
freeCycles - Efficient Data Distribution for Volunteer Computing

Rodrigo Bruno Paulo Ferreira
INESC-ID - Instituto Superior Técnico, ULisboa

rodrigo.bruno@tecnico.ulisboa.pt, paulo.ferreira@inesc-id.pt

Abstract
Volunteer Computing (VC) has been proving to be a way to
access large amounts of computational power, network band-
width and storage. With the recent developments of new pro-
gramming paradigms and their adaptation to run on the large
scale Internet, we believe that data distribution techniques
need to be re-thought in order to cope with the high vol-
umes of information handled by, for example, MapReduce.
Thus, we present a VC solution called freeCycles, that sup-
ports MapReduce jobs. freeCycles presents two new contri-
butions: i) improves data distribution (among mappers and
reducers) by using the BitTorrent protocol to distribute (in-
put, intermediate and output) data, ii) improves intermediate
data availability by replicating it through volunteers in order
to avoid losing intermediate data and consequently prevent-
ing big delays on the MapReduce execution time.

Categories and Subject Descriptors C.2.2 [Distributed
Systems]: Client/Server; C.2.5 [Local and Wide-Area Net-
works]: Internet; C.4 [Performance of Systems]: Reliability,
availability, and serviceability

Keywords Data Distribution, Volunteer Computing, BitTor-
rent, MapReduce

1. Introduction
With the ever growing demand for computational power, sci-
entists all over the world strive to harvest more computational
resources to solve bigger problems in less time. We believe
that volunteer computing (VC) is an interesting solution for
accessing large amounts of computational power. With time,
more computing devices join the network. By aggregating
all the resources in a global volunteer pool, it is possible to
achieve a huge amount of computational power that would be
impossible, or impractical, in most grids and clusters.

The creation and development of large scale VC systems
will allow running large scale projects that could not be
run on grids or clusters due to its size and costs associated.
VC will also provide a platform to explore and create new

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CloudDP’14, April 13, 2014, Amsterdam, Netherlands.
Copyright c© 2014 ACM 978-1-4503-2714-5/14/04. . . $15.00.
http://dx.doi.org/10.1145/2592784.2592788

projects without loosing time preparing and setting up exe-
cution environments like clusters. In addition, with the re-
cent developments and applicability of the MapReduce [7]
programming paradigm to VC, comes also the need to adapt
and evolve current data distribution techniques to this new
paradigm.

freeCycles is a VC solution and thus, its ultimate goal is
to aggregate as many volunteer resources as possible to per-
form general purpose computation. As that being, our solu-
tion must be capable of scaling up with the number of volun-
teers and collecting volunteers’ resources such as CPU cycles
and network bandwidth in an efficient way. We also believe
that being able to tolerate volunteer faults and unreliable net-
work connections is an important requirement for our solu-
tion since volunteer node churn is very high in large scale
networks (as the Internet). freeCycles must be capable of sup-
porting new parallel programming paradigms, in particular
MapReduce, given its relevance for a large number of appli-
cations. Finally, as MapReduce applications depend on large
amounts of information to run, freeCycles must be capable
of distributing large amounts of data (namely input, interme-
diate and output data) efficiently without compromising its
scalability.

In order to understand the challenges inherent to building
a solution like freeCycles, it is important to note that our
project is targeted to volunteer pools (set of regular desktop
computers). As opposed to clusters and grids, nodes within
a volunteer pool have slow connection (high latency and low
bandwidth) between each other, high node churn, resources
focused on user tasks, and cannot be trusted.

By looking at all the available solutions that could fulfill
our goal, note that solutions based on clusters and/or grids
do not fit our needs; these are designed for controlled envi-
ronments where node failure is very improbable, nodes are
typically well connected to each other, nodes can be trusted
and are very similar in terms of software and hardware. Hav-
ing this in mind, solutions like HTCondor [18], Hadoop [21],
XtremWeb [9] and other similar computing platforms are of
no use to attain our goals.

When we turn to VC, we observe that most of existing so-
lutions are built and optimized to run Bag-of-Tasks applica-
tions. Therefore, solutions such as BOINC [2], GridBot [16],
Bayanihan [15] and many others [1, 3, 4, 13] do not sup-

port the execution of MapReduce jobs, which is one of our
requirements.

