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ABSTRACT
Context-aware systems take into account the user’s current
context (such as location, time and activity) to enrich the user
interaction with the application. However, these systems may
produce huge amounts of information that must be efficiently
propagated to a group of people or even large communities
while still protecting the privacy of the participants.

We argue that both scalability and privacy can be ensured by
delaying context propagation until certain conditions are met
and then aggregating such messages both at the syntactic and
semantic level. Since such conditions vary from application
to application, we propose Radiator, a systematic way to
model the propagation characteristics of a distributed context-
aware system.

Our qualitative evaluation shows that Radiator is generic
enough to model the needs of different context propagation
scenarios. To assess the impact of the model on the scalability
of an application, we developed twiRadiator, an adaptation of
Twitter to the Radiator model which, while preserving user
expectations, reduces bandwidth consumption to approx. one
third.
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INTRODUCTION
Context-aware systems take into account the user’s current
context (such as location, time and activity) to enrich the
user interaction with the application [12, 34]. In the last
decade, this topic has seen numerous developments that
demonstrate its relevance and usefulness, a trend that was

further accelerated with the recent widespread availability of
powerful mobile devices (such as smartphones) that include a
myriad of sensors which enable applications to capture the
user environment for a large number of people. Recently,
some commercial applications have started to make use
of this contextual information to provide real-time traffic
information (Waze1) or universities’ hotspots (Bonfyre2),
not to mention Facebook or Twitter whose personal short
messages are complemented with identity, time and location.

These applications can operate on different scales depend-
ing on their purpose: personal, group or community [25].
Whereby personal context-aware applications are designed
for a single individual (e.g., personal finance), group appli-
cations are designed to propagate context among a group of
people who share a common goal or concern (e.g., avoid
interruptions when calling friends [32]). When attaining
such goals is only possible with a large number of people,
applications start operating at a community scale (e.g., traffic
monitoring [20] or noise map of a city [33]).

This distinction is important because, as we move from
personal to group and then to community applications, we
have to face increasing problems related to scalability and
privacy. In fact, it is undoubtedly much easier to propagate
context to a dozen of friends than to thousands of strangers
(obviously, at the individual level this is not even a concern).
For example, as of 2012, there are 175 million tweets (twitter
messages) being sent per day and some of these messages are
distributed to over 19 million users (the number of followers
of Lady Gaga).3 Foursquare4 has millions of users sharing
their location on a regular basis, with more than 600.000
updates per day.5 Also, we are much more sensitive in
revealing personal information to such large groups than we
are to our close group of friends. For example, several people
have been arrested or fired because of messages they posted
on Facebook.6

Traditionally, application designers have decided to apply
completely different mechanisms to the different scales.
Firstly, community applications usually anonymize all
information while group applications rely on trust between
group members to prevent privacy breaches. Secondly,
1http://www.waze.com
2http://www.bonfyreapp.com/
3See http://bit.ly/zOiX8k.
4http://www.foursquare.com
5http://blog.foursquare.com/2010/05/17/607883149/
6http://www.huffingtonpost.com/2011/08/30/arrested-over-
facebook n 942487.html
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group applications propagate context in intact form while
community applications aggregate context from multiple
people into single statistical measures. Thirdly, context
propagation is immediate on group applications while
community applications usually imply some propagation
lag to prevent scalability problems. Finally, community
applications usually present the information in a condensed
form to avoid overwhelming the user with the sheer amount
of captured information, while this is not a problem on group
applications. These differences are summarized in Table 1.

Group Community
Members trust each other All data is anonymized
Context intact Context aggregated
Immediate propagation Delayed propagation
User sees all context info User sees only aggregated info

Table 1. Differences between group and community applications

However, we believe these boundaries will tend to blur in
the future, as the distinction between personal, group and
community goals also start to blur. As an example, consider
the case of weight loss programs assisted by a context-aware
application. These applications track user’s weight on a
daily basis as well as her diet, what she has eaten, how
many times she went to the gym, etc. The main goal is
clearly individual but it’s a well known fact that a group of
overweight people can achieve better results if they work
together.7 On top of that, there is statistical relevant data
from large communities that can help in the weight losing
process, such as knowing that consuming a certain ingredient
is usually related to weight losing from a statistical point of
view. So, weight losing programs could benefit from the three
scales but, since the mechanisms mentioned in the previous
paragraph are usually applied to only one scale, application
programmers usually end up choosing only one scale instead
of embracing a multi-scale approach.

There are several other types of applications suffering from
this problem. Typically, ”friends location” applications are
designed at group scale but if they introduce features such
as ”popular places” they start operating at community scale.
These applications are constantly propagating context be-
tween groups of friends (i.e., their location, current activ-
ity, etc.) to improve coordination between them, promote
serendipitous encounters, etc. However, since they are
already receiving this contextual information, they might as
well discover the most popular spots (e.g., pubs, restaurants)
based on the number of people located there (regardless of
being friends). In Table 2 we present more examples of this
type of applications.

Even when developing applications for just one scale, ap-
plication programmers spend a significant amount of time
designing and programming the context propagation layer, a
relatively generic component which could be reused on mul-
tiple applications. Some frameworks have been developed to
provide a common layer to context-aware applications, but
they are usually focused on abstracting the sensor layer (e.g.,
Context Toolkit [34]) or rely on a publish/subscribe model of
7Take for example the TOPS (Take Off Pounds Sensibly)
organization which is based on weekly support meetings between
its (more than 200.000) members.

propagation (e.g., PACE [21]) which lacks two important fea-
tures for community-level applications (see Table 1): delayed
propagation and anonymization.

