Obligation Policies: An Enforcement Platform

Pedro Gama, Paulo Ferreira
INESC-ID/IST
Distributed Systems Group
Rua Alves Redol, n°9, 1000-029 Lisboa
[pedro.gama, paulo.ferreira]@gsd.inesc-id.pt

Abstract

The use of policy-based mechanisms significantly re-
duces the complexity associated with applicational devel-
opment and operation.

In particular, history-based policies allow the system to
base application access decisions on the evaluation of other
actions executed in the past. Obligation-based policies en-
hance this concept with the possibility of enforcing that cer-
tain actions will be executed in the future. This is a nec-
essary evolution because some semantics are either easier
to express as obligations or cannot be specified using tradi-
tional authorization mechanisms.

Currently, the absence of enforcement mechanisms for
obligation-based policies imposes the implementation of
ad-hoc functional constraints. This increases development
time and introduces security vulnerabilities into the policy
engine.

We present a policy platform called Heimdall,' which
supports the definition and enforcement of obligation-based
policies. A prototype implementation is described, together
with an evaluation which denotes encouraging results.

1. Introduction

Several security constraints must be applied in runtime
systems in order to control access to system resources. One
approach for the definition of such constraints is based on
the use of security policies[14]. These policies describe the
access rules with an high level of abstraction, clearly sepa-
rating the specification and the implementation of security
mechanisms [33]. In particular, history-based policies al-
low the inclusion of temporal events in the policy rules. A
common example of such type of policies is the Chinese-
Wall security policy [4], which analyzes previous actions in
order to authorize (or not) the current operation.

In addition to the possibility of including past events, a
policy can specify that certain operations must be executed

"Heimdall is the watchman of the gods in Norse Mythology. He pos-
sesses a ’second sight” that allows him to see into the future.

in the future, forming an obligation policy.
Several examples can be given which evidence the rele-
vance of obligation policies:

e A user pays for a QoS (Quality of Service) agreement
in a grid node[13]. The node is obliged to provide 5
hours of CPU-time in the next 24 hours.

e A contributor submits his tax declaration and is
obliged to send the receipt to its employer within 7
days.

e An online merchant issues 5 euros bonus vouchers for
his new clients. If a client uses the voucher he is
obliged to purchase a global amount of 50 euros dur-
ing the voucher validity period. It is important to no-
tice we are assuming a new more flexible semantics
not usually found in voucher systems. Usually a mer-
chant issues a voucher valid for a period of time and a
minimum individual purchase amount. This limits the
flexibility of the voucher and consequently the user’s
purchases. Alternatively, we allow the voucher to be
checked at any purchase, but the user is obliged to shop
a minimum specified amount in the validity period.

The application of obligation policies is the natural solu-
tion for the enforcement of the scenarios presented above.
Although it is sometimes possible to transform an obliga-
tion policy into an authorization policy (i.e. based solely on
past events), the existing mechanisms for that conversion
cannot be used in these cases [26]. The fact that the obliged
action (e.g. guarantee a QoS) is causally dependent on the
trigger action (e.g. pay a QoS guarantee) implies that the
actions cannot be reversed in order to transform the obliga-
tion policy into a history-based one:

o In the first example, it isn’t possible for the user to pay
the QoS guarantees after the resource usage, as the us-
age itself depends on a previous reservation.

e Inthe IRS case, the contributor cannot send the receipt
to its employer before it is generated upon tax submis-
sion.

e Finally, in the voucher case, a policy engine cannot
deny a purchase based in the validity of the voucher or



on previous purchases, as the user can still fulfill the
obligation in the future.

It is obvious that obligation policies can be imple-
mented programmatically together with other functional
constraints. This is the common situation today, due to a
lack of expressiveness and enforcement capabilities in cur-
rent policy platforms [27, 8, 18]. However, this approach
leads to the possibility of severe security errors in the pol-
icy platform. In addition, it generates the need to modify
and redeploy the application whenever the policy changes.

Several systems were proposed to support obligation
policies. Most focus primarily on the definition of the oblig-
ation model rather than in the enforcement of the policy it-
self [27, 30, 3, 12, 28]. Some effectively enforce obligation
policies, but their approach is either based in ECA (event-
condition-action) mechanisms[8], making them more ap-
propriate for workflow processes, or the platform is focused
for a particular obligation enforcement, like resource provi-
sioning [32].

Such enforcement is indeed a complex task. As pointed
out by Schneider [29], it is not possible to base an autho-
rization decision based on future actions through the use of
a standard execution monitor. This is due to the fact that the
execution monitor would have to analyze all possible future
sequence of events, something only attainable with a static
analyzer. However, Schneider bases his statements in the
fact that every event analyzed for authorization is indepen-
dent from all the other events. Ribeiro [26] suggests that
in different execution environments, such as those found in
transactional engines, several distinct events can be inter-
related in an atomic way. Thus, if action A obliges action
B, and B is not executed, we can invalidate A, instead of
“obliging” B. In practical situations however, we find this
invalidation to be usually impossible, due to the fact that
either an action can’t be cancelled, or has generated sec-
ondary effects after execution.

Thus, we base our alternative approach on the hypothe-
sis that any executed action can be counterbalanced in the
future. In this context, although a policy monitor cannot en-
force the execution of a future action, it can compensate any
previously executed actions. For example, in the QoS case
described above, if the grid node doesn’t comply with the
QoS agreement, it might be faced with public exposure in a
blacklist server until he refunds the client.

