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Abstract— The arising of grid platforms introduced inexpen-
sive and highly available computing, storage and networking
resources. Therefore, in a worldwide trend, institutions aggregate
on virtual organizations, registering their resources to the grid
and in return accessing a virtually limitless warehouse. This
overabundance allowed the emergence of innovative application
and business models, delivering the solution to several large-scale
problems, as is the case of data processing, storage and sharing
in CERN’s Large Hadron Collider Project.

In order to allow system administrators to assure resources are
employed in a coordinated and secure way, policy mechanisms
need to cope with such new models and the increased complexity
in resource usage management. However, current grid platforms
only provide simple primitives in their authorization modules.
By restricting access control mechanisms to ACLs and role-
based models, they disregard powerful usage semantics, such
as those which are history-based (e.g. the chinese-wall security
policy). This absence obliges the development of ad-hoc security
managers for each deployed resource, introducing vulnerabilities
in the security architecture.

The use of advanced policies, and more specifically history-
based policies, provides a natural method for expressing and
enforcing several grid usage patterns, such as fair resource
consumption. Additionally, some policy concepts not usually
found in policy engines, such as periodic reevaluation, assure
an effective policy enforcement.

We present the Heimdall system, a history-enabled policy
engine which allows the definition, enforcement and accounting
of history-based policies in Grid platforms, and more specifically
in Globus Toolkit 4.0. A practical evaluation using selected usage
patterns corroborates the effectiveness of this kind of policies in
grid computing environments, denoting encouraging performance
results.

I. INTRODUCTION

Several usage constraints must be applied in runtime sys-
tems in order to control access to system resources. One ap-
proach for the definition of such constraints is based on the use
of security policies[1]. These policies describe the access rules
with an high level of abstraction, clearly separating the spec-
ification and the implementation of security mechanisms[2].
In particular, history-based policies allow the inclusion of
temporal events in the policy rules. A common example of
such type of policies is the Chinese-Wall security policy[3],
which analyzes previous actions in order to authorize (or not)
the current operation.

Additionally, the specification of usage rules in a high-level
language aids policy administrators in generalizing usage and
security patterns into relevant policies. These policy patterns
can be stored into policy repositories, for later instantiation in

similar situations. This model reduces the effort associated
with policy administrative tasks and significantly increases
response time to environmental and business changes.

Specifically, in grid environments, we can envision several
usage and security patterns for which history-based semantics
apply:

1) A Scheduler wants to assure a minimum CPU QoS to
certain submitted jobs. Thus, it rejects job executions
in nodes where CPU-intensive applications are already
running.

2) A Scheduler wants to impose a tit-for-tat model[4]
in resource provisioning. Grid users start with some
amount of pre-defined resource credits, but must share
their resources in order to obtain further credits.

3) A system administrator wants to prevent resource con-
sumption associated with erroneous software. He speci-
fies that any software that has terminated abruptly in the
past cannot execute again before being validated (thus
obliging the application owner to become aware of the
problem).

4) A network-service provider wants to limit resource con-
sumption to a certain amount per week (e.g. each user
has a 10GB usage capacity each week). Additionally he
wants to reserve 10% of the capacity for its local users.

5) A CPU-service provider wants to enforce usage limits to
jobs submitted by users. Not only must the policy engine
deny new submissions when the user has exceeded his
quota, but also jobs must be cancelled if they exceed
those limits while executing.

6) A resource manager wants to restrict job submissions in
situations where requests are continually rejected (e.g.
due to resource exhaustion). Therefore it automatically
rejects any job from a user who had more than 2 job
submissions rejected in the past 5 minutes.

These usage scenarios are obviously very dynamic, and the
policy administrator needs to be able to modify them quickly
according to business conditions. For instance, in the course
of a marketing campaign, a network service provider might
decide to add a new rule to its policy base, granting unlimited
access during night hours. Of course this requirement can
be implemented in an ad-hoc manner. Effectively, the lack
of flexibility and expressiveness in existing grid policy en-
gines obliges policy administrators to code policy rules into
the resource managers themselves. However, this increases



time-to-enforcement regarding new policies, while reducing
application portability and contributing to vulnerabilities in
the policy architecture.