Our goal is threefold: to propose a model that (1) is generic
enough to express the context propagation and privacy needs
of distributed context-aware applications8 that are able to
produce context information (according to Definition 1 out-
lined in the Design Section); (2) improves scalability by
substantially reducing the amount of transmitted information
while still fulfilling user expectations; (3) provides a privacy
mechanism out-of-the-box without imposing any effort from
neither the application programmer nor the user.

We address these challenges by proposing Radiator, a context
propagation model that operates equally well on the different
scales of context-aware systems and effectively addresses
scalability and privacy. This model relies on four main
principles:

• Context messages have different urgency levels for dif-
ferent recipients. Some recipients will tolerate (and even
appreciate) some lag on the propagation of certain con-
text messages that they do not consider very important.
Therefore, some messages can be retained before being
propagated.

• Messages that are being retained can be aggregated prior
to their propagation. This aggregation can be a simple
compression or more sophisticated semantic aggregations.
In any case, the final aggregated message is normally much
smaller than the sum of the original individual messages.
This brings two advantages: network bandwidth reduction
(therefore, improved scalability) and less information over-
load for the end user.

• Anonymization can be achieved through proper aggrega-
tion: by aggregating sensible data in such a way that it
is not possible to match that data with the corresponding
individuals while still retaining its statistical usefulness.

• Application programmers should be able to define their
context propagation specific needs with a simple yet ex-
pressive model that maps seamlessly to an easily pluggable
middleware component.

The remainder of this paper is organized as follows. The
next section surveys relevant related work. Then we present
the Radiator model, a very simple yet expressive model
to define different context propagation schemes. The next
section describes a middleware that implements the Radiator
model and that can be easily plugged by programmers into
their context-aware applications. Then, we evaluate our three
goals: generality, scalability and privacy. Finally, we draw
some conclusions.

RELATED WORK
In this section, we review the literature for the usage of aggre-
gation, privacy protection and context propagation techniques
on context-aware systems.
8Applications where context is captured in one place and consumed
in another place, therefore requiring context propagation across
some network.
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Aggregation
In distributed context-aware applications, aggregation may be
performed at two levels: the inference/reasoning level and the
distribution level.

Aggregation at the inference level provides application de-
velopers with data on a higher level of abstraction [4] and is
usually materialized on some kind of semantic aggregation.
For example the Activity widget provided by the Context
Toolkit [34] transforms raw audio data from a microphone
into ”Activity Level” values (none, some or a lot). Many
examples like this exist in the literature (e.g., [29, 38, 35])
but they usually perform the aggregation next to the sensor
creating a strong coupling that prevents reuse. For example,
inferring a street name from a pair of geo-coordinates is
so common that it makes sense to move that logic into
the middleware layer. The Solar system [8] presents a
middleware where aggregation can be composed of multiple
operations parametrized by each application. However, it is
not able to retain messages during a certain period of time,
which would increase the efficiency of the aggregation.

Aggregation at the distribution stage occurs when context was
already captured and processed and is now in the process of
being sent to the client application. This aggregation consists
of gathering into a single large message the content of mul-
tiple smaller messages before propagating it. Even though
the vast majority of the context-aware frameworks propagate
context in single disaggregated messages [1], recent experi-
ments with aggregation have achieved good results [3, 15]. In
both cases, we’re talking about syntactic aggregation: blindly
concatenating single packets into a larger one and possibly
compressing it. Although this yields good compression levels
for unstructured text-based messages, we believe a higher-
level semantic aggregation would be much more effective
with other types of information (e.g., geo-localized messages
or sensor readings). Ideally, the developer should be able
to provide an aggregation function suited to his application
needs that would be executed by the middleware.

Privacy
Distributed context aware applications may expose personal
information such as current location or availability to a
large group of people, raising privacy concerns on end-
users. The increasing pervasiveness of devices that are able
to communicate context information without explicit user
intervention is only aggravating this problem.

In general, privacy mechanisms can be grouped into four
categories [2]:

• Privacy policies - Applications using this technique allow
the user (the context discloser) to provide rules (privacy
policies) that define to whom and to what extent his
context information is revealed to others. This is the most
common technique on both academic and industry social
applications (e.g. Facebook, Twitter) and it is tied to
control and accountability, two important mechanisms for
privacy protection. However, this approach has revealed
multiple problems: it is cumbersome for users to specify
fine-grained policies and users are not particularly good
at it [11]. For example, Gross [19] found that only 1.2%

of Facebook users changed the default privacy settings for
profile search-ability.

• Data perturbation - This type of technique consists of
transforming or partially omitting information before being
delivered to the context consumer, in such a way that it
is impossible to reconstruct the original message while
still keeping (some of) its usefulness [17]. Usually, this
is implemented through encryption [31], noise addition
[17], blurring [24] or chunk replacement [30]. These
techniques are most effective for community-scoped ap-
plications whose primary purpose is gathering statistical
information.

• Anonymization - Using this type of technique, the infor-
mation is delivered intact to context consumers, except for
its author, which is removed or replaced, preventing an
attacker from inferring the real author [7, 14]. The removal
process must affect both directly identifiable attributes
and indirectly identifiable attributes, also known as quasi-
identifiers [18]. Some examples of anonymization tech-
niques are mix routing [10], temporal-spatial cloaking [20]
and hitchhiking [37]. Unlike the other types of technique,
anonymization can usually be parametrized and measured
using well-known metrics such as k-Anonymity [36], l-
Diversity [28] and t-Closeness [26]. The k-Anonymity
metric is based on the idea of generalizing a data record
until it is indistinguishable from the records of at least k -
1 other individuals. For example, this idea can be applied
to location information [20] by computing geographical
areas large enough to contain k locations (and during a
certain period of time), and propagate that area instead of
the individual locations.