The platform presented in this paper, called Heimdall,
provides a transparent’ enforcement mechanism for oblig-
ation policies. This allows policy administrators to define
obligation policies independently of application develop-
ment. The policies themselves are enforced without the
need for further application integration. To our knowledge
this is the first practical design, implementation and evalu-

2Transparency means in this context that application development is
independent from policy specification and enforcement.

ation of a platform that supports the specification and en-
forcement of history-based security policies and, more im-
portantly, obligation policies. Furthermore, this platform
can be integrated with other runtime systems to extend their
security capabilities.

This paper is organized as follows. In the next section
we present a general overview of Heimdall, describing a
generic application execution. In Section 3 we define our
policy language: the xSPL. We then present the architec-
ture of the system in Section 4 describing the various com-
ponents of the platform. In Section 5 we focus on the proto-
type implementation, further evaluated in Section 6. Then,
we contextualize Heimdall within this scientific field dis-
cussing some related work in Section 7. Finally, in Section
8 we present our conclusions.

2. System Overview

Heimdall is a Middleware platform with the architecture
depicted in Figure 1.

Applications

Runtime System (e.g. JVM, CLR)
-

1 33
L4 .
Event Heimdall
. Executor
Bridge

Obligation —
y —7
Enforcer

-
3/V 7 \ 6

¥ 3 4* 5
Relevance &~ History .
Log Timekeeper

Engine

Figure 1. Overview of Heimdall.
It was developed with three major objectives in mind:

e Offer a comprehensive set of language semantics for
policy definition. This includes obligation, history-
based and RBAC policies.

e Clearly separate policy specification, enforcement and
application development.

e Provide easy integration with existing runtime systems
and applications.

In what concerns the first goal, Heimdall extends the SPL
(Security Policy Language)[27] in order to increase its ex-
pressiveness with necessary obligation semantics.

Separation of application development and policy spec-
ification and enforcement is also a key target in Heimdall.
The runtime system only has to make sure that a notification
of every relevant applicational operation (called an event)
is generated upon execution. The policy administrator will
then define the obligation policies based on these event de-
scriptions. This approach allows the integration of events



from different applications into a common policy without
the need for additional application development. For the
execution of compensatory actions, the policy administra-
tors can flexibly define a callback method for invocation by
Heimdall (e.g. a webservice method).

Seamless integration with runtime systems (e.g. the Java
Virtual Machine or the .Net Common Language Runtime) is
provided through Heimdall interface modules, more specifi-
cally the Event Bridge and the Executor. The input to Heim-
dall can be easily generated by intercepting security critical
operations in the runtime system and composing associated
events. On the other hand, the invocation of compensatory
actions can be accomplished without runtime system mod-
ifications through the use of webservices or other existing
protocols. This architecture allows any runtime system to
use our obligation policy engine with minor integration ef-
forts. Additionally, Heimdall can coexist with other policy
and/or security engines without any interference.

For clarity we illustrate in Figure 1 the execution of a
generic application over a runtime system which uses Heim-
dall mechanisms to enforce obligation policies.

1. The runtime system sends an operation description to
Heimdall. Notice that Heimdall doesn’t block the op-
eration in the runtime system, which proceeds its nor-
mal execution. Our obligation semantics specifies that
an action is always authorized, with potential compen-
satory actions executed in the future.

2. The operation description is received in Heimdall by
the Event Bridge module. This module translates the
operation description into a normalized construct: the
xSPL event. This event is then sent to the Obligation
Enforcer.

3. The Obligation Enforcer contacts the Relevance En-
gine in order to determine if the current event is ap-
plicable for any of the existing policies. If any of
the policies is history-based, the Relevance Engine re-
trieves applicable past events from the History Log in
order to analyze the evolution of the policy.

4. If the event is applicable for policy monitoring, it must
be stored for future evaluations in the History Log.

5. Additionally, if the current event triggers a new oblig-
ation, the Obligation Enforcer gets a new obligation
timer from the Timekeeper module, and associates it
with a new obligation instance. On the other hand, if
an obligation is fulfilled, the Timekeeper is contacted
to cancel an existing timer.

6. Finally, in the case an obligation timer expires be-
fore the corresponding obligation is fulfilled, the Time-
keeper informs the Obligation Enforcer about the fact.

7. The Obligation Enforcer invokes the Executor in order
to execute the compensatory actions specified in the
policy.

8. The Executor serves as the interface between Heimdall
and the runtime system in what concerns the execution

of compensatory actions. This can be achieved using
a number of protocols (e.g. webservices, HTTP, RMI,
etc), providing a flexible callback interface to client ap-
plications.

3. xSPL

The obligation policies are defined in xSPL (eXtended
Security Policy Language), an extension of the SPL lan-
guage [27]. This language allows the definition of poli-
cies with complex constraints, including history-based and
obligation-based policies.

Each policy is defined by the composition of several
rules. The rule is formed by two distinct sections:

< trigger expression :: obliged expression >

The trigger expression specifies the applicability of the
rule. If this expression is true it means a new obligation
must be enforced. On the other hand, the obliged expression
defines the conditions which fulfills an obligation.

One of the central concepts in XxSPL is that of the event.
Each action in the system, like the payment of a QoS agree-
ment or the monitoring of the simulation CPU time, is
mapped into a normalized event construct. These events can
be instantiated in two different sets. The Past Events Set
includes the events which were previously executed. The
Future Events Set specify actions intended to be executed
in the future (like the Simulation Finished event). Addition-
ally, the event containing the operation being evaluated is
called the current event (represented as ’ce’).

For clarity we present in Figure 2 a definition in xXSPL of
the discussed QoS agreement policy (c.f. Section 1).
?QoSPolicy ():

TIMEOUT = 24 hour

COMPENSATE = blacklist(ce.target)
EXIST fe IN FutureEvents {

ce.action = ”Pay.QoS”

(fe.action = ”Simulation.CPU.time” AND
fe.action.parameter[0] >= 5 hour) OR
fe.action = ”Simulation.finished”

Figure 2. Example of a QoS obligation policy in xSPL
(note that the parameter[0] of the ”Simulation CPU time”
event contains the Simulation CPU time).