In today’s business reality, this model simply isn’t accept-
able. Policy Administrators must be able to define and modify
policies in a user-friendly manner, and subsequently enforce
them immediately upon its resources. We believe that, by
providing a richer policy semantics, administrators will be
drawn into using an higher-level policy definition language,
demarcating themselves from application-level resource man-
ager customization.

The concept of history-based policies has already been
incorporated in several policy engines[5], [6], [7]. However,
to our knowledge, only the SESAME system[8] proposes
to integrate this kind of policies in grid platforms. Their
architecture for policy enforcement is based in finite-state
machines, which can show serious scalability problems when
the number of policies and/or complexity increases. In addi-
tion, the SESAME platform doesn’t incorporate reevaluation
semantics (c.f. section II).

The platform presented in this paper, called Heimdall,
allows the specification and enforcement of several policy
semantics in grid platforms, and more specifically in Globus
Toolkit 4.0. Policy administrators can define history-based
policies independently of application development and sub-
sequently generate a PDP (Policy Decision Point) in order
to support its enforcement. In addition, Heimdall provides
extensible ready-to-use policy patterns for established usage
scenarios, such as limited resource sharing, fair resource
sharing, scientific data cooperative analysis, etc. To our knowl-
edge this is the first practical design, implementation and
evaluation of a platform that supports the specification and
enforcement of history-based usage and security policies in
grid environments.

This paper is organized as follows. In the next section
we present a general overview of Heimdall, describing a
generic application execution. In Section III we define our
policy language: the xSPL. We then present the architecture
of the system in Section IV, describing the various components
of the platform. In Section V, we focus on the prototype
implementation, further evaluated in Section VI. Then, we
contextualize Heimdall within this scientific field discussing
some related work in Section VII. Finally, in Section VIII we
present our conclusions.

II. SYSTEM OVERVIEW

Heimdall is a Middleware platform with the architecture
depicted in Figure 1, which was derived from the following
design goals:

1) Provide an expressive, yet user-friendly, language for
history-based policy definition.

2) Implement a modular architecture that allows an easy
integration with current grid platforms, as well as with
grid standards and specifications being currently defined.

3) Clearly separate policy specification and enforcement
from application development.
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Fig. 1. Overview of Heimdall.

4) Generalize grid usage and security patterns into relevant
policies, and allow their instantiation and deployment
through a web interface.

In what concerns the first goal, Heimdall extends the
SPL (Security Policy Language)[5] in order to increase its
expressiveness for grid policy enforcement. As described in
the next section, the resulting policy language, xSPL, allows
the specification and enforcement of a large number of grid
usage and security patterns, which are not supported by current
policy engines.

Seamless integration with several grid service containers
(e.g. the Globus Toolkit 4.0) is provided through Heimdall
interface modules, more specifically the Event Bridge and the
Executor. The input to Heimdall is generated in the container
authorization modules by intercepting security critical oper-
ations (e.g. access to a grid resource). On the other hand,
Heimdall contacts the grid container for the invocation of
policy-dependent custom actions (e.g. terminate a job that has
exceeded its CPU usage quota) through standard protocols
(e.g. invoking a webservice). This architecture allows any
grid container to use our policy engine with minor integration
efforts. Additionally, Heimdall may be used in parallel with
other policy and security engines without any interference.

Separation of application development and policy specifica-
tion and enforcement is also a key target in Heimdall. The grid
container only has to make sure that a notification of every rel-
evant operation (called an event) is generated upon execution.
The policy administrator will then define the history-based
policies based on these event descriptions. This approach
allows the integration of events from different applications into
a common policy without the need for additional application
development.

