
Leveraging Web prefetching systems
with data deduplication

Pedro Neves, Paulo Ferreira, João Barreto
INESC-ID

Technical University Lisbon
Lisbon, Portugal

[pedro.n.neves, paulo.ferreira, joao.barreto]@ist.utl.pt

Abstract— The continued rise in internet users and the
ever-greater complexity of Web content degrade user-
perceived latency in the Web. Web caching, prefetching and
data deduplication are techniques that are used to try to
mitigate this effect. Regardless of the amount of bandwidth
available for network traffic, Web prefetching has the
potential to consume free bandwidth to its limits.
Deduplication explores data redundancies to reduce the
amount of data transferred through the network, thereby
freeing occupied bandwidth. To the best of our knowledge no
previous work has been done which applies these two
techniques combined to Web traffic. The motivation of this
work is to ask if, by combining these two techniques, it is
possible to significantly reduce the amount of bytes transmitted
per user request, thereby improving the user-perceived latency
in the Web. In the present work, we developed and
implemented a system that combines the use of Web
prefetching and deduplication techniques. By testing our
system using real-world user navigation traces, we show that
deduplication is able to substantially reduce the network costs
of prefetching (up to 34% savings in transferred bytes),
without degrading the latency gains due to prefetching. By
adjusting deduplication parameters it is possible to improve
the latency relative to when using only prefetching.

Keywords—prefetching; deduplication; web; latency

I. INTRODUCTION
The generalized dissemination of the Internet and
corresponding growth of the WWW have led to a continued
rise in the number of connected users. In parallel, Web
pages became increasingly complex [1]. As a consequence,
the quality of service and, in particular, the user-perceived
latency have experienced some degradation.
Web prefetching attempts to overcome the above-mentioned
limitations by proactively fetching resources without
waiting for user requests. Due to their speculative nature,
prefetch predictions are subject to failure, which can lead to
bandwidth wasting. Therefore, this technique demands
careful application otherwise it can significantly degrade
performance, defeating its original purpose.
Deduplication is a technique that reduces overall data
footprint through the detection and elimination of

redundancies. Several attempts made to use data
deduplication in the Web have already shown that it can
considerably reduce the overall amount of transmitted bytes
and, thereby, the user-perceived latency [4],[5],[6].
Independently of the amount of available bandwidth, Web
prefetching is able to take bandwidth occupancy to its
limits. On the other hand, data deduplication allows
reducing the volume of transferred data, thereby freeing
occupied bandwidth. Therefore, it is feasible to expect that
the combined use of both techniques could potentially bring
significant improvements to the amount of transmitted bytes
per Web request. It is also legitimate to expect that this
reduction can have a corresponding effect in the user-
perceived latency in the Web. To our knowledge, no
previous work has been done which applies these two
techniques combined to Web traffic.
In this paper we present a system we designed and
implemented that, by combining the use of Web prefetching
and data deduplication techniques, aims at improving user-
perceived latency in Web navigation. We used as starting
point an existing Web prefetching simulator framework [20]
and extended it, implementing a deduplication technique
based on a recent state-of-the-art deduplication system [7].
Based on the obtained results we conclude that the
combination of prefetching and deduplication techniques
has the potential to significantly reduce the network costs of
prefetching. This is achievable without compromising the
latency reduction due to prefetching. By tuning the chunk
size value it is possible to adjust the system behavior
according to the user's needs, either maximizing savings in
bytes transferred or minimizing the latency.

The remainder of this paper is structured as follows.
Section II presents the related work regarding web
prefetching and deduplication techniques. Section III
describes the architecture of the developed system. Section
IV presents and discusses the results of our tests. Finally,
Section V presents the conclusions to this work.

This work was supported by national funds through FCT – Fundação
para a Ciência e a Tecnologia, under projects PEst-OE/EEI/LA0021/2013,
PTDC/EIA-EIA/122785/2010 and PTDC/EIA-EIA/113993/2009.