This policy states that if a user pays for a QoS agreement,
the grid node is obliged to provide at least 5 hours of CPU
time to a simulation process, before the obligation expires
in 24 hours. However, if the simulation finishes before that
time, the obligation is also considered to be fulfilled. If the
QoS obligation is not fulfilled, Heimdall will automatically
invoke the blacklist service. We can imagine the offending
node is removed from the blacklist in the future against the
refund of the QoS agreement, but that is out of the scope of
this paper.



It is important to define the policies with care in order
to assure the correct semantics is implemented. Some sub-
tle differences can modify completely the objective of the
policy. Consider the example policy of Figure 3. At first
sight one might read it as ”Whenever someone buys a book,
someone must pay for the book”. That is not correct. The
exact meaning of the policy is that ”’If someone buys a book,
someone has to pay for a book”. The book might not be
the same, leading to a situation in which several books are
bought, and only one is paid.

?SimplePolicy ():

EXIST fe IN FutureEvents {
ce.action = ”Buy.book” ::

}
}

fe.action = ”Pay.book”

Figure 3. An obligation policy not instantiated.

In order to define the desired semantics one would have
to properly instantiate the executed actions, as shown in Fig-
ure 4.

?SimplePolicylnstantiated ():

EXIST fe IN FutureEvents {
ce.action = ”Buy.book”

ft;. .action = ”"Pay.book” &
fe.action.parameter [0] = ce.action.parameter [0]
}
}
Figure 4. An obligation policy properly instantiated (note
that the parameter[0] of each action contains the identifier
of the book).

In this example we oblige both actions to be performed
on the same book. For simplicity we didn’t instantiate the
simulation in the QoS example, but the process would be
similar to this case.

Two other concepts introduced in xSPL are those of the
timeout period and the compensatory actions. The specifi-
cation of the timeout period (tag TIMEOUT) relates to the
time allowed to fulfill an obligation. This element is cru-
cial, as the timeframe is normally different depending on
the specific policy (e.g. one hour might be a reasonable
timeout for an online payment, but is probably too short for
an asynchronous email reply).

The definition of compensatory actions (tag COMPEN-
SATE) is also a key issue in what concerns the enforcement
of obligation policies. Such compensatory actions should
either be sufficiently penalizing so that one is “forced” to
fulfill the obligations or, when possible, cancel already exe-
cuted actions.’

Note that two reasons usually prevent the effectiveness
of the latter approach (i.e. cancellation of previous actions):

e First, the cancellation of real actions is not possible
(e.g. a system cannot cancel a printout it has already

3By cancelling an action we mean to completely erase the effects of the
action, similar to what happens when a database transaction is aborted.

generated).

e Additionally, this cancellation, when possible, might
not be sufficient to counterbalance secondary effects
of the executed actions (e.g. the IRS department might
cancel a contributor’s submission, but that is hardly
enough if a tax refund was already executed).

Those are the reasons why compensatory actions should
be as penalizing as possible, in order to be unprofitable not
to fulfill an obligation.

4. Architecture

Heimdall encloses six functional modules, as already de-
picted in Figure 1.

The Event Bridge is the input processing module of
Heimdall. It plays an important part in the interoperabil-
ity of the platform with different runtime systems. The
most basic Event Bridge merely receives events and for-
wards them to the Obligation Enforcer. These events (e.g.
a file access request or a payment notification) are gener-
ated by the runtime systems, upon the execution of opera-
tions by applications. New bridges can be easily developed
which translate proprietary operation definitions into stan-
dard xSPL events.

The Executor module on the other hand calls back
the runtime system (or any other platform defined in the
compensatory actions) in order to compensate not-fulfilled
obligations. Its flexibility (webservices, HTTP, RMI, etc)
allow an application to combine obligation policies with
compensatory actions in a penalizing and effective manner.

The Obligation Enforcer, together with the Relevance
Engine, are the core of the Heimdall platform. They are
described below in more detail.

The Timekeeper provides fulfillment timers, being used
to control the expiration of an obligation instance.

Finally, the History Log filters and stores the events
which are relevant for policy evaluation.

4.1 Obligation Enforcer

The Obligation Enforcer is the coordinator for overall
obligation enforcement. It ensures the system is in a consis-
tent state with respect to obligations by compensating oblig-
ation instances which have not been fulfilled in due time.

This module is triggered in two different situations: the
issuance of an xSPL event by the Event Bridge (upon the
execution of an operation by an application) and the time-
out of an obligation fulfillment period. In order to illustrate
these mechanisms we use the generic execution illustrated
in Figure 5.

When the event x is received, the Obligation Enforcer
contacts the Relevance Engine. This module indicates that
the current event (x) triggers the obligation policies A and
B. Thus the Obligation Enforcer creates two new obliga-
tion instances (Al and B1), associating them with fulfill-
ment timers obtained from the Timekeeper module.



Fulfillment timer for policy instance A1l

_____ x Timer

Fulfillment timer for policy instance B1 Expiration
l 4 * .
t
Obligations A and B Obligation A
1gations A an 18ation Obligation B
triggered fulfilled i
not fulfilled
(Event x) (Event y)

Figure 5. The evolution of two simultaneous obligations.

Afterwards, the Event Bridge sends the event y to the
Obligation Enforcer. After evaluation of the event, the Rel-
evance Engine indicates that the instance A1l of obligation
A is fulfilled. Therefore the Obligation Enforcer stops the
associated fulfillment timer and deletes the obligation in-
stance.