Heimdall Web View is a web interface that significantly
reduces the administrative effort associated with policy admin-
istration. Not only it allows policy administrators to visualize
and edit current deployed policies, but also allows them to add



new policies to the system through the instantiation of pre-
defined and extensible usage and security patterns (e.g. define
temporal limits for resource consumption). Finally, Heimdall
Web View allows the accounting of deployed policies (e.g. was
this policy activated by user ’John Doe’ during last week?).

For clarity we illustrate in Figure 1 the access to a generic
resource over a grid container using Heimdall mechanisms to
enforce history-based policies.

1) The Container Authorization Module sends an operation
description to Heimdall.

2) The operation description is received in Heimdall by
the Event Bridge Module. This module translates the
operation description into a normalized construct: the
xSPL event. This event is then sent to the Policy Monitor
for overall policy coordination.

3) The Policy Monitor contacts the Policy Decision Point
(PDP) in order to determine if the current event is
applicable for any of the deployed policies. In the
affirmative case, the event must be stored in the Policy
Information Point (PIP) for future evaluations.

4) The PDP retrieves applicable past events from the PIP
in order to analyze the evolution of the policy.

5) Additionally, if the current event effects cannot be
determined at current time (e.g. job execution period
is not known at submission time), the Time Tracker
creates a new timer for periodic policy reevaluation. On
the other hand, when the policy termination condition is
fulfilled (e.g. a job concludes or fails), the Time Tracker
is contacted to cancel an existing timer.

6) At periodic intervals (as specified in policy definition),
the Time Tracker contacts the Policy Monitor in order
to reevaluate the policy, and thus check for policy
infractions during the action execution.

7) After overall evaluation is concluded, the Policy Monitor
returns the authorization decision (i.e. a Authorize or
Deny statement) concerning the execution of the speci-
fied action.

8) The Event Bridge translates the Authorization decision
into the Grid Container format and returns the security
information to the Authorization Module in the Con-
tainer.

9) If the Policy Monitor verifies an infraction in a policy
executing instance (e.g. caused by a running job), it
invokes the Executor in order to execute the policy-
defined custom action.

10) The Executor serves as the interface between Heimdall
and the Grid Container in what concerns the execution
of policy-dependent custom actions (e.g. terminating or
reducing the priority of a certain job). This can be
achieved using a number of protocols (e.g. webservices,
HTTP, RMI, SMTP, etc), providing a flexible connector
to Grid Resource Managers.

III. XSPL

Heimdall policies are defined in xSPL (eXtended Security
Policy Language), an extension of the SPL language[5]. This

language allows the definition of policies with complex con-
straints, including history-based policies.

A. xSPL Basic Constructs

Each policy is defined by the composition of several rules.
Each rule is formed by two distinct sections:

< trigger expression :: decision expression >

The trigger expression specifies the applicability of the rule.
If this expression is true, it means the decision expression
part must be evaluated, and its result will constitute the
authorization decision for the present rule.

One of the central concepts in xSPL is the event. Each action
in the system, like a job submission or a resource consumption,
is mapped into a normalized event construct. An event can
either be instantiated in the Past Events Set (denoted as ’pe’
in Figure 2), which represents the events previously executed,
or it can represent the operation being evaluated, called the
current event (always denoted as ’ce’ in Heimdall).

For clarity, we present in Figure 2 a definition in xSPL of
a policy intended to promote resource usage by large CPU-
intensive jobs (indicated by an execution period exceeding 15
minutes).

J o b s S u b m i t t e d = P a s t E v e n t s @{ . a c t i o n = ” Submit Job ” } ;
JobsConc luded = P a s t E v e n t s @{ . a c t i o n = ” Job Concluded ” } ;
JobsNotConc luded = J o b s S u b m i t t e d @{

. a c t i o n . p a r a m e t e r [ 0 ] NOT IN
JobsConc luded . a c t i o n . p a r a m e t e r [ 0 ]} ;

p o l i c y P r o m o t e L a r g e J o b s P o l i c y {

? PromoteLa rgeJobs ( ) :
EXISTS AT MOST 3 pe IN JobsNotConc luded

ce . a c t i o n = ” Submit j o b ”
: :
ce . t ime − pe . t ime > 15 m i n u t e s

}

Fig. 2. Example of a history-based policy in xSPL (note that
the parameter[0] of the ”Submit Job” and ”Job Concluded” events
contains the job id).