II. RELATED WORK

A. Web Prefetching
Prefetching has been proposed as a mechanism to

improve user-perceived latency in the Web [9],[10]. The
purpose of Web prefetching is to preprocess each user’s
request before it is actually demanded and, in this way, hide
the request latency. Prefetching is usually transparent to the
user: there is no interaction between the user and the
prefetching system.

Prefetching systems are speculative by nature, therefore
there is an intrynsic probability for the predictions to fail. If
the prediction is not accurate, cache pollution, bandwidth
waste and overload of the original server can occur.
Prefetching must thus be carefully applied: e.g., using idle
times in order to avoid performance degradation [11].
Despite these risks, it has been demonstrated that several
prefetching algorithms [12],[13] can considerably reduce the
user-perceived latency.

Prefetching systems are implemented by adding two new
elements to the generic client-server Web architecture: the
prediction and prefetching engines. These can be located in
the same or different elements, at any part of Web
architecture.

The prediction engine has the purpose of guessing which
will be the next user requests. It can be located at any part of
the web architecture, whether in the clients [14],[15], in the
proxies [2],[16] or in the servers [17],[18]. It can even work
in a collaborative way between several elements [13]. The
prediction engine outputs a hint list, which is a set of URIs
that are likely to be requested by the user in a near future.

The prefetching engine’s function is to preprocess
resource requests that were predicted by the prediction
engine, thereby reducing the user-perceived latency when the
resource is actually requested. The ability to reduce the
latency is strongly dependent on where the prefetching
engine is located: the closer to the client it is implemented,
the higher its impact on latency [2],[9],[19]. In order to avoid
interference between prefetching actions and current user
requests, the prefetching engine usually only starts the
prefetching after the user is idle [3].

Web prefetching has been the subject of academic
research already for some years [2],[9],[10],[11],[13],[20].
However, its commercial penetration is still poor, mainly due
to the potential impact on bandwidth. Nevertheless, one
notable example is the Google Search Web site, in which the
top hit for a search query is prefetched in the background
while the search results are presented to the user [21].

B. Data deduplication on the Web
Deduplication attempts to reduce data footprint through

detection and elimination of redundant data. Based on these
principles it has been applied to the Internet with the purpose
of reducing the total transmitted bytes and, consequently, the
user-perceived response time. Deduplication leverages on the

redundancy present in the data transferred on the web
[4],[5],[8].

Deduplication techniques currently used for the Web can
be grouped under three main categories:

- Classic Caching: in these, the browser keeps whole
resources in its cache, indexed by URL. When a URL is
requested to the server, the browser checks if the resource is
already present in its cache and if its timestamp is up to date.
In that case, the browser does not download the content.
Otherwise, the whole resource is downloaded, the same also
happening if the resource is not present in the cache at all.
This approach is used on all Internet browsers. It has worked
well due to its simplicity, both on browser and server sides.
Nevertheless, it has some drawbacks, namely it is an all-or-
nothing approach: it detects the presence of redundant
resources, but it is not able to detect partial redundancy
between versions of the same resource.

- Delta-encoding (DE): in DE, two files are compared
and their differences – the delta – are computed. This means
that after a first download of a complete page, in a second
request, if there were changes to the page, a delta can be
computed between the two versions of the page. The client
then downloads only the delta and reconstructs the new
version of the page from the one in its cache and from the
delta [22],[23]. Issues in this approach are that it demands
that the server keeps at all times the latest version of a
reference file that was sent to each client. Also, with
increasing number of reference resources comes an
increasing performance overhead. On the other hand, the
redundancy detection algorithm is executed locally on the
server with no additional data being transferred between
client and server other than the encoded delta and file version
metadata.