Finally, when the fulfillment timer of obligation instance
B1 expires, the Timekeeper Module alerts the Obligation
Enforcer. The Obligation Enforcer sends the instance in-
formation to the Executor module, in order to execute com-
pensatory actions. Additionally, it deletes the obligation in-
stance, as no further actions are necessary.*

4.2 Relevance Engine

The mechanism associated with the Relevance Engine
basically evaluates a certain policy against the current event
and the content of the History Log. This allows the mon-
itoring of policies in which the trigger and the obliged ex-
pressions (c.f. Section 3) only refer to the current event and
to past events, such as the case of history-based policies.
Following evaluation, the mechanism returns one of three
possible results:

e It returns positive if the trigger and obliged expressions
are true.

e It returns negative if only the trigger expression is true.

e It returns not-apply if the trigger expression is false.

The History Log cannot obviously contain events that
will occur in the future. This prevents the correct evaluation
of the obliged expression in the case of obligation policies.
It is important to note that two milestones are critical for
the enforcement of obligation policies: the triggering of the
policy itself, and the fulfillment of a specific policy instance.
Therefore, in order to use the mechanism mentioned above,
Heimdall performs an ”aging” operation in obligation poli-
cies: future events are instantiated as current events in order
to postpone evaluation until the moment they are executed.
For clarity, consider the obligation policy presented in Fig-
ure 6.

4An enhancement to this alternative would be to consider the replace-
ment of a not fulfilled obligation by a new obligation with stricter rules, as
proposed in [12]. We plan to introduce this possibility in future versions
of Heimdall.

?Door:
EXIST fe IN FutureEvents {
ce.action = ”Open.Door” :: fe.action = "Close.Door”
}

Figure 6. An obligation policy.

We internally separate each obligation policy into two
distinct policies, individualizing the evaluation of obligation
triggering and fulfillment. The result is presented below in
Figure 7.

The DoorTrigger policy indicates that the Door policy is
triggered by the current event: a new instance must be cre-
ated and associated with fulfillment timers. On the other
hand, the DoorFulfill policy indicates that a certain instance
of the Door policy is fulfilled by the current event. In this
way, obligation policies are monitored by the same mecha-
nisms used for history-based policies, minimizing the com-
plexity of the reasoning engine.

?DoorTrigger:
ce.action = ”Open.Door” :: true;

?Doorfulfill:
true :: ce.action = “Close.Door”

Figure 7. Internal separation of the Door policy.

Other evaluation issues are related with the semantics
associated with generated events. In Heimdall one single
event can be associated with several obligation policies, as
already illustrated in Figure 5 above. In this example, oblig-
ations A and B are triggered by the occurrence of the same
event (x). This is a common situation in multi-application
systems (e.g. an IRS submission might oblige a user not
only to send the receipt to its employer but also to pay any
existing debt). It also provides a more flexible way for pol-
icy administrators to specify the system policies, as they are
not restricted to map each event to a specific obligation.

In Heimdall, distinct obligation policies triggered by the
same events execute independently from one another. This
means that one of them could be fulfilled while other is
not, leading to the execution of compensatory actions. One
could argue that if an action is compensated, it should not be
involved in a fulfilled obligation. However we consider the
desired semantics to be rather application-dependent, and so
in Heimdall it is the responsibility of the policy administra-
tor to resolve any conflict related to not-fulfilled obligations.
In other words, if the execution of compensatory actions af-
fects the consistency of other obligations, the compensatory
actions themselves must restore the overall consistency of
the system (e.g. by also compensating other obligations
which were already executed).

5. Implementation

Heimdall was implemented in Java and tested over the
Java Runtime Engine 1.4.2.

The Event Bridge receives events from any runtime sys-



tem installed in the same node as Heimdall and forwards
them (the events) to the Obligation Enforcer. At present
time the events must be received in the xSPL format. How-
ever, we are currently incorporating a XML-to-xSPL con-
vertor into the Event Bridge, in order to allow the process-
ing of XML-based events, thus enhancing platform compat-
ibility.

The Relevance Engine adapts and extends the function-
alities of the reasoning engine proposed by Ribeiro [27] in
order to allow the monitoring of obligation policies.

The Obligation Enforcer processes incoming events and
activates compensatory actions. For the first goal it manages
two repositories, implemented as normal Java Vectors. One
with a descriptor for each policy deployed in the system,
and another with all pending obligation instances. When-
ever an event is received, all these descriptors are sequen-
tially transmitted to the Relevance Engine, in order to eval-
uate if the current event triggers a policy or fulfills an oblig-
ation instance.

In what concerns the execution of compensatory actions,
the Obligation Enforcer possesses a distinct thread of exe-
cution which is activated by the Timekeeper module in case
a timer expires.

The History Log is implemented as a set of event repos-
itories, one for each of the policies in the system. At policy
deployment time, each of these repositories is dynamically
generated according to policy definitions, in order to opti-
mize event storage and retrieval. A filtering mechanism dis-
cards any event that is not relevant for the evaluation of the
policy (e.g. if a policy controls a simulation QoS, it doesn’t
need to store events related to file access). In addition, the
repository stores only useful evaluation fields (e.g. if a pol-
icy controls the number of books sold, it doesn’t have to
store the price of the books). This approach allows us to
minimize Log dimension, and thus enhance performance of
event retrieval (for more details see [27]).

Finally the Executor Module parses and invokes
the defined compensatory actions. The current im-
plementation only provides HTTP-based callbacks (e.g.
http://myserver/compensate.jsp?id=1), but new interface
modes are being developed and will be available shortly.

6. Evaluation

Performance is critical for any policy engine, as it should
not interfere with the normal execution of operations. It’s
worthy to note that, in Heimdall, the runtime system (and
consequently the application) never blocks waiting for the
evaluation of obligation policies.