• Lookup notification - This technique consists on provid-
ing the user with information of who has consumed his
context information and when [9]. This can occur in real-
time (the user is alerted that someone is consuming his
context information) or a posteriori, by keeping a log of
who has seen which information. Unlike the previous three
techniques, which are applied before data is delivered, this
technique is applied after data delivery (that is, after a
potential privacy breach) so it is usually combined with
other techniques.

Despite extensive research on this subject, the community is
still far from reaching a complete solution that covers the
privacy needs of context-aware applications. Two major con-
cerns are the rigid nature of most approaches and the inability
to cover multi-scale applications (i.e., applications that work
both at group scale and community scale). Consolvo [9]
has shown that privacy settings can’t be rigid - they must
be situation-dependent. However, privacy policies and data
perturbation techniques are usually applied regardless of the
situation. On the other hand, data perturbation techniques are
tied to community-scale applications (given their statistical
bias) while lookup notification techniques are usually applied
to group-scale applications (they don’t scale well - the user
would be overwhelmed with thousands of notifications on
community-scale applications).

Anonymization techniques offer a promising solution to those
concerns because they usually depend on a parameter that
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can be configured for each case (therefore being situation-
dependent) such as, for example, the k or the l in the k-
Anonymity/l-Diversity privacy metrics. Furthermore, they
are easy to implement, don’t depend on the user’s ability
to define privacy rules and actually reflect real-world social
behavior (e.g., people are more comfortable with video-
vigilance on crowded places than on deserted places).

Most of the context-aware frameworks don’t offer any sup-
port for privacy. Some exceptions such as Context Fabric
[23] and PACE [21] allow applications to manage a repository
of privacy policies whose rules are enforced upon access to
information. However, as already mentioned, this approach
relies on users specifying their rules, which has been proven
not to be very effective. Also, to the best of our knowl-
edge, none of the public context-aware frameworks support
parametrized anonymity mechanisms that can be measured
using k-Anonymity or l-Diversity metrics.

Context Propagation
Several context-aware frameworks rely on traditional
publish-subscribe approaches to selectively propagate
context messages (e.g., PACE [21], CFN [8] and AWARE
[5]). On publish-subscribe systems, users subscribe to
topics (subject-based systems) or predicates (content-based
systems) [16]. Then, users feed content into the system
(publish) and the system distributes events matching
subscribers interest with publisher content. Even though
the decoupled nature of this approach makes it attractive
for systems that need to address mobility and heterogeneity
requirements, it assumes a relatively fixed set of matching
rules. Systems where context attributes change very
frequently (e.g., location, speed) require large volumes of
subscribe/unsubscribe messages, leading to wasted resources
and poor scalability.

DESIGN
This section describes Radiator, a generic context propaga-
tion model based on the concept of aggregation. Radiator
assumes a distributed system where a group of personal
sensors (sensors that capture the situation of a person) want
to propagate context messages to others, regardless of their
number (i.e., it works for both group-level and community-
level propagation). In most cases, each person is both
a producer and a consumer of context messages, but the
underlying model is general enough to work on systems
where producers are different than consumers. Additionally,
this model assumes that context messages will always be
propagated albeit some of them can be delayed and/or trans-
formed.

Note that it is up to the application programmer to setup a
model that suits the needs of her application. Even though
the programmer may take into account the user’s input, it is
not the user’s responsibility to setup Radiator.

First, we need to define context as a triplet relating people,
time and the attributes that characterize the environment or
situation of those people during a given time span.

Definition 1 (Context)

Let an attribute Ai to be a tuple (N,V ), where N is a
name representing the attribute (e.g., speed) and V is the
value of that attribute (e.g., 100); P to be a finite set
of people {P1, P2, .., Pn}; t to be a time range between
two timestamps ti..tj; A to be a finite set of attributes
{A1, A2, .., An}.

Context C is a triplet (P , t, A) that represents the
attributes that characterize the situation of a group of
people P during the time span t.

For example, suppose Alice is in New York between Jul 1st
and Jul 3rd. We can define her context C as:

C = ((‘Alice′), ‘01/07′..‘03/07′, ((‘location′, ‘NewY ork′)) .

The Radiator model also introduces the notion of context
aggregation to represent a set of contexts C that share a
certain attribute A, producing an aggregated context CAggr.

Definition 2 (Aggregation)

Let {(P1, t1, A1), .., (Pn, tn, An)} be a set of contexts
and Ac a common attribute such that ∀Ai ∈ A1...An :
Ac ∈ Ai.
Aggr(Ac, {(P1, t1, A1), .., (Pn, tn, An)}) = (P, t, A)⇒
∀Pi ∈ P1..Pn : Pi ∈ P ∧
∀ti ∈ t1...tn : ti ⊆ t ∧
∀Ai ∈ A1...An : Ai ∈ A

For example, it is possible to aggregate:

CAlice = ((‘Alice′), ‘01/07′..‘03/07′, ((‘location′, ‘NewY ork′))

CBob = ((‘Bob′), ‘02/07′..‘04/07′, ((‘location′, ‘NewY ork′))

into an aggregated context:
CAggr = ((‘Alice′, ‘Bob′), ‘01/07′, ‘04/07′], ((‘location′, ‘NewY ork′))

or (if anonymity is required):
CAggr = ((‘A′, ‘B′), ‘01/07′, ‘04/07′], ((‘location′, ‘NewY ork′))

Any function capable of aggregating contexts according to
definition 2 is noted as fAggr. Aggregation can be done
at the raw data level (e.g. compression) or at the semantic
level, taking into account the specific properties of certain
attributes. For example, if the attribute is a geographical
location, a common fAggr is the minimum bounding box -
the smallest rectangle where a set of coordinates are included.
Other common fAggr calculates the mean for continuous
attributes or the median for categorical attributes [13].