The few solutions that support MapReduce jobs still use
naive data distribution techniques. Large input files are com-
monly downloaded from servers to clients in order to start
the computation. Even if multiple clients download the same
input information (which is the normal procedure when tasks
are replicated), these file transfers are done through the cen-
tral server. The problem is even worse when we consider
paradigms like MapReduce where huge input and interme-
diate outputs must be distributed to several nodes (mappers
and reducers). In particular, the SCOLARS [6] system al-
ready supports inter-client data transfer for intermediate out-
puts. However, all file transfers (input, intermediate and out-
put) are still a point-to-point transfer (i.e. from one source to
one destination).

In order to support the execution of a programming
paradigm as MapReduce, that needs large amounts of data
to process, new distribution techniques need to be em-
ployed.freeCycles is a VC platform, compatible with BOINC,
that enables the deployment of MapReduce applications.
It is based on the SCOLARS system that, besides sup-
porting MapReduce jobs, also enables inter-client transfers.
freeCycles goes one step further by allowing clients to help
distributing the input, intermediate output, and final out-
put data (through the BitTorrent1 protocol and not point-
to-point). Since task replication is always needed to prevent
stragglers from delaying the whole computation and to de-
tect false results, multiple clients will need the same input
and will produce the same output. Thereby, multiple clients
can send in parallel multiple parts of the same file to other
clients or to the central server. freeCycles will, therefore,
benefit from clients’ network bandwidth to distribute data to
other clients or even to the central server.

By providing this functionality, freeCycles achieves higher
scalability (reducing the burden on the central server), re-
duced transfer time (improving the overall turn-around time)
and augmented fault tolerance (since nodes can fail during
the transfer without compromising the data transfer of other
nodes).

The remainder of this document is organized as follows.
Section 2 is dedicated to related work. Section 3 describes
freeCycles’ architecture. In Section 4, we evaluate our solu-
tion. Section 5 concludes the paper with some final remarks.

2. Related Work
Over time, many VC platforms have been developed but,
within this section, we focus our analysis to the ones we think
that are closer to our goals.

On one hand, solutions like Bayanihan [15], BOINC [2],
and GridBot [16], among others, are mainly built and op-
timized for Bag-of-Tasks (embarrassingly parallel) applica-
tions and thus, cannot tolerate MapReduce applications. On
the other hand, solutions like SCOLARS, MOON [12], and

1 Official BitTorrent Specification can be found at www.bittorrent.org

the solutions presented by Tang [17] and Marozzo [8] already
support MapReduce applications.

MOON (MapReduce On Opportunistic Environments) is
an extension of Hadoop (an open source implementation of
MapReduce). MOON ports MapReduce to grid environments
mainly by: i) modifying both data and task scheduling, and ii)
performing intermediate data replication. However, MOON
was designed to run on grids and not on volunteer pools
and thus, many of its assumptions do not hold (e.g. having
dedicated nodes for storage).

The solution presented by Tang [17] is also an implemen-
tation of MapReduce focused on grids. It was built on top of
a data management framework, Bitdew [10]. We believe that
this framework would produce high overhead in a VC setting
and it assumes high availability of a particular set of nodes
(which is prohibitive in a volunteer pool).

Marozzo [8] presents a solution to exploit the MapRduce
model in dynamic environments. The major drawbacks of
this solution are: i) data is distributed point-to-point (which
fails to fully utilize the volunteer’s bandwidth), and ii) there
is no intermediate output replication.

SCOLARS (Scalable Complex Large Scale Volunteer
Computing) is a VC platform built on top of BOINC. It
presents two main contributions: i) inter-client transfers
(for intermediate output), and ii) hash based task validation
(where only a hash of the output is validated on the central
server). However, it presents the same issues as the previous
solution: only point-to-point transfers and no intermediate
data replication.

Regarding data distribution systems, we analysed several
but we only discuss the ones we think that are relevant to our
objective (distribute efficiently large amounts of data within
a volunteer pool): FastReplica [5] and BitTorrent [14].

FastReplica is a replication algorithm focused on replicat-
ing files in Content Distribution Networks (CDNs). It was
designed to be used in large-scale distributed network of
servers and it uses a push model (where the sender triggers
the data transfer). FastReplica works in two steps: i) dis-
tribute equally sized pieces of the original data among the
destination servers; ii) all destination servers send to all other
destination servers their piece. Despite being very efficient,
we point out two main issues: i) it relies on a push model,
which can be very difficult to use when there is a variable
set of destination nodes; ii) it does not cope with node failure
(since it was designed for servers, which are supposed to be
up almost all the time).