In order to assess the scalability of the platform, it is
mandatory to evaluate Heimdall mechanisms in terms of the
time it takes to evaluate an event received from the runtime
system.

Heimdall performance is closely related to the cost of
checking the relevance of a certain event in terms of the

policies deployed in the system. This includes analyzing if
any of the policies is triggered by the current event, and fur-
ther checking if any of the pending obligation instances can
be fulfilled by that event. Thus, two major aspects influence
the relevance checking: the number of events in the History
Log and the number of simultaneous pending obligations.

The effect of executing compensatory actions has minor
consequences in what concerns the overall capacity of the
system. The number of compensatory actions executed is
normally one or more orders of magnitude smaller than the
number of generated events. Furthermore, the associated
processing only involves the invocation of a specified action
in the runtime system. For these reasons, and for lack of
space in this paper, we don’t present an evaluation on the
effects of compensatory actions to the overall performance
of the system.

We further focus the evaluation in what concerns oblig-
ation policies, as obligation enforcement is the main goal
of this paper (Heimdall also supports other types of policies
like RBAC).

With these goals in mind, we developed and executed
two different test scenarios in order to evaluate the influence
of the mentioned aspects to the behavior of the system. Both
scenarios were tested in a Pentium 4, 2.8GHz, 512MB PC,
running Microsoft Windows XP Professional SP2.

6.1 Strict Obligation Policies

By strict obligation policies we mean those obligation
policies which are not history-based. This distinction is im-
portant, as simulations show significant performance differ-
ences between these two types of obligation policies.

Our first test scenario tests Heimdall with a set of similar
strict obligation policies, presented in Figure 8.

?StrictTestScenario:
EXIST fe IN FutureEvents {
ce.action = ”"An” :: fe.action = ”Bn”

Figure 8. A strict obligation test scenario (An and Bn
are instantiated as A00, B0O, AO1, BO1... for each of the
specific policies).

It expresses that after executing the action ”An”, the en-
tity is obliged to perform the action ”Bn” in the future. The
results of the simulation are presented in Figure 9.

The lines in the chart correspond to different simulations
with a distinct number of policies in the system (from 1 to
100 policies). During the simulations we generate events
in order to sequentially trigger all policies, fulfill all poli-
cies and start the cycle again. As a result, the number of
simultaneous obligation policy instances is equal, in aver-
age, to half the number of deployed policies. The values in
the chart were obtained by averaging the evaluation time in
5,000 events intervals. In this and subsequent charts each
average is presented in the end of the associated interval



Event Evaluation Time

—a— 1 policy

—x— 25 policies

—e— 50 policies
0:2 0000000000000 0 —»— 100 policies
o B R
Q N O N N N N N O O
& ng 690 QQQ Q«QQ ng &0 090
NY o » o e A > 9

Time in milliseconds
o
©

Number of Events in the History Log

Figure 9. Event Evaluation Time with simple obligation
policies.

(e.g. the average evaluation time in the 25,000-30,000 in-
terval is presented in the 30,000 index). Notice that in this
particular case the number of generated events is similar to
the number of events in the History Log, because all events
are relevant to the evaluation of policies, and so must be
stored for future analysis.

This chart shows that in what concerns the policy pre-
sented in Figure 8, the number of events in the History Log
is not relevant for event evaluation time. This is due to the
fact that Heimdall only has to analyze the current event in
order to check policy triggering and fulfillment (c.f. Rele-
vance Engine in Section 4). The differences in evaluation
time between simulations with different number of policies
are due to the necessity of checking if the current event is a
trigger for each of the deployed policies.

Afterwards, and using the same test scenario we contin-
ually generated trigger events, in order to increase the num-
ber of simultaneous obligation instances. The results of the
simulation are presented in Figure 10.

Event Evaluation Time

—=— 1policy
—x— 25 policies
—e— 50 policies
—»— 100 policies

Time in milliseconds

Number of Simultaneous Obligation Instances

Figure 10. Event Evaluation Time with several obligation
instances.

The lines in the chart correspond to different simulations
with a distinct number of policies in the system (from 1 to
100 policies). The values were obtained by averaging the
evaluation time in 500 events intervals. In these simulations
the number of generated events is similar to the number of
pending obligation instances, as we only generate trigger

events, and thus never fulfill obligations (the expiration pe-
riod is set to an high value in order not to interfere with the
evaluations).

As expected, the evaluation time increases with the num-
ber of pending instances, as each of them must be checked
for fulfillment.

However, the performance of Heimdall is rather accept-
able with this type of strict obligation policies. The evalu-
ation time with 100 strict obligation policies deployed in
the system ranges from | millisecond to 4 milliseconds,
depending on the number of simultaneous obligation in-
stances, ranging from 50 (in the first chart) to 9,000 (in the
second chart).

If generated events don’t trigger any obligation policy,
Heimdall obviously doesn’t create any obligation instance.
Additional simulations show that in this case the event eval-
uation times decrease in about one order of magnitude.

6.2 History-Based Obligation Policies

Heimdall also supports the inclusion of history-based
rules in obligation policies. Although an alternative formu-
lation for the required semantics can be achieved by com-
bining distinct history-based and obligation policies, this
approach provides a more natural way to express certain se-
mantics in several practical situations. Thus we developed a
second test scenario with the history-based obligation pol-
icy presented in Figure 11.

?SecondTestScenario :
EXIST pe IN PastEvents {
EXIST fe IN FutureEvents {
ce.action.name = “An”

f)-e.action .name = ”"Bn” & fe.action.name = ”Cn”
s
Figure 11. An history-based obligation test scenario (An,

Bn and Cn are instantiated as A00, B00, C00, A0O1, BO1,
CO01, ... for each of the specific policies).

It expresses that after executing the action ”An”, the en-
tity is obliged to perform the action ”Cn” in the future.
Additionally, at fulfillment time, action ”Bn” must have al-
ready been executed (prior to the execution of ”’Cn”). The
results of a simulation in which new obligation instances
are continually triggered is presented in Figure 12. Note
that obligation instances are never fulfilled in this scenario.

The lines in the chart correspond to different simulations
with a distinct number of policies in the system (from 1 to
25 policies). The values were obtained by averaging the
evaluation time in 50 event intervals.

The chart shows that event evaluation times are one or-
der of magnitude greater than the ones in the scenario of
Figure 10. This is due to the fact that for each generated
event, Heimdall must search the entire log in order to check
if any of the pending obligation instances can be fulfilled.
Note that in the simulations presented in Figure 10 the Rel-



Event Evaluation Time

—a— 1 policy

—x— 5 policies

@D WO NN
|

—e— 10 policies
—»— 25 policies

Time in milliseconds

SIS
S S L &

Number of Simultaneous Obligation Instances

Figure 12. Event Evaluation Time with several obligation
instances in a history-based obligation policy.

evance Engine didn’t have to search the Log, as only strict
obligation policies were deployed. The evaluation times are
however still reasonable, as a system with 25 installed poli-
cies and 500 pending obligation instances takes about 6 mil-
liseconds to evaluate one event.

In addition, together with the first scenario, this result
demonstrate that the system scales efficiently with the in-
crease in the number of events in the History Log and the
number of simultaneous pending obligations.

7. Related Work

The concept of obligation was already proposed and dis-
cussed in several papers, with details and even semantics
differing significantly.

Minsky [21] introduces several notions related to obliga-
tions, like the fulfillment time and the compensatory actions
associated with not-fulfilled policies. The proposed system
is not intended for policy enforcement though, but rather
to control transitional violations of system integrity. The
LGI (Law-governed interaction) platform[22] extends these
concepts by enforcing the policy of the system (named Law)
through the exchange of messages between controllers. The
rules of the policy are specified directly in Prolog and de-
fine a message workflow. Therefore, the system is more
focused in the coordination of distributed applications than
in the enforcement of security policies. LGI can control
history-based and obligation policies, but the management
(storage and retrieval) of the events must be programmed
into the policy definition, which difficults the implemen-
tation of complex policies. Heimdall, on the other hand,
automatically generates the necessary instructions from the
policy definition. The specification of the compensatory
actions in Prolog also limits the flexibility of obligations.
Alternatively, Heimdall allows connections to webservices,
web applications and other protocols. Finally, the efficiency
evaluation of LGI is centered in the message exchange be-
tween controllers, disregarding scalability issues related to
concurrent and complex obligation policies.

Ribeiro [27] defines a security policy language which in-
cludes the concepts of history-based and obligation policies.

He proposes a mechanism for the enforcement of obliga-
tion policies [26] but requires the issuance of an external
”commit” event. When this event is generated the reason-
ing engine verifies if the obligation policy is fulfilled. Fur-
thermore, the mechanism doesn’t allow the instantiation of
a particular obligation instance, and so the system can only
determine if all obligation instances were fulfilled. Heim-
dall allows the enforcement of security policies without any
additional events (apart from the ones corresponding to ac-
tions in the runtime system). Each obligation instance is
individualized and thus can be checked for fulfillment apart
from the others. In addition, Heimdall interfaces with run-
time systems enhancing existing security mechanisms.

Policies are also being increasingly used to specify the
rights and duties (obligations) of one organization in regard
to other entities[31, 9, 20, 30, 15, 1]. This kind of policies
is referred to as contracts and harmonize the interactions
between different organizations. Specifically, in grid and
peer-to-peer environments[13], they allow organizations to
securely supply their resources against a defined retribution.

Chiu[6] presents a meta-model for the definition of con-
tracts, including the concepts of obligation, permission and
prohibition. The specification of the contracts uses a UML
graphical notation, which can make the definition of a con-
tract a complex task. Obligations are enforced using a ECA
(event-condition-action) approach. This means that after
the occurrence of a certain event the system checks if a
specified condition is valid. In the affirmative case the ac-
tion in the ECA rule is executed. These rules are enhanced
with clock timers in order to provide a fulfillment period for
obligations. A proof-of-concept prototype is not presented,
difficulting the analysis of the system’s behavior in practical
situations.

Ponder [8, 10] and PDL[18] also use the event-condition-
action concept in order to enforce obligations. However,
their concept of obligations differs from the one in Heim-
dall, as the obliged actions are initiated immediately upon
the occurrence of the trigger event. This makes the systems
more appropriate for a workflow engine than for generic
obligation enforcement. Additionally, they don’t specify
any compensatory actions regarding failure in complying
with the policy.

Firozabadi[11] defines a contract as the policy that con-
ducts the interaction between different entities. Each con-
tract specifies the obligations and entitlements which are
associated with a certain entity. While obligations express
future conditions that must be fulfilled (e.g. provide stor-
age capacity), entitlements prove that a certain entity has
the right to access a certain resource. The obligation notion
used in this system is less expressive than that in Heimdall,
as obligations are effective in a specified timeframe (e.g.
provide 300GB of storage from 15h00 to 20h00), rather
than being activated by a particular event. In order to en-
hance the flexibility of contracts in what regards obligation



fulfillment, this system introduces the notion of a contract
block. This consists in a chain of cost-increasing obliga-
tions that provide alternative fulfillment courses for oblig-
ations. Heimdall policy language also allows this seman-
tics through the disjunction of alternative policy rules[27].
In addition, Heimdall allows the monitoring of the speci-
fied contracts, together with the enforcement of not-fulfilled
obligations through compensatory actions.