Finally, we introduce the notion of aggregability.

Definition 3 (Aggregability)

Let CP be the current context of a given person P and
Cx the context of someone else that the system wants to
propagate to P . The aggregability function G(CP , Cx)
represents how much aggregated Cx must be before
being transmitted to P , taking into consideration his
current context CP .

Therefore, a set of contexts C1 to Cn is only propagated
to P when ∀i ∈ 1..n,G(CP , Ci) = n, n being an
integer.

Sharing and Privacy February 23–27, 2013, San Antonio, TX, USA

252



Informally, the aggregability represents the number of context
messages that must be retained before propagation. If we
define an aggregability function (G) that always returns 4, the
system will always aggregate four context messages before
propagating them. In case we want immediate propagation,
we can define G as a function that always returns 1. Although
returning a simple number has the advantage of keeping the
model very simple, we propose that G returns a tuple in the
following format:

G(CP , Ci)→ {type : value}
type :: [volume|time|people]
Along with the before mentioned value, G must tell if that
value represents a quantity (volume), a time range (time) or
the number of different people contained in the aggregation
(people). If the type is time, context messages will be
aggregated until the number of seconds between the oldest
and newest retained message is equal or greater than value.
The types volume and people are similar in the fact that
they represent the maximum number of retained/aggregated
messages, although volume is the number of different mes-
sages while people represents the number of different people
involved on those messages. For example, if G returns
{people : 4}, the system will aggregate messages until
there are four different people involved, before propagating
them. This distinction is important to implement privacy
management mechanisms as we will describe shortly. Note
that we chose these 3 metrics as the minimal set to fulfill the
context propagation needs of most distributed context-aware
applications (as shown in the Evaluation Section); other
metrics can easily be included without changing Radiator’s
algorithm.

Given these definitions, we can now describe how the Radia-
tor model works. A set of people (P1..Pn) wants to propagate
their current context (CP1 ..CPn ) to everyone, in an efficient
and privacy-manageable way. Every context C is evaluated
against a set of aggregability functions G that will tell how
many other ”similar” Cn must be aggregated with C. If
that aggregation is not possible (i.e., there are not enough
aggregatable pending Cn), than C is appended to a pending
queue. On the other hand, if there are conditions to aggregate,
we can apply an aggregation function fAggr to those contexts
that produces a single aggregated context CAggr. Afterwards,
CAggr is propagated and the corresponding Cn removed from
the pending queue.

This model is much more efficient than traditional immediate
broadcast approaches because it postpones propagation until
a certain level of aggregability is met. Since the aggregability
function reduces a set of context messages into a single
one, it effectively reduces the number of bytes transmitted
over the wire. This is particularly significant when the
message is propagated to a large population, as the message
size reduction is multiplied by the number of recipients.
Moreover, it provides a simple yet powerful mechanism for
privacy management based on the concept of k-anonymity
[36]. The k-anonymity principle tells that we can achieve
anonymity by aggregating at least k records with a common
attribute, making them indistinguishable from each other. Im-
plementing k-anonymity using this model is straightforward

- the developer only has to define an aggregability function
G → ({people : k}). Note that the model allows other
anonymity metrics such as l-diversity [28] (e.g., using an
aggregability function such as G→ ({diverse salary : l}))
or t-closeness [26]. We only implemented support for k-
anonymity because of its simplicity and generalized adoption.

As an example, let’s say we want to propagate only context
information related to at least two different people. There-
fore, we define an aggregability function
G→ {people : 2}.
A typical message flow would be:

t:0 Alice wants to propagate CAlice1 . Since there are not
enough messages to aggregate with, it’s appended to the
pending queue.

t:1 Alice wants to propagate CAlice2 . There is already one
message to aggregate with, but it’s from the same person,
so it’s also appended to the pending queue.

t:3 Bob wants to propagate CBob1 . We can aggregate this
message with the other pending messages and get an
aggregated context of at least two people. So we apply
fAggr(CAlice1 , CAlice2 , CBob1) to get CAggr. CAggr is
propagated to everyone.

Until now, we have considered only constant aggregability
functions, that return the same value independently of the
actors involved. However, consider the case where we want to
have different propagation rules depending on whether people
are friends or strangers. For example, a certain application
may want to immediately propagate a person’s context to
her friends but aggregate messages up to 40 seconds when
they are being propagated to strangers. We could define such
function as follows:

G(CP , CPi
)→ {volume : 1} ⇐⇒ is friend(Pi, P )

G(CP , CPi
)→ {time : 40} ⇐⇒ is stranger(Pi, P )

We present other examples of aggregability functions as well
as an evaluation of their generality in the Evaluation Section.

IMPLEMENTATION
We developed a middleware component that implements the
Radiator model described in the Design Section, in order to
(1) provide a reference implementation for developers who
wish to use this model on their applications and (2) conduct
several experiments to evaluate the model regarding ease of
use and performance/scalability. The results of the latter are
presented in the Evaluation Section.