- Compare-by-hash (CBH): In CBH both client and
server divide resources in data blocks (“chunks”), which are
identified by a cryptographic hash and are treated as
autonomous data units: they are shared by different resources
in cases where the data is redundant. When the client
requests a new version of a resource the server determines
which chunks correspond to that resource version and sends
their hashes to the client. The client compares the hashes sent
by the server with the ones it has stored locally and computes
which chunks it still needs to reconstruct the new resource
version. It then requests the server only these chunks it does
not have locally. The server answers the request by sending
the new chunks and also the hashes of the redundant chunks.
In this way the client is able to properly reconstruct the new
resource [4],[6]. CBH therefore needs an additional roundtrip
relative to DE, since besides the resource request the
corresponding hashes must be sent from server to client and
vice-versa. In CBH, finding a compromise regarding chunk
size is critical: if it is too small there will be too many hashes
to trade between client and server, resulting in a large
communication overhead. Conversely, the larger the size of
the used chunks, the less the possibilities for redundancy
detection.

III. ARCHITECTURE
The system we designed and implemented uses both

prefetching and deduplication techniques. We used as
starting point a Web prefetching simulator framework [20],
made publicly available by its authors. This framework is
composed of: 1) a back end part which has both a surrogate
proxy server, where the prediction engine is implemented,
and a real web server, external to the simulator environment;
2) the front end, which has the client component, simulates
the user behavior in a prefetch-enabled client browser. The
prefetching engine is implemented in the client component.

We used a deduplication technique based on a recent
state-of-the-art system that applies deduplication to web
traffic, DedupHTTP [7]. It is an end-to-end deduplication
system for text resources. Its algorithm combines DE and
CBH schemes, acting mostly on the server side, with
manageable server state and low communication overhead. It
can be deployed in several points of the network architecture
and it does not enforce synchronization between client and
server.

To develop and implement the final system, we extended
the existing prefetching framework in order to implement
data deduplication. To this purpose, we introduced additional
functional modules in the system that provide deduplication
processing capabilities, and also the necessary data and
communication infrastructure needed to support the new
functionalities, and allow the new modules to interface with
the existing prefetching framework. The final system has two
main components: a client module, which implements the
prefetching engine and client deduplication functions; a
surrogate proxy module, containing the prediction engine
and which implements server-side deduplication functions.
Detailed information on the final system architecture can be
found in Ref. [24].

IV. EVALUATION

A. Experiment
The experimental setup used in our tests consisted of two

machines: one performing the role of the web client (Intel
Core2Duo@2.66GHz processor, 4GB RAM); another acting
as the surrogate (Intel Core i5-2450M@2.5GHz, 6GB
RAM), which also runs an instance of a HTTP server
(Apache).

The experiments were run in a LAN (Bw: 54Mbs). For
the tests with constrained bandwidth, we simulated the use of
Bluetooth (Bw: 2.1Mbs). The workloads used were obtained
by downloading the files of a typical news website
(www.dn.pt), up to 3 levels depth. In the experiments we
request all the workload files, which amounts to approx.
20MB of files transferred.

To evaluate system performance the metrics used were
the latency per resource and the amount of bytes saved. All
the tests reported were performed 5 times for each
experimental condition set, the results presented correspond
to the average of those trials.

B. Results
We ran tests with both prefetching and deduplication

turned on. Since previously reported results for the
deduplication algorithm have shown a dependency of the
redundancy detection efficiency on chunk size [7], we
performed the tests for several average chunk sizes: 32, 64,
128, 256, 512, 1024 and 2048 bytes. All these tests were
performed in LAN conditions (Bw: 54Mbs). Results are
presented in Table 1.

For chunk sizes below 128 bytes, we have lower values
for bytes saved and also the latency is worse than for the case
where only prefetching is used. Clearly, in these cases there
is no advantage in combining both techniques, relative to
using just prefetching.

The best value for bytes saved is obtained for a chunk
size of 128 bytes, corresponding to a reduction of 34.2% in
data transferred. Nevertheless, the latency reduction is lower
in this case (8.9%) than when only prefetching is used
(14.7%). This difference is significant and may be justified
by the computational overhead introduced by the
deduplication processing.