Wasson [32] proposes a system to support resource pro-
visioning in virtual organizations (VOs)[13]. The system
is centered around the concept of a Grid Bank which pro-
vides users with credits to use the VO’resources. Although
including different components for policy monitoring, ac-
counting and enforcement, it is focused on controlling just
three types of policies involving provisioning, which lim-
its its applicability. Heimdall on the other hand proposes a
more general approach in which compensatory actions can
be flexibly defined by the policy administrator.

Deontic Logic is used in several systems that support the
notion of obligations. This type of logic extends the notion
of an ideal system behavior with the possibility to analyze
allowed deviations to this ideal conditions [17, 7]. However,
the existence of some paradoxes difficult the application of
this logic to policy systems [19]. We emphasize the impor-
tance of the contrary-to-duty paradox [25, 5], in which a
secondary obligation is activated by the failure to fulfill a
primary obligation. This concept is similar to the notion of
compensatory actions in Heimdall, but extremely difficult
to reason about in deontic logic systems. Nevertheless Kent
[17] shows how temporal constraints and error recovery ac-
tions can be used in these systems.

Milosevic [20] and Molina-Jimenez [23] propose the
use of finite-state machines to monitor the fulfillment of e-
contracts. In the first case, the possible states are divided
into 5 different levels, ranging from full compliance with
the contract to global failure of the obliged actions. In the
failure states, compensatory actions are in order, but no de-
tails are provided in what concerns the enforcement of their
execution. In the latter paper, the authors explicitly penalize
a failing entity by restricting the actions it can execute in a
certain state, but no further compensatory actions are sup-
ported. In both systems, a performance evaluation is lacking
in what concerns systems with complex policies, possibly
leading to large finite-state machines.

Another related topic is that of provisions. These are
actions that must be executed prior to a authorization de-
cision. Jajodia [16] proposes the use of provisional autho-
rizations to enhance traditional authorizations mechanisms.
This allows the resolution of situations in which the access
to a resource is currently denied, but the execution of a cer-
tain action might change this evaluation. Thus, the pro-
posed mechanism presents the user with a number of al-
ternative actions that can be executed in order to grant ac-
cess. Bettini[3] extends this system with obligations. It for-

malizes both concepts (provisions and obligations) and pro-
poses a system to automatically select a choice among al-
ternative provisions and obligations. Obligation monitoring
in this system is discussed in [2], introducing compensatory
actions and time triggers. However, the system doesn’t sup-
port history-based policies as Heimdall. Furthermore, no
prototype evaluation was presented in order to demonstrate
the feasibility of the system.

Park and Sandhu formalize obligations in the context of
a usage control model[24, 34]. However the concept of
obligations that is discussed involves the execution of ac-
tions prior to a certain authorization decision, which effec-
tively resembles more the concept of provisions. The notion
of obligation used in Heimdall is referred to as long-term
obligations.

8. Conclusions

In this paper we evidenced the relevance of obligation
policies. We showed several examples in which the required
usage semantics cannot be defined using traditional autho-
rization mechanisms, or even history-based policies. The
absence of effective enforcement mechanisms for this kind
of policies (i.e. obligations) compels ad-hoc implementa-
tion of security constraints. This situation leads to security
vulnerabilities.

We developed a prototype of the Heimdall plat-
form, which allows the specification and enforcement of
obligation-based policies. In addition, it also supports other
kind of policies like history-based and RBAC. This plat-
form can be easily integrated with existing runtime systems
through its interface modules, as shown in the architecture
description.

Finally, we found the performance penalization associ-
ated with Heimdall operation to be negligible. Runtime
systems only have to generate event descriptions upon the
execution of any security critical action. The Heimdall plat-
form doesn’t block the execution of the action which can
proceed in parallel. Our evaluations further show that the
performance of the Heimdall platform in terms of event
processing is adequate for practical situations, efficiently
scaling for a large number of policies and thousands of
pending obligations instances.

References

[1] P. Ashley, M. Schunter, and C. Powers. From privacy
promises to privacy management: a new approach for en-
forcing privacy throughout an enterprise. In Proceedings of
the ACM New Security Paradigms Workshop (NSPW2002),

Virginia Beach, USA, Oct 2002.
[2] C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekera. Oblig-

ation monitoring in policy management. In Proceedings of
the IEEE Third International Workshop on Policies for Dis-
tributed Systems and Networks (POLICY’02), Monterey, Cal-
ifornia, Jun 2002.



[3] C. Bettini, S.Jajodia, X. S. Wang, and D. Wijesekera. Provi-
sions and obligations in policy management and security ap-
plications. In Proceedings of the 28th International Confer-
ence on Very Large Data Bases (VLDB), Hong Kong, China,
2002.

[4] D.F. Brewer and M. J. Nash. The chinese wall security pol-
icy. In Proceedings of the IEEE Symposium on Research in
Security and Privacy, pages 206-214, Oakland, California,
1989.

[5] M. A. Brown. Conditional obligation and positive permission
for agents in time. Nordic Journal of Philosophical Logic,
5(2):83—-111, Dec 2000.

[6] D. Chiu, S. Cheung, and S. Till. A three layer architecture
for e-contract enforcement in an e-service environment. In
Proceedings of the 36th Hawaii International Conference on
System Sciences (HICSS-36), Hawaii, USA, 2002.

[7] F. Cuppens and C. Saurel. Specifying a security policy: a
case study. In Proceedings of the Ninth IEEE Computer Se-
curity Foundations Workshop, Dromquinna Manor, Kenmare,
County Kerry, Ireland, 1996.

[8] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The pon-
der policy specification language. In Proceedings of the 2nd
International Workshop on Policies for Distributed Systems
and Networks, Bristol, UK, 2001.