This policy states that a job submission action (the current
event) is authorized only if no more than 3 jobs are execut-
ing for 15 minutes. Otherwise, job submissions are denied.
Although the task of defining this rule is several orders of
magnitude easier than coding the rule into the authorization
platform, we additionally allow policy administrators to in-
stantiate policy patterns in Heimdall web interface (named
Heimdall Web View).

B. xSPL Reevaluation Mechanisms

A significant extension to Heimdall (w.r.t. SPL expressive-
ness) relating history-based policies is the possibility to define
policy reevaluation properties (e.g. after a job submission, and
while it is running, verify each minute that usage quota is not
exceeded). Existing history-based policy engines[5], [6], [7]
issue an authorization decision based solely in the evaluation
of the policy rules at the moment an action is requested.
However, we find this model to be restrictive for a number
of scenarios in grid environments.



Imagine for example the policy specified in Figure 3.

J o b s S u b m i t t e d = P a s t E v e n t s @{
. u s e r = ce . u s e r AND . a c t i o n = ” Submit Job ” } ;

J o b s S u b m i t t e d L a s t 3 0 D a y s = J o b s S u b m i t t e d @{
. t ime − ce . t ime < 30 DAY} ;

JobsConc luded = P a s t E v e n t s @{
. u s e r = ce . u s e r AND . a c t i o n = ” Job Concluded ” } ;

JobsConc ludedLas t30Days = JobsConc luded @{
. t ime − ce . t ime < 30 DAY} ;

J o b s C o n t a i n e d L a s t 3 0 D a y s = JobsConc ludedLas t30Days @{
. a c t i o n . p a r a m e t e r [ 0 ] IN
J o b s S u b m i t t e d L a s t 3 0 D a y s . a c t i o n . p a r a m e t e r [ 0 ]}

J o b s N o t C o n t a i n e d L a s t 3 0 D a ys = JobsConc ludedLas t30Days @{
. a c t i o n . p a r a m e t e r [ 0 ] NOT IN
J o b s S u b m i t t e d L a s t 3 0 D a y s . a c t i o n . p a r a m e t e r [ 0 ]}

JobsNotConc luded = JobSubmit ted@{
. a c t i o n . p a r a m e t e r [ 0 ] NOT IN
JobsConc luded . a c t i o n . p a r a m e t e r [ 0 ]}

T o t a l T i m e J o b s C o n c l u d e d I n L a s t 3 0 D a y s =
J o b s C o n t a i n e d L a s t 3 0 D a y s .SUM( . a c t i o n . p a r a m e t e r [ 1 ] )
+ J o b s N o t C o n t a i n e d L a s t 3 0 D a y s .SUM(

. a c t i o n . p a r a m e t e r [1 ] − ( ce . t ime − 30 DAY) ) ;
To ta lT imeJobsNotConc luded = JobsNotConc luded .SUM( ce . t ime −

. t ime ) ;

p o l i c y R e s t r i c t e d C P U U s a g e P o l i c y {

? Res t r i c tCPUUsage ( ) :
ce . a c t i o n = ” Submit j o b ”
: :
T o t a l T i m e J o b s C o n c l u d e d I n L a s t 3 0 D a y s +

Tota lT imeJobsNotConc luded < 10 HOUR;
}

Fig. 3. Example of a CPU Usage Restriction policy in xSPL (note
that the parameter[0] of the actions contains the Job ID and the
parameter[1] of ”Job Concluded” event contains the job execution
time).

This policy restricts the user CPU usage to 10 hours in
a 30-days period. In a traditional policy model, the policy
engine is only enabled at job submission time, in order to
validate if the user has consumed less than 10 hours of
CPU during the current month. This semantics implicates a
deficient enforcement of history-based policies, in cases where
the overall effect of the authorized actions is not known at
evaluation time. That is the case in the above policy, where the
job, after preliminary authorization, could continue to execute
way beyond the user 10h CPU quota.