The middleware component is written in Python and it can
be downloaded from https://bitbucket.org/palves/radiator.
From a client perspective (a developer who wishes to inte-
grate her context-aware application with the Radiator middle-
ware), there are only two classes to know about: Context
and RadiatorMiddleware. The class Context con-
tains all the information pertaining to a certain context mes-
sage according to Definition 1: people, time and a list
of attributes. The RadiatorMiddleware class is the
primary interface from which to send and receive context
messages (represented as Context objects). The construc-
tor receives an aggregability function that complies with
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# Scenario Description Aggregability function
1 Traffic monitoring Aggregate speedometer and GPS data {time : 300}

within 300 seconds periods
2 Road hazards detection Aggregate vertical accelerometer and GPS data {volume : 5}

until 5 hazards detected
3 Popular spots Aggregate location until 10 different people in the same spot {people : 10} if stranger

Friends location but for friends send immediately (non-aggregated) {volume : 1} if friend
4 Facebook likes Aggregate likes from strangers within 300 seconds periods, {time : 300} if stranger

likes from friends of friends until there are 5 and likes {volume : 5} if friend of friend
from direct friends with a maximum delay of 30 seconds {time : 30} if friend

5 Friends location Aggregate location based on how far you are from the {volume : distance}
in crowded spaces recipient (further away implies more aggregation)
(concerts, street markets)

6 Stock market alerts Aggregate stock market information during a period {time : 1000/1 + number of shares}
of time proportional to the number of shares owned by the
recipient (higher number implies less aggregation)

7 Weight loss program Anonymize weight information based on the recipient’s {people : weight difference}
weight (the closer the weight of recipient is from the sender
the less anonymous it is)

8 Anonymize twitter Anonymize tweets with Egyptian revolution related hashtags {people : 50} if #sidibouzid or #Jan25
Table 2. Different context propagation scenarios and the corresponding aggregability functions

1 def m y a g g r e g a b i l i t y ( r e c i p i e n t , c o n t e x t ) :
2 # a g g r e g a t e s u n t i l 4 h a z a r d s d e t e c t e d or
3 # 5 m i n u t e s s i n c e t h e l a s t p r o p a g a t i o n
4

5 i f c o n t e x t . a t t r i b u t e s [ ’ h a z a r d d e t e c t e d ’ ] :
6 re turn { ’ volume ’ : 4}
7 e l s e :
8 re turn { ’ t ime ’ : 300} # 300 s e c o n d s
9

10 def mean ( a t t r i b u t e n a m e , a t t r i b u t e s l i s t ) :
11 # r e t u r n s t h e mean v a l u e o f a t t r i b u t e s named
12 # ’ a t t r i b u t e n a m e ’ i n ’ a t t r i b u t e s l i s t ’
13 . . .
14

15 # s t a r t t h e midd leware e n g i n e
16 eng ine = Middleware ( a g g r e g a b i l i t y = m y a g g r e g a b i l i t y ,
17 a g g r e g a t i o n f u n c t i o n s ={ ’ h a z a r d d e t e c t e d ’ : mean ,
18 ’ speed ’ : mean })
19

20 # r e g i s t e r some p a r t i c i p a n t s
21 eng ine . r e g i s t e r ( ’ p1 ’ )
22 eng ine . r e g i s t e r ( ’ p2 ’ )
23

24 # p r o p a g a t e a c o n t e x t message
25 eng ine . p r o p a g a t e ( C o n t e x t ( ’ p2 ’ , now , { ’ speed ’ : 100 } ) )
26

27 def r e c e i v e ( c o n t e x t ) :
28 # c a l l e d whenever a c o n t e x t i s r e c e i v e d .
29 # t h e c o n t e x t may be a g g r e g a t e d .
30

31 # r e g i s t e r t h e c a l l b a c k f o r r e c e i v i n g messages
32 eng ine . r e g i s t e r r e c e i v e r ( r e c e i v e )

Listing 1. Code example of Radiator middleware usage

Definition 3 and an optional list of aggregation functions
(Definition 2), as show on lines 16-18 in Listing 1. Each
participant then registers itself (lines 21-22) after which it
can start propagating messages as well as receiving messages
propagated by others.

The rest of the process is also exemplified in Listing 1. After
the RadiatorMiddleware initialization, the application
can propagate context (line 25) or can receive context that
was propagated by others (lines 27-29). Since the reception
of context is asynchronous, the developer has to register a
callback to do so (line 32).

Note that the actual network topology of the system is
completely transparent to the developer. Even though right
now this is implemented following a centralized model, it
can easily accommodate other models such as the partitioned
or the decentralized topologies without breaking the client
application.

EVALUATION
The Radiator model is simple enough to be easily understood
by application developers yet sufficiently expressive to define
a wide range of needs usually found on distributed context-
aware applications. In this section, we first measure its ex-
pressiveness by applying the Radiator model to eight scenar-
ios where context propagation across the network is crucial
to accomplish the application’s goals. Note that, although
evaluating the usability of this model (for developers) was
not the goal of this paper, our experiments have given good
indications on this subject.

Then, we present twiRadiator, a Twitter application built
over the Radiator model to evaluate the impact of different
propagation rules on (1) the system scalability and (2) user
expectations. With over 100M users, Twitter is arguably one
of the largest context-propagation applications and has faced
multiple scalability problems along the time9.

Finally, we evaluated how the Radiator model can protect the
privacy of Twitter participants in sensitive situations such as
the Egyptian revolution.