[9] A. Daskalopulu, T. Dimitrakos, and T. Maibaum. E-contract

fulfilment and agents’attitudes. In Proceedings of the ERCIM

WG E-Commerce Workshop on The Role of Trust in e-

Business, Zurich, Switzerland, 2001.

N. Dulay, E. Lupu, M. Sloman, and N. Damianou. A pol-

icy deployment model for the ponder language. In Proceed-

ings of the IEEE/IFIP International Symposium on Integrated

Network Management, London, UK, 2001.

[11] B. S. Firozabadi and M. Sergot. Contractual access control.
In Proceedings of the 10th International Workshop of Secu-
rity Protocols, Cambridge, UK, Jun 2002.

[12] B.S. Firozabadi and M. Sergot. A framework for contractual
resource sharing in coalitions. In Proceedings of the IEEE
Fifth International Workshop on Policies for Distributed Sys-
tems and Networks (POLICY 04), Yorktown Heights, New
York, Jun 2004.

[13] L Foster, C. Kesselman, and S. Tuecke. The anatomy of the
grid: Enabling scalable virtual organizations. In Proceedings

of the Intl. J. Supercomputer Applications, 2001.

[14] J. Goguen and J. Meseguer. Security policies and security
models. In Proceedings of the IEEE Symp. Security and Pri-
vacy, California, USA, 1982.

[15] Q. He and A. Antén. A framework for modeling privacy
requirements in role engineering. In Proceedings of the
Ninth International Workshop on Requirements Engineering:
Foundation for Software Quality, The 15th Conference on Ad-
vanced Information Systems Engineering (CAiSE’03), Kla-

genfurt/Velden, Austria, 2003.

[16] S. Jajodia, M. Kudo, and V. Subrahmanian. Provisional au-
thorizations. E-Commerce Security and Privacy, 57(1):133—
159, 2001.

[17] S. Kent, T. Maibaum, and W. Quirk. Formally specifying
temporal constraints and error recovery. In Proceedings of the
RE93 - Ist Intl. IEEE Symp. on Requirements Engineering,
pages 208-215, San Diego, California, 1996.

[18] J. Lobo, R. Bhatia, and S. Naqvi. A policy description

[10

—_

language. In Proceedings of the National Conference of

the American Association for Artificial Intelligence, Florida,
USA, 1999.

[19] J.-J. Meyer, R. Wieringa, and F. Dignum. The Role of Deon-
tic Logic in the Specification of Information Systems, chap-
ter 4. Kluwer Academic Publishers, 1998.

[20] Z. Milosevic, A. Josang, T. Dimitrakios, and M. Patton. Dis-
cretionary enforcement of electronic contracts. In Proceed-
ings of the 6th IEEE Conf. on Enterprise Distributed Object

Computing (EDOC-2002), Lausanne, Switzerland, Sep 2002.

[21] N.Minsky and A. D. Lockman. Ensuring integrity by adding
obligations to privileges. In Proceedings of the 8th Interna-
tional Conference on Software Engineering, pages 92—-102,
Klagenfurt/Velden, Austria, Aug 1985.

[22] N. Minsky and V. Ungureanu. Law-governed interaction: A
coordination & control mechanism for heterogeneous distrib-
uted systems. ACM Trans. Software Eng. and Methodology,
9(3):273-305, July 2000.

[23] C. Molina-Jimenez, S. Shrivastava, E. Solaiman, and
J. Warne. Contract representation for run-time monitoring
and enforcement. In Proceedings of the IEEE Conf. on Elec-

tronic Commerce (CEC), California, USA, June 2003.
[24] J. Park and R. Sandhu. The ucon abc usage control model.

ACM Transactions on Information and Systems Security, Feb

2004.

[25] H. Prakken and M. Sergot. Contrary-to-duty obligations.
Studia Logica, 57(1):91-115, 1996.

[26] C. N. Ribeiro, A. Zaquete, P. Ferreira, and P. Guedes. En-
forcing obligation with security monitors. In Proceedings of
the Third International Conference on Information and Com-

munication Security (ICICS’2001), Xi’an, China, 2001.
[27] C. N. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes. SPL:

An access control language for security policies with com-
plex constraints. In Proceedings of the Network and Distrib-
uted System Security Symposium, San Diego, California, Feb
2001.

[28] A. Schaad and J. Moffett. A framework for organisational
control principles. In Proceedings of the 18th Annual Com-
puter Security Applications Conference, Las Vegas, USA,
2002.

[29] F. B. Schneider. Enforceable security policies. The ACM
Transactions on Information and System Security, 3(1):30—
50, 2000.

[30] B. Shand and J. Bacon. Policies in accountable contracts.
In Proceedings of the IEEE 3rd International Workshop on
Policies for Distributed Systems and Networks (POLICY’02),

page 80. IEEE Computer Society, 2002.
[31] G. Wasson and M. Humphrey. Policy and enforcement in

virtual organizations. In Proceedings of the 4th International
Workshop on Grid Computing (Grid2003) (associated with
Supercomputing 2003), Phoenix, USA, Nov 2003.

[32] G. Wasson and M. Humphrey. Toward explicit policy man-
agement for virtual organizations. In Proceedings of the IEEE
4th International Workshop on Policies for Distributed Sys-

tems and Networks, Lake Como, Italy, 2003.
[33] T. Y. C. WOO and S. S. Lam. Authorizations in distributed

systems: A new approach. Journal of Computer Security,
2(2,3):107-136, 1993.

[34] X.Zhang, J. Park, F. Parisi-Presicce, and R. Sandhu. A logi-
cal specification for usage control. In Proceedings of the Sym-
posium on Access Control Models and Technologies, New
York, USA, 2004.