BitTorrent is a peer-to-peer data distribution protocol
widely used to distribute large amounts of data over the In-
ternet. It was designed to avoid the bottleneck of file servers
(like FTP servers). BitTorrent can be used to reduce the server
and network impact of distributing large files by allowing or-
dinary users to spare their upload bandwidth to spread the
file. So, instead of downloading the whole file from a server,
a user can join a swarm of users that share a particular file
and thereafter, download and upload small file chunks from
and to multiple users until the user has all the file chunks.

Using this protocol it is possible to use computers with low
bandwidth connections and even reduce the download time
(compared to a centralized approach).

In order to find other users sharing the target file, one has
to contact a BitTorrent Tracker. This tracker has to maintain
some information about the nodes such as a node’s ip, port
to contact and available files. This information is kept so that
when a node asks for a file, the tracker is able to return a list
of nodes to whom the node should contact.

This protocol has been proving to be capable of scaling
up to millions of users and providing high efficiency in dis-
tributing large amounts of data [14]. Thus, we intend in-
tegrate this protocol in our solution since it enables a pull
model where data can flow as volunteers need it (as opposed
to FastReplica).

3. freeCycles
freeCycles is a volunteer computing solution that strives
to improve the data distribution efficiency and reliability
which are specially needed to run new parallel programming
paradigms, MapReduce in particular, on large scale volunteer
pools. Our solution also takes into account another important
factor: intermediate data availability. As has been shown [11],
the loss of intermediate data can incur into a large overhead
within a MapReduce workflow.

freeCycles focuses on improving the data distribution
techniques; therefore, scheduling, task validation, and other
issues associated with implementing a complete volunteer
computing platform, are out of the scope for this project.
Hence, we decided to use an existing system, SCOLARS, as
a base platform for our work. SCOLARS is a recent project
based on BOINC (to our knowledge, the most successful VC
platform) that introduces the MapReduce paradigm to volun-
teer computing, making it possible to run MapReduce jobs
over large volunteer pools. Besides bringing MapReduce to
volunteer computing, SCOLARS supports two interesting
features: i) inter-client communication to transfer intermedi-
ate outputs from mappers to reducers; ii) a hash based task
validation mechanism.

Regarding the data distribution protocol (which is used to
move data between clients and servers) we decided, based
on our analysis of current solutions, to use the BitTorrent
protocol. Furthermore, BitTorrent was tested against other
protocols and the results showed that it was considerably
more scalable and more efficient than the other approaches
[19, 20]. Also, recent data from Ipoque, an Internet traffic
management and analysis company2, shows that, nowadays,
BitTorrent represents 27% to 55% of all the Internet traffic
(depending on geographical location).

3.1 Architecture
In this section, we describe freeCycles architecture for both
server and client sides. Some of its basic components are

2 www.ipoque.com

Figure 1. Input Data Distribution

already present in SCOLARS. We focus on the freeCycles
extensions.

The basic server-side architecture is composed by several
components: a database where information about jobs is held;
a data server where input and output data is stored and a
scheduler that is responsible for delivering tasks to volunteers
when asked. freeCycles adds two additional components (see
Figure 1): a BitTorrent tracker (to enable volunteers to use
the BitTorrent protocol to download and upload data to and
from clients and the central server), and a BitTorrent client
(that will be used to share the initial input and to receive the
final output through the BitTorrent protocol).

With respect to the client-side architecture, freeCycles
adds a BitTorrent client to enable BitTorrent file transfers
between the server and the client, and also between clients.

By using such BitTorrent clients and a tracker, freeCycles
is able to move data between clients and server taking advan-
tage of the download and upload bandwidth available at the
volunteer nodes. This imposes a significant decrease in the
used bandwidth and load of the central server.

3.2 Data Distribution Algorithm
Having described the components on (client-side) volunteers
and on the server, we now detail how we use the BitTorrent
file sharing algorithm to coordinate input, intermediate and
output data transfers.

3.2.1 Input Distribution
Input distribution is the first step in every MapReduce appli-
cation. Input must be split over multiple mappers. To do so,
each mapper downloads a .torrent file pointing to the corre-
sponding input file from the central data server.

For each input file, the server play as initial seed (the
origin). If we take into consideration that each map task
is replicated over at least three volunteers (for validation
purposes), then, when a new map task begins, the volunteer
will have at least one seed (the server) and possibly one
or two additional volunteers sharing the file (each volunteer
shares the input file using the BitTorrent protocol).

Therefore, we can leverage the task replication mecha-
nisms to share the burden of the data server. Even if the server
is unable to respond, a new mapper may continue to down-
load its input data from other mappers. The transfer band-

Figure 2. Intermediate Data Distribution

width will also be bigger since a mapper may download input
data from multiple sources.

Input data distribution is done as follows (see Figure 1): 1)
a new volunteer requests work from the central server sched-
uler and receives a workunit; 2) the new mapper downloads
the .torrent file from the data server (a reference of the .torrent
file was inside the workunit description file); 3) the new map-
per contacts the BitTorrent tracker to know about other vol-
unteers sharing the same data; 4) the volunteer starts down-
loading input data from multiple mappers and/or from the
server.

3.2.2 Intermediate Output Distribution
Once a map task is finished, the mapper has an intermediate
output ready to be used. The first step is to make the server
aware of the map task finish. To this end, the mapper contacts
the server and sends a hash of the intermediate output that
will be used to validate the task output.

As more hashes arrive at the server, the server is able to
decide which peers (mappers) have the correct intermediate
files. This information is placed at the BitTorrent tracker and
a new .torrent file is created publishing where future volun-
teers playing the reduce role can find this intermediate output.
When all the intermediate outputs are available, the scheduler
starts issuing reducer tasks. These reducer tasks have a refer-
ence to the .torrent files that need to be downloaded. Once a
reducer has access to these .torrent files, it starts transferring
the intermediate files (using the BitTorrent protocol) from all
the mappers that completed the map task with success (the
ones that were successfully validated). Reduce tasks start as
soon as all the needed intermediate values are successfully
transfered.

Intermediate data distribution works as follows (see Fig-
ure 2): 1) a message acknowledging the map finish and con-
taining the computed intermediate output hash is sent to the
scheduler; 2) the central server produces a .torrent file and
stores it in the data server and information about how to ac-
cess the mappers holding the data is stored in the BitTorrent
tracker; 3) when a new volunteer (reducer) asks for work, a
workunit is delivered with a reference to a .torrent file; 4) the
reducer downloads the .torrent file from the data server; 5)
the reducer contacts the BitTorrent tracker to know about the
mapper nodes that hold the data; 6) the reducer uses its Bit-

Figure 3. Output Data Distribution

Torrent client to download the intermediate data from multi-
ple mappers.

3.2.3 Output Distribution
Given that map and reduce tasks are replicated over at least
three volunteers, it is possible to accelerate the upload of the
final output files from the reducers to the data server.

The procedure is similar to the one used for intermediate
outputs. Once a reduce tasks finishes, it contacts the server
providing a hash of the final output. The server save hashes
from multiple reducer replicas and decides which ones are
the trustworthy replicas. With this information, the server
updates the tracker and creates a .torrent for each one of
the reducer’s outputs. These .torrent files will be consumed
by the BitTorrent client placed at the server. Therefore, after
the first reduce task validation finishes, the server can start
downloading the final output from multiple volunteer nodes.

Using BitTorrent to transmit the final outputs results in a
faster transfer from volunteers to the data server, a lower and
shared bandwidth consumption from the volunteer’s perspec-
tive, and an increased fault tolerance (since a volunteer node
failure will not abort the file transfer).

Output data distribution works as follows (see Figure 3):
1) a message acknowledging the reduce finish and containing
the computed output hash is sent to the scheduler; 2) a .torrent
file is created and stored in the data server, the BitTorrent
tracker is updated (with the reducer access information); 3)
the BitTorrent client is notified; 4) the BitTorrent client inside
the central server downloads the .torrent file from the data
server; 5) the BitTorrent client contacts the BitTorrent tracker
to know how to reach the volunteers holding the output; 6)
the BitTorrent client downloads the output data from multiple
reducers.

3.3 Availability of Intermediate Data
Previous studies [11] show that the availability of intermedi-
ate data is a very sensitive issue in programming paradigms
like MapReduce. This problem takes even bigger proportions
when applied to volatile environments like volunteer pools.
To cope with this problem, freeCycles presents two methods.

First, replicate map tasks aggressively when volunteers
designated to execute a particular map task take too long to
report results. By imposing a shorter interval time to respond
with results, we make sure that we keep at least a few replicas
of the intermediate output.

Figure 4. CDF for input distribution

Second, when there are intermediate outputs that have al-
ready been verified (by the central server) and other map
tasks are still running, new tasks designed to replicate inter-
mediate output might be delivered to new volunteers. There-
fore, volunteers might be used to replicate intermediate data
to compensate other mappers that might die while waiting for
the reduce phase to start. These tasks would simply download
.torrent files and use them to start downloading intermediate
data.

However, while fighting for the availability of intermedi-
ate data, we might be spending valuable resources that could
be used for advancing towards the job completion. For exam-
ple, if we use too much bandwidth replicating intermediate
data, less bandwidth will be available to send intermediate
data to reducers. Accordingly, we expect to be able to exper-
iment and to end up with a good tunning of both weights.

4. Evaluation
In this section we present a performance comparison be-
tween the data distribution protocols used in BOINC (HTTP),
SCOLARS (FTP) and freeCycles (BitTorrent) in the context
of a MapReduce application. All three protocols were eval-
uated using a simulated MapReduce data flow comprehend-
ing three phases: i) Input Distribution: central server sends
initial input to all mappers; ii) Intermediate Output Distri-
bution: mappers send intermediate outputs to reducers; iii)
Output Distribution: reducers send final output to the central
server.

All tasks (maps and reduces) were replicated: map tasks
with a replication factor of 5 (high replication factor to simu-
late aggressive replication in order to keep intermediate data
available); reduce tasks with a replication factor of 3 (mini-
mum for majority voting).

We used a total of 92 nodes (92 cores with 2GB of RAM,
scattered in several physical nodes): 80 mappers (16 differ-
ent map tasks replicated 5 times) and 12 reducers (4 different
reduce tasks replicated 3 times). To simulate Internet con-
nection bandwidths, all nodes had their download and up-
load bandwidths limited to 100Mbps and 10Mbps respec-
tively (except for the experiment in Figure 8). All the files
(16 input files, 16 intermediate outputs and 4 final outputs)
were different with 64MB each (except for the experiments
in Figures 7 and 8).

Figure 4 presents the Cumulative Distribution Function
(CDF) for all the three protocols during input distribution. It

Figure 5. CDF for BitTorrent during input distribution

Figure 6. Performance evaluation of the protocols used in
BOINC (HTTP), SCOLARS (FTP) and freeCycles (BitTor-
rent)

Figure 7. Performance comparison while varying the input
file size

is clear that BitTorrent is able to distribute the same amount
of data much faster than FTP and HTTP. From Figure 5 (that
shows a zoomed region of Figure 4), we see why BitTorrent
is able to finish all the transfers earlier: as soon as one mapper
has some part of the file, it can participate in the input distri-
bution. Therefore, the more mappers have the input file (or at
least some parts), the faster it gets to other mappers download
the file. We do not present the CDFs for intermediate output
distributed since results are similar.

From Figure 6, we can conclude that the BitTorrent proto-
col outperforms the other two protocols in all the data distri-
bution phases. If we take into consideration that SCOLARS
only uses FTP to distribute intermediate data, and still uses
HTTP to distribute input and output data, we achieve a
total of 4128 seconds spent distributing data. Looking at
freeCycles, with BitTorrent distributing all data, we achieve
a total of 924 seconds: freeCycles reduces the time spent data
by 77,6% compared to SCOLARS.

We further analysed the behaviour of the three protocols
while varying: i) the file input size, and ii) the upload band-
width (for a constant download bandwidth). In the first sce-
nario (Figure 7) we repeated the experiment in Figure 6 for

Figure 8. Performance comparison while varying the node
upload bandwidth

different file sizes. The second scenario (Figure 8) is similar
to the first one but, instead of varying the file size, we used
different upload bandwidths (keeping the download band-
width at 100Mbps). For both simulations, we only present
the sum of the time it took to distribute all data (input, in-
termediate and output). It is then possible to conclude that
BitTorrent is more scalable while increasing the file size and
decreasing the upload bandwidth (which is an important re-
sult since ISPs provide much lower bandwidth for upload
than for download).

5. Conclusions
In this paper we described the freeCycles VC platform. It
brings two new contributions: 1) improved input, interme-
diate and final output data distribution with the BitTorrent
protocol; 2) improved task scheduling that strives to keep in-
termediate data available.

Although freeCycles is still under active development we
present a performance comparison of the three protocols used
so far in a MapReduce data flow environment. We conclude
that the proposed protocol (BitTorrent) outperforms other
protocols thus motivating even more the development of
freeCycles.

Acknowledgements

This work was partially supported by national funds through FCT - Fundação
para a Ciência e Tecnologia, under projects PTDC/EIA-EIA/113993/2009
and PEst-OE/EEI/LA0021/2013.

References
[1] A. Alexandrov, M. Ibel, K. Schauser, and C. Scheiman.

Superweb: towards a global web-based parallel computing
infrastructure. In Parallel Processing Symposium, 1997.
Proceedings., 11th International, pages 100–106, 1997.

[2] D. Anderson. Boinc: a system for public-resource computing
and storage. In Grid Computing, 2004. Proceedings. Fifth
IEEE/ACM International Workshop on, pages 4–10, 2004.

[3] A. Baratloo, M. Karaul, Z. Kedem, and P. Wijckoff. Charlotte:
Metacomputing on the web. Future Generation Computer
Systems, 1999. ISSN 0167-739X.

[4] A. Chakravarti, G. Baumgartner, and M. Lauria. The organic
grid: self-organizing computation on a peer-to-peer network.
Systems, Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions on, 2005. ISSN 1083-4427.

[5] L. Cherkasova and J. Lee. Fastreplica: Efficient large file
distribution within content delivery networks. In USENIX
Symposium on Internet Technologies and Systems, 2003.

[6] F. Costa, L. Veiga, and P. Ferreira. Internet-scale support
for map-reduce processing. Journal of Internet Services and
Applications, 2013. ISSN 1867-4828.

[7] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM, Jan. 2008. ISSN
0001-0782.

[8] D. T. Fabrizio Marozzo and P. Trunfio. Adapting mapreduce for
dynamic environments using a peer-to-peer model, 2008.

[9] G. Fedak, C. Germain, V. Neri, and F. Cappello. Xtremweb:
a generic global computing system. In Cluster Computing and
the Grid, 2001. Proceedings. First IEEE/ACM International
Symposium on, pages 582–587, 2001.

[10] G. Fedak, H. He, and F. Cappello. Bitdew: A data management
and distribution service with multi-protocol file transfer and
metadata abstraction. Journal of Network and Computer
Applications, 2009. ISSN 1084-8045.

[11] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta. Making cloud
intermediate data fault-tolerant. In Proceedings of the 1st ACM
symposium on Cloud computing, pages 181–192. ACM, 2010.

[12] H. Lin, X. Ma, J. Archuleta, W.-c. Feng, M. Gardner, and
Z. Zhang. Moon: Mapreduce on opportunistic environments. In
Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, HPDC ’10, pages 95–106,
New York, NY, USA, 2010. ACM. ISBN 978-1-60558-942-8.

[13] V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao. Cluster
computing on the fly: P2p scheduling of idle cycles in the
internet. In Peer-to-Peer Systems III, pages 227–236. Springer,
2005.

[14] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The
bittorrent p2p file-sharing system: Measurements and analysis.
In Peer-to-Peer Systems IV, pages 205–216. Springer, 2005.

[15] L. F. Sarmenta and S. Hirano. Bayanihan: building and
studying web-based volunteer computing systems using java.
Future Generation Computer Systems. ISSN 0167-739X.

[16] M. Silberstein, A. Sharov, D. Geiger, and A. Schuster. Gridbot:
execution of bags of tasks in multiple grids. In Proceedings of
the Conference on High Performance Computing Networking,
Storage and Analysis, SC ’09, pages 11:1–11:12, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-744-8.

[17] B. Tang, M. Moca, S. Chevalier, H. He, and G. Fedak. Towards
mapreduce for desktop grid computing. In P2P, Parallel, Grid,
Cloud and Internet Computing (3PGCIC), 2010 International
Conference on, pages 193–200, 2010.

[18] D. Thain, T. Tannenbaum, and M. Livny. Distributed
computing in practice: the condor experience. Concurrency and
Computation: Practice and Experience, 2005. ISSN 1532-0634.

[19] B. Wei, G. Fedak, and F. Cappello. Scheduling independent
tasks sharing large data distributed with bittorrent. In Pro-
ceedings of the 6th IEEE/ACM International Workshop on Grid
Computing, pages 219–226. IEEE Computer Society, 2005.

[20] B. Wei, G. Fedak, and F. Cappello. Towards efficient data
distribution on computational desktop grids with bittorrent.
Future Generation Computer Systems, 2007.

[21] T. White. Hadoop: the definitive guide. O’Reilly, 2012.