In the case of 2048-byte chunks, we obtained lower bytes
savings (28.8%) than with 128-byte chunks (34.2%).
However, in this case the highest latency reduction value was
obtained (17%), a value that is higher than the one measured
when only prefetching is used (14.7%).

These results show that when both prefetching and
deduplication are used, the adjustment of chunk size allows
distinguishing between several limit cases:

• if the main goal is to maximize savings in the amount
of bytes transferred, a chunk size of 128 bytes should
be used;

• if the user’s concern is minimizing latency, chunks of
2048 bytes or higher size should be selected;

• for chunks of size lower than 128 bytes there is no
advantage in combining both techniques, relative to
using just prefetching.

In order to evaluate the effects of operation under
constrained bandwidth, we performed tests using Bluetooth

Table 1- Bytes saved and latency vs chunk size, using both prefetching and
deduplication (values for prefetching without deduplication correspond to
the baseline case; Bw=54Mbs).

conditions (Bw: 2.1Mbs), with 128 bytes chunk size. The
results are shown in Table 1. Comparing with the results for
chunk size of 128 bytes in LAN conditions, it can be seen
that the bytes savings obtained are similar in both cases
(LAN=34.2%, Bluetooth=34.4%). However, the latency
reduction achieved in Bluetooth conditions is half of that
obtained for LAN conditions (4.4% and 8.9% reduction in
latency, respectively), which can be taken as a consequence
of operating under constrained bandwidth. A lower number
of prefetching events may eventually occur as a consequence
of the reduced bandwidth, since prefetching is highly
dependent on idle times between user requests. Since the
increased latency means that requests take a longer time to
be completed, in consequence idle times may be reduced,
thereby reducing the opportunity to start prefetching
requests.

V. CONCLUSIONS
In the present work we developed and implemented a

system that for the first time combines the use of Web
prefetching and deduplication techniques, with the objective
of improving user-perceived latency in the Web.

The results lead us to conclude that the combination of
prefetching and deduplication techniques significantly
reduces the network usage costs due to prefetching, without
significantly degrading the latency. Careful selection of the
chunk size parameter allows tuning the system performance
taking into account the user's needs.

When savings in the amount of bytes transferred are
critical (such as pay-per-byte Web access), if an impact of
approximately 6% on the latency is considered tolerable,
then a chunk size of 128 bytes is the best choice. If however,
the most critical for the user is to minimize latency at all
costs, with no concerns regarding the amount of bytes
transmitted, then the chunk size should be adjusted to 2048
bytes or higher.

REFERENCES
[1] http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/

ns705/ns827/white paper c11- 520862.html.
[2] Li Fan, Pei Cao, Wei Lin and Quinn Jacobson. Web Prefetching

Between Low-Bandwidth Clients and Proxies: Potential and
Performance. In Proceedings of the ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, pages 178–
187, Atlanta, USA, 1999.

[3] Darin Fisher and Gagin Saksena. Link prefetching in Mozilla: A
Server driven approach. In Proceedings of the 8th International
Workshop on Web Content Caching and Distribution (WCW 2003),
New York, USA, 2003.

[4] Neil Spring and David Wetherall, A Protocol-Independent Technique
for Eliminating Redundant Network Traffic, In Proceedings of the
conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, 2000.

[5] Ashok Anand, Chitra Muthukrishnan, Aditya Akella, Ramachandran
Ramjee, Redundancy in Network Traffic: Findings and Implications,
In Proceedings of SIGMETRICS/Performance’09, Seattle, USA,
2009.

[6] Sean Rhea, Kevin Liang, Eric Brewer, Value-Based Web Caching, In
Proceedings of the 12th international conference on World Wide Web,
Budapest, Hungary, 2003.

[7] Ricardo Filipe and João Barreto. Towards full on-line deduplication
of the Web. In Proceedings of INFORUM 2010, Braga, Portugal,
September 2010

[8] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy.
Potential benefits of delta encoding and data compression for http. In
Proceedings of the ACM SIGCOMM ’97 conference on Applications,
technologies, architectures, and protocols for computer
communication, SIGCOMM ’97, pages 181–194, New York, NY,
USA, 1997. ACM.

[9] Venkata N. Padmanabhan and Jeffrey C. Mogul. Using predictive
prefetching to improve World Wide Web latency. Computer
Communication Review, 26(3):22–36, July 1996. In Proceedings of
SIGCOMM ’96.

[10] Thomas M. Kroeger, Darrell D. E. Long, and Jeffrey C. Mogul.
Exploring the bounds of Web latency reduction from caching and
prefetching. In Proceedings of the USENIX Symposium on Internet
Technologies and Systems (USITS ’97), December 1997.

[11] Mark Crovella and Paul Barford. The network effects of prefetching.
In Proceedings of the IEEE INFOCOM’98 Conference, San
Francisco, USA, 1998.

[12] Azer Bestavros. Using Speculation to Reduce Server Load and
Service Time on the WWW. In Proceedings of the 4th ACM
International Conference on Information and Knowledge
Management, Baltimore, USA, 1995.

[13] Evangelos Markatos and Catherine Chronaki. A Top-10 Approach to
Prefetching on the Web. In Proceedings of the INET’ 98, Geneva,
Switzerland, 1998.

[14] Yuna Kim and Jong Kim. Web Prefetching Using Display-Based
Prediction. In Proceedings of the IEEE/WIC International Conference
on Web Intelligence, Halifax, Canada, 2003.

[15] Kelvin Lau and Yiu-Kai Ng. A Client-Based Web Prefetching
Management System Based on Detection Theory. In Proceedings of
the Web Content Caching and Distribution: 9th International
Workshop (WCW 2004), pages 129–143, Beijing, China, 2004.

[16] Christos Bouras, Agisilaos Konidaris and Dionysios Kostoulas.
Predictive Prefetching on the Web and Its Potential Impact in the
Wide Area. World Wide Web, vol. 7, no. 2, pages 143–179, 2004.

[17] Stuart Schechter, Murali Krishnan and Michael D. Smith. Using Path
Profiles to Predict HTTP Requests. In Proceedings of the 7th
International World Wide Web Conference, Brisbane, Australia,
1998.

[18] Themistoklis Palpanas and Alberto Mendelzon. Web Prefetching
Using Partial Match Prediction. In Proceedings of the 4th
International Web Caching Workshop, San Diego, USA, 1999.

[19] Ravi Kokku, Praveen Yalagandula, Arun Venkataramani and Michael
Dahlin. NPS: A Non-Interfering Deployable Web Prefetching
System. In Proceedings of the USENIX Symposium on Internet
Technologies and Systems, Palo Alto, USA, 2003.

[20] Josep Domènech, Ana Pont, Julio Sahuquillo and José A. Gil. An
Experimental Framework for Testing Web Prefetching Techniques. In
Proceedings of the 30th EUROMICRO Conference 2004, pp. 214–
221, Rennes, France, 2004.

[21] Google Search. http://google.com/intl/en/help/features.html.
[22] Gaurav Banga , Fred Douglis , Michael Rabinovich, Optimistic deltas

for WWW latency reduction, In Proceedings of the USENIX Annual
Technical Conference, p.22-22, January 06-10, 1997, Anaheim,
California.

[23] Mun Choon Chan and Thomas Y. C. Woo, Cache-based compaction:
A new technique for optimizing web transfer. In Proceedings of IEEE
INFOCOM, March 1999.

[24] P. Neves, Data Deduplication in Web Prefetching Systems, MSc
Thesis, Technical University of Lisbon, 2013.