Is the model generic enough?
Despite the simplicity of the Radiator model, it is still power-
ful enough to describe a large variety of context propagation
scenarios. Consider the scenarios and corresponding aggre-
gability functions on Table 2. For example, traffic monitoring
applications [20, 22] (first row of Table 2) continuously
capture the speed and position of a large group of vehicles
to identify places suffering from traffic congestion. This
information is then broadcast to all vehicles possibly alerting
9See http://tcrn.ch/wi7rJ3
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# Scenario Aggregation function
1 Traffic monitoring avg(speed) by location
2 Road hazards detection sum(hazards) by location
3 Popular spots count(people) by location
4 Facebook likes sum(likes) by object
5 Friends location list(people) by distance

in crowded spaces
6 Stock market alerts newest(values) by share
7 Weight loss program list(people) by weight
8 Anonymize twitter list(people) by tweet

Table 3. Different context propagation scenarios and the corresponding
aggregation functions

the drivers to take alternative routes. Since traffic congestion
occurs during a relatively long period of time (at least, dozens
of minutes), it can be aggregated within 5 minutes (300
seconds) periods without losing its usefulness and relevance.
Using the radiator model, implementing this propagation
scheme is as simple as defining an aggregability function that
always returns {time:300}.
The aggregation itself is performed by the aggregation func-
tion (see Definition 2 in the Design Section). If the developer
does not provide any aggregation function, Radiator applies
a simple concatenation between the messages to aggregate.
To achieve higher compression levels (and therefore reduce
network bandwidth), the developer should provide an aggre-
gation function that takes into account the specific needs of its
application. Table 3 shows some examples of such functions.
In the traffic monitoring case (first row in Table 3), we are
concerned about the average speed within a geographical
region. For example, if the average speed is near zero, it is
reasonable to assume that there is traffic congestion within
that particular region. The pseudo-code of such function is
shown in Listing 2.

def a v e r a g e s p e e d b y l o c a t i o n ( pend ing msgs ) :
re turn [ p e o p l e w i t h i n l o c a t i o n ,

t i m e r a n g e b e t w e e n o l d e s t a n d n e w e s t ,
{ ’ speed ’ : avg ( speed ) , ’ l o c a t i o n ’ : l o c a t i o n }
f o r l o c a t i o n in group by ( pending msgs , l o c a t i o n ) ]

Listing 2. Pseudo-code of an aggregation function for traffic monitoring
applications

Since the propagation scheme is continuously calculated by
the aggregability function, is is possible to define more
complex scenarios such as Facebook likes10 (the fourth row
of Table 2). Depending on the privacy settings, when a user
likes a link or a photo on facebook, this action can show up
on the news feed of all his friends, friends of friends and even
strangers. This is important to measure the general popularity
of an item when compared to the popularity within the much
narrower circle of friends. Again, in the radiator model this is
very simple to define. In this case, the aggregability function
returns three different settings depending on whether the
recipient is a friend, a friend of a friend or a stranger. In the
latter, it can aggregate likes within 300 seconds because we
only want a coarse-grained statistical value ({time:300}).
On the other hand, we want to see likes from our friends

10See http://on.fb.me/wrw9bA for information on the like feature

with some urgency (we may want to interact with them based
on their like), so the aggregation is much narrower (only 30
seconds - {time:30}). For friend of friends, we may want
to set the maximum number of retained/aggregated likes to
only five ({volume:5}). Here, the aggregation function can
just be the sum of likes grouped by liked object (see fourth
row of Table 3), so that users know the current ”popularity”
of a given object (e.g., 5 likes for photo X, 23 likes for article
Y).

Even though the previous case is more flexible, we are still
limited to a discrete set of options (friend, friend of friend,
stranger). However, the radiator model allows completely
continuous propagation schemes, giving rise to potentially
very creative models of propagation. Rows 4, 5 and 6 of
Table 2 exemplify such creative uses. For example, typical
weight loss programs where users keep track of their diet
on a daily basis, as well as their current weight, are very
sensitive to privacy concerns [17]. On the other hand, it
is a well known fact that engaging with other users on
similar conditions can have a positive effect on the program,
blending the user’s personal goal with the community goals
(e.g., Fitbit11). Therefore, we suggest an application that
aggregates weight information proportionally to the weight
difference between the sender and the recipient. Suppose
Alice weights 95 Kg. If there is another user elsewhere with
the exact same weight, the application shows this information
to Alice unaggregated (and vice-versa). But if Bob and
Carol weight 94 Kg, their weight will appear aggregated to
Alice (Alice will receive (′2people′,′ Today′, ({‘weight′ :
‘94′})). The aggregation (and consequentially the anonymity
level) increases as the weight becomes further from 95 Kg.
Using the radiator model, this scenario can be defined by
an aggregation function that returns a result that is itself
dependent on a variable (in this case, the weight) - {people :
weight difference}.
With respect to privacy, we can turn to scenarios like the
2011 Tunisian and Egyptian revolutions that were greatly
propelled by twitter, through the use of hashtags such as
#sidibouzed (home city of Mohamed Bouazizi, following
his self-immolation) or #Jan25 (after a political demonstra-
tion in Cairo on the January 25th) [27]. The big challenge
here lies in preventing the ones who start the tweets (typically,
local activists) from being identified by the government in
order to censor and control the dissemination of critical
rebel information. Even though twitter allows the use of
pseudonyms, given enough historical information one could
still identify the author. Using Radiator’s k-Anonymity style
mechanism, it is possible to preserve the privacy of the actors
involved by aggregating batches of messages until there are
at least k people involved. This rule could be applied only to
sensitive hashtags, as in the example shown on the last row of
Table 2.

Delayed aggregation impact on scalability
In the Radiator model, some messages can be aggregated
before being propagated. Since the compression of an
aggregated message is usually much more effective than the
compression of its individual parts, we evaluated this effect

11http://www.fitbit.com
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Scenario Rel. Consumed Max delay
Bandwidth (secs)

{volume : 1} 100% 0
{volume : 5} 51% 49
{volume : 10} 43% 62
{volume : 20} 39% 66
{volume : 50} 35% 144
{volume : 100} 32% 250
{volume : 200} 29% 471

Table 4. Consumed bandwidth under different scenarios

on the consumed network bandwidth of an application built
using the Radiator middleware described in the Implementa-
tion Section.

We developed twiRadiator, an adaptation of the well-known
Twitter application to the Radiator model. Twitter12 is a
very popular application with over 100M users, that allows
anyone to post short messages with less than 140 characters
(called ”tweets”) with diverse content, ranging from personal
thoughts to photo and link sharing. Even though Twitter may
not be considered a classic context-aware application, tweets
are supposed to be answers for the question ”What’s hap-
pening?”, so we are effectively talking about a huge context
propagation system and therefore an excellent candidate to
test the impact of the Radiator model.

1 # s t a r t t h e midd leware e n g i n e
2 eng ine = Middleware ( [ ’ p1 ’ ] , # 1 p a r t i c i p a n t
3 a g g r e g a b i l i t y =[ lambda p , c : { ’ volume ’ : 10} ] ,
4 a g g r e g a t i o n f u n c t i o n s =
5 { ’ t w e e t ’ : a g g r e g a t e e q u a l t w e e t s ,
6 ’ l o c a t i o n ’ : a g g r e g a t e i f a l l t h e s a m e })
7

8 # i t e r a t e a l l t h e t w e e t s i n t h e sample
9 f o r t w e e t in t w e e t s a m p l e :

10 eng ine . p r o p a g a t e ( C o n t e x t ( t w e e t ) )

Listing 3. Sample of twiRadiator showing how easy it is to setup a testing
scenario with the Radiator middleware

Figure 1. Bandwidth consumption under different ”volume” values and
its effect on the message propagation lag

We collected a sample of received tweets from a popular
user (Scobleizer13) using Twitter’s API. Scobleizer follows

12http://www.twitter.com
13http://www.twitter.com/scobleizer

more than 32.000 users (i.e., receives tweets from more than
32.000 users). The sample contains all the received tweets
by Scobleizer during 1 hour (on Jan 15th 2012), resulting
in aprox. 2000 tweets (at least 1 tweet received every two
seconds). We then fed this sample into twiRadiator, which
transformed each tweet in a context object and used the
Radiator middleware to propagate those messages. Then,
we measured the total consumed bandwidth for each user,
under different volume values. Listing 3 shows an example
for these scenarios: a middleware engine is initialized with
the volume set to 10, meaning that the engine will postpone
propagation until it can aggregate 10 messages.

We have also setup two aggreggation functions: one to
aggregate tweets with the same content into a single one
(basically a count of retweets) and another to aggregate
locations if they were all the same (i.e., if all the tweets
contained in the aggregation share the same location, that
location is only included once). Here’s a simple example
of how 3 different messages with the same location become
aggregated.
([‘p1′], (‘04 : 00 : 00′, ‘04 : 00 : 00′),
(‘tweet′ : [′strange′], ‘loc′ : [‘NewY ork′]))

([‘p2′], (‘04 : 00 : 02′, ‘04 : 00 : 02′),
(‘tweet′ : [′This is great′], ‘loc′ : [‘NewY ork′]))

([‘p3′], (‘04 : 00 : 05′, ‘04 : 00 : 05′),

(‘tweet′ : [′OMG′], ‘loc′ : [‘NewY ork′]))

are aggregated into:

([‘p1′, ‘p2′, ‘p3′], (‘04 : 00 : 00′, ‘04 : 00 : 05′),

(‘tweet′ : [′strange′,′ This is great′,′ OMG′], ‘loc′ : [‘NewY ork′]))

We experimented with the following volume values: 1
(immediate propagation, equivalent to what Twitter does), 5,
10, 20, 50, 100 and 200 with zlib compression turned off and
on. Note that, in this test, we are only propagating messages
to one participant. This means that the server’s outbound
bandwidth consumption (the focus of our experiment) equals
the (single) client’s inbound bandwidth consumption.

From the results, shown in Figure 1, we can see that the
consumed bandwidth decreases as the volume increases, even
when compression is turned off. The reason is that in the
aggregated messages we are not repeating the headers and
other structural information that ends being repeated in every
message. When we turn on the compression, the effect
on the consumed bandwidth is even more clear, becoming
more efficient as the number of aggregated messages in-
crease. Comparing the compressed bandwidth used in the
direct propagation scenario ({volume : 1}) with the most
aggregated scenario ({volume : 200}), we can observe that
the latter consumes only 29% of the former. However, we
can also observe the impact on the maximum propagation
delay as the volume increases. Since we are allowing
the middleware to aggregate up to 200 messages before
propagating, we can expect an increased delay. In the most
aggregated scenario some messages would arrive with aprox.
8 minutes of delay, but if we look at the {volume : 50}
scenario, there seems to be a good tradeoff between the
2.5 minutes delay and the 35% bandwidth reduction (see
Table 4). To better understand what would be a good tradeoff
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Figure 2. Answers to the question ”On Twitter, what is your maximum
tolerable delay for receiving a tweet?”

Figure 3. Tolerable delay by type of source information

from a user’s perspective, we conducted a survey which we
describe in the next section.

Delayed propagation impact on user expectations
To better understand the user expectations of this type of
applications we designed a questionnaire that was answered
by 139 (non-paid) participants that were randomly recruited
through twitter. All the subjects were active twitter users and
69% of them followed more than 100 users. We asked the
following question:

”On Twitter, what is your maximum tolerable delay for
receiving a tweet from each type of source? That is, instead of
receiving the tweet immediately, the tweet would arrive after
a certain amount of time. How much time would you tolerate
before becoming annoyed about it?”.

Respondents had to answer this question for each of the
following five types of source information: News source
(e.g., CNN); Celebrity (e.g., Lady Gaga); Close friend;
Acquaintance; Other. The possible answers ranged from
”None. I want it as soon as possible” to ”I don’t care, as
long as I receive it.” with some time ranges in between.

Our goal was to understand (1) if users tolerate receiving
tweets with a delay and (2) if that delay depends on the type
of source.

The general results without taking into account the type
of source, depicted in Figure 2, show that only 29% of
the respondents require immediate propagation and that the
majority doesn’t mind receiving tweets with over an hour
delay. From that, we can conclude that twitter could use a
delayed propagation approach while still fulfilling the needs
of most of its users.

Next, we analyze if and how user expectations depend on the
type of source. The results in Figure 3 show that the source
of information is indeed an important factor on the maximum
tolerable delay. Tweets from close friends and media sources
require the most immediacy while tweets from celebrities
require no immediacy at all. Given that the tweets from some
celebrities are propagated to millions of users, the bandwidth
reduction of delayed propagation that we observed on the
quantitative evaluation could have a tremendous impact while
still fulfilling user expectations. We can also observe that the
tolerance to delayed messages is much greater for acquain-
tances and strangers than close friends. This seems to indicate
that the distance on the social network graph is correlated
with the delivery urgency of the corresponding messages.
We believe this correlation is a common characteristic of
distributed context-aware applications and fits perfectly into
the Radiator model.

Given these results, the following aggregability function
would match scalability needs with user expectations, assum-
ing a function social distance returning the number of hops
in the social network between 2 people:

{time : 0} if media

{time : 10000} if celebrity # a few hours

{time : social distance(p1, p2) ∗ 3600} if !(media or celebrity)

The specific implementation of social distance is outside
the scope of this paper but we present some hints on possible
solutions. The most obvious solution, albeit cumbersome,
would be to ask the user directly about how strong is his
relation with each person he follows. Another solution would
be to tap into other social networks (besides Twitter) that
support different levels of connections such as Facebook’s
friends and friends of friends and Linkedin’s 1st, 2nd and
3rd level connections. Finally, even on Twitter itself we can
distinguish between symmetrical relationships (A follows B
and B follows A) and asymmetrical relationships (A follows
B but B doesn’t follow A) to infer the strength of the
connection.

Privacy
The Radiator model proposes a privacy mechanism based
on the k-Anonymity principle: generalizing a data record
until it is indistinguishable from the records of at least k -
1 other individuals. To evaluate how this principle applies
to real-world data, we collected a sample of tweets with the
hashtag #Jan25 pertaining the Egyptian revolution (after a
political demonstration in Cairo on the January 25th). Egypt
and several other countries have been reported to track down
activists on social networks such as twitter and facebook14,
therefore privacy is a major concern on these scenarios.

In Figure 4 we can see a sample of tweets in its original form
(using the Twitter web client). The tweets are shown in a way
that it is clear who is their author, making it impossible to
protect his privacy. To keep the figure simple, we only show
the original tweets, not the retweets from 7 other people.

Next, we setup the Radiator model with the following config-
uration:

14http://rww.to/ifg3i0
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Figure 4. Sample of tweets with the hashtag #Jan25, in its original form

Figure 5. The same sample of tweets in aggregated form.

{people : 12} if #Jan25

This configuration tells the Radiator to aggregate messages
with the hashtag #Jan25 until at least 12 different people are
included in the aggregation. We chose the number 12 to keep
the example simple: a greater number would increase privacy
even more. As shown in Figure 5, applying this configuration
to the same sample of tweets, we get a result that protects the
privacy of the participants without losing critical information.
Now, the same messages appear next to each other, with all
the authors in the end, so it is no longer possible to relate
tweets with their authors. Even though some local activists
may be included in the authors, we are no longer sure about
the specific tweet they are responsible for. They may even
claim that they were just retweeting a tweet from a foreign
journalist, for example (which is probably enough to get by
the government control). In practice, during the peak of
revolution, it would be reasonable to use much higher levels
of k-Anonymity, with k easily going up to the thousands. Note
that, in this example, we used an aggregation function that
preserved the identity of the authors (although breaking the
link between author and message). We could just as well
used a function that replaced the identity of the authors with
a count (number of authors), achieving greater privacy at the
expense of some utility. The point here is that the Radiator
model can be used to implement multiple levels of privacy
with little effort by carefully selecting adequate aggregability
and aggregation functions. For example, as suggested by
Campan [6], we could take into account the social network

of each participant to drive the anonymization level by using
an aggregation function such as {people : num friends()},
where num friends() is the number of friends of the author.

CONCLUSIONS
In this paper, we propose Radiator, a simple and generic
model for propagation characteristics of distributed context-
aware systems. The model revolves around the concept
of delayed aggregation: it allows application developers to
define which messages should be propagated immediately
and which should be retained and aggregated before being
propagated. This definition is formally based on the concept
of Aggregability, representing the conditions under which
messages must be retained before propagation. These condi-
tions may depend on volume, time or people and can be highly
dynamic as the Aggregability function may return itself a
function.

As our experimental results have shown, it is possible to de-
crease network bandwidth consumption to less than 1/3 using
the delayed aggregation technique (due to higher compres-
sion efficiency) while still fulfilling user needs. Furthermore,
by carefully aggregating messages coming from different
people in a way that makes it impossible to distinguish
individual information (borrowed from the concept of k-
Anonymity), it is also possible to protect the privacy of the
participants, a common and important issue on the design of
context-aware applications.

Thus, this model is able to improve both scalability and
privacy with very little effort from the developer for a wide
variety of applications, from traffic monitoring and location-
based services to health monitoring and social network appli-
cations.

In the future, we plan to experiment with a decentralized
Radiator middleware to improve the total consumed network
bandwidth as well as implementing other applications on top
of this model.
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