
Efficient File Storage Using Content-based Indexing

João Barreto∗and Paulo Ferreira†

INESC-ID/IST

Distributed Systems Group

Rua Alves Redol No9, 1000-029 Lisboa, Portugal

[joao.barreto,paulo.ferreira]@inesc-id.pt

Introduction. Content-based indexing [MCM01] is a
technique of proven effectiveness for efficient transference of
file contents over low bandwidth network links. Departing
from this context, the natural step of extending the applica-
tion of this technique to local file storage has been proposed
by a number of storage solutions [CN02, QD02, BF04]. To
some extent, all these solutions share a core storage model.
File contents are divided into disjoint chunks of data, each
of which is individually stored, along with a unique hash
of its contents, in a repository of chunks. The actual files
are then stored as sequences of possibly shared references
to chunks in the repository.

Dividing files into smaller chunks implies a higher sim-
ilarity probability, which intuitively may suggest a better
storage efficiency. However, the chunk repository model en-
tails higher storage penalties as chunk size is decreased: (a)
increased chunk meta-data overhead; (b) increased internal
fragmentation, if the chunk repository is stored on a block-
based device; and (c) lower chunk data compression ratios
are achievable. This trade-off restricts the choice of the ex-
pected chunk size to relatively high values; hence, existing
solutions do not fully exploit the similarity that may exist
in a file system. Furthermore, by storing chunks in a ran-
domly organized repository, sequential read performance is
penalized, even if the file being accessed does not share any
chunk with other files.

We propose a novel storage architecture that eliminates
the above limitations, therefore allowing for smaller chunk
sizes and, accordingly, yielding higher storage gains. More-
over, it achieves this without imposing any access perfor-
mance or storage penalty to files sharing no similarity with
the remaining file system. We envision our solution to be es-
pecially suitable as a storage-efficient support for versioning
file systems and for resource-limited embedded file systems.

Storage Architecture. Our chunk storage file system is
stacked on top of a regular file system, which stores the
actual file contents in secondary memory. Our architecture
follows a simple principle: if a file shares no chunks with
the remaining file system, it should be directly stored in the
underlying file system without modification. The portion
where each chunk is stored in such file is designated as its
content location.

On the other hand, if a file does share one or more chunks
with some previously stored file(s), the contents of such
chunk(s) will not be stored in the underlying file system;
instead, the file’s metadata will include a chunk pointer
for each such shared chunk referencing its content loca-
tion (where its actual contents may be retrieved). Only

∗Funded by FCT Grant SFRH/BD/13859.
†Funded by FCT Project UbiRep POSI/CHS/47832/2002.

the remaining unshared portion is effectively stored in the
underlying file system, in the same way as described for a
whole unshared file. In order to ease the maintenance of
each chunk pointer when the content location of a chunk
changes as result of some write access, a level of indirection
is provided by a disk-stored chunk pointer table.

Hence, in case of no similarity, no storage overhead is im-
posed and read access performance is identical1 to that of
a regular file system. Furthermore, (a) in case of an un-
derlying block-based file system, internal fragmentation is,
on average, not affected; and (b) data compression may be
applied to the unshared portions of each file as a whole,
rather than to individual smaller chunks, thus achieving
higher compression ratios.

Since chunk hashes are not stored along with their con-
tents, the file system must be divided and hashed each time
similar chunk detection needs to be made for new contents.
This phase is deferred to background sessions, executed dur-
ing idle system periods.

The organization of files into chunks employs a chunk coa-
lescing step, which optimizes cases where consecutive point-
ers to contiguous shared chunks are detected. Such pointers
are replaced by a simple multiple-chunk pointer, thus reduc-
ing the storage overhead and allowing faster access perfor-
mance. In practice, this is comparable (though not always
equivalent) to considering a higher chunk size whenever re-
sorting to a lower size would yield no additional similarity
gains.

Concluding Remarks. Our architecture is partially
functional in a simulator and is currently being implemented
as a Linux Virtual File System. Preliminary results, ob-
tained from the analysis of actual file system contents of
desktop computers at Inesc-ID show that our architecture
is able to achieve higher storage reductions than any other
chunk repository approach.

References
[BF04] J. Barreto and P. Ferreira. A replicated file system for re-

source constrained mobile devices. In Proceedings of IADIS
International Conference on Applied Computing, 2004.

[CN02] L. Cox and B. Noble. Pastiche: Making backup cheap and
easy. In Proceedings of Fifth USENIX Symposium on Oper-
ating Systems Design and Implementation, December 2002.

[MCM01] Athicha Muthitacharoen, Benjie Chen, and David Mazieres.
A low-bandwidth network file system. In Symposium on
Operating Systems Principles, pages 174–187, 2001.

[QD02] S. Quinlan and S. Dorward. Venti: a new approach to
archival storage. In First USENIX conference on File and
Storage Technologies, Monterey,CA, 2002.

1With the exception of the delay induced by an additional layer in
the file system stack.

1