We agree that, in certain environments, the policy engine
can optimistically authorize the actions, supported by the
assumption that it can impose compensating penalizations
in the future to any infringing user. Effectively, this model
of operation is even supported by Heimdall, through the
definition of an obligation policy[9].

However, in dynamic grid scenarios this optimistic approach
is rather difficult to implement in practice. The high dynamics
(even volatility) associated by nature to these environments,
imply that a certain user (or even an entire organization) may
use a certain grid node resource only once in a lifetime.
Furthermore, it is reasonable to assume that a number of
identical resources (such as CPU) are available from different
sources in the virtual organization.

These facts make it extremely difficult to impose penalties
towards a certain user, as he can simply start using other nodes
in the network (or even other virtual organizations if a VO-

wide policy is enabled).
In order to enforce a pessimistic, yet safer and more

effective approach, Heimdall extends traditional history-based
policy semantics, in order to impose a periodic reevaluation
of relevant policies. This allows the effective enforcement of
the policy, whilst not obliging resource manager intervention
(e.g. by coding additional resource usage restrictions) and
without noticeable performance penalties (reevaluation period
is custom defined for each policy, thus eliminating unnecessary
evaluations).

More specifically, Heimdall allows the policy administrator
to enhance the policy specification with the following reeval-
uation primitives:

• Reevaluation Trigger Condition
Defines the condition on which Heimdall starts a new
timer to schedule policy reevaluation (e.g. the current
event states a ”Job Submission”).

• Reevaluation Concluded Condition
Defines the condition on which Heimdall stops a current
reevaluation timer (e.g. the current event states a ”Job
Concluded”).

• Reevaluation Match Parameter
Defines the parameter that should match in the current
event of the trigger and concluded conditions in order
for a timer to be canceled (e.g. a parameter in the ”Job
Submission” and ”Job Concluded” events, with the job
ID).

• Reevaluation Periodicity
Defines the periodicity on which Heimdall should reeval-
uate a policy. By default Heimdall reevaluates the policy
once each minute.

• Infraction Stop Action
Defines the action that Heimdall should invoke when an
infraction of the policy is detected (e.g. stop an infringing
job).

In the case of the policy defined above in Figure 3, the
reevaluation tags might be defined as follows:

REEVAL TRIGGER : ce . a c t i o n = ” Submit j o b ” ;
REEVAL CONCLUSION : ce . a c t i o n = ” Job Concluded ” ;
REEVAL MATCH : ce . p a r a m e t e r [ 0 ] ;
REEVAL PERIOD : 1 5 MINUTE;
REEVAL INFRACTION : ” h t t p : / / myGr idCon ta ine r / J o b S c h e d u l e r ?
a c t i o n = c a n c e l J o b&i d =” + ce . p a r a m e t e r [ 0 ] ”

Fig. 4. Reevaluation tags for the CPU Usage Restriction policy.

IV. ARCHITECTURE

Heimdall possesses a modularized architecture based in
several independent modules, as depicted in Figure 1.

The Event Bridge receives action descriptions from the
authorization modules of Grid Containers, and creates a nor-
malized description (referred to as a xSPL event). In a common
Heimdall deployment, several Event Bridges can coexist, con-
nected with several authorization modules, denoting different
action descriptions and/or interfaces. It is interesting to notice
that in some situations the Event Bridge can receive events



from the Heimdall engine itself, derived from policy enforce-
ment actions (as is usual in common obligation policies).

The Executor module is necessary in order to assure that,
in case of policy infraction, system consistency is restored
in a predefined manner. This module is contacted by the
Policy Engine when a policy instance is reevaluated and an
infraction is detected. It then executes the actions specified
in the policy definition for these situations (which usually
consist in terminating an execution by contacting the Grid
Container or the Resource Policy Enforcