctness criteria and
adaptation to resource-constrained devices.

Haddock-FS has been successfully implemented
in Windows CE .Net and tested in Arcom VIPER
XScale-based development boards. Experimental
results show that Haddock-FS accomplishes
significant network and memory usage reductions
when compared to traditional solutions, while
attaining acceptable access times.

8. References
[Bar04a] Barreto, J. and Ferreira, P.. A Replicated File

System for Resource Constrained Mobile Devices.
Proceedings of IADIS Applied Computing, 2004.

[Bar04b] Barreto, J. Haddock-FS: A Distributed File
System for Mobile Ad-hoc Networks. M.Sc Thesis,
Instituto Superior Técnico, 2004.

[Bou03] Boulkenafed, M. and Issarny, V. Adhocfs:
Sharing files in wlans. Proceedings of the 2nd IEEE
International Symposium on Network Computing and
Applications, Cambridge, MA, USA, 2003.

[Cor99] Corson, S. and Macker, J. Mobile ad hoc
networking (MANET): Routing protocol performance
issues and evaluation considerations. Internet RFC
2501, IETF, 1999.

[Cox02] Cox, L., and Noble, B. Pastiche: Making backup
cheap and easy. Proceedings of 5th OSDI, 2002.

[Lam79] Lamport, L.. How to make a multiprocessor
computer that correctly executes multiprocess
programs. IEEE Transactions on Computers, 1979.

[Mor86] Morris, J. et al. Andrew: a distributed personal
computing environment. Communications of the ACM,
29(3):184–201, 1986.

[Mur98] Murray, J. Inside Microsoft Windows CE.
Microsoft Press, 1998.

[Mut01] Muthitacharoen, A., Chen, B. and Mazieres, D. A
low-bandwidth network file system. SOSP, 2001.

[NIS95] National Institute of Standards and Technology.
FIPS PUB 180-1: Secure Hash Standard. National
Institute for Standards and Technology, USA, 1995.

[Now89] Nowicki, B. Nfs: Network file system protocol
specification. Internet RFC 1094, IETF, 1989.

 [Rat99] Ratner, D., Reiher, P. and Popek, G. Roam: A
scalable replication system for mobile computing.
Mobility in Databases and Distributed Systems,1999.

[Ter95] Terry, D. et al. Managing update conflicts in
bayou, a weakly connected replicated storage system.
Proceedings of the 5th ACM SOSP, 1995.

[Wei91] Weiser, M.. The computer for the twenty-first
century. Scientific American, 265:94–1, 1991.

	INTRODUCTION
	ARCHITECTURE
	File System Consistency
	Content storage and propagation

	Application Programming Interface
	Implementation
	Installable File System Driver
	Data structures
	Exported File System Interfaces

	Remote Procedure Call Library

	Evaluation
	Chunk Repository Efficiency
	Local Access Times

	Related Work
	Conclusions
	References

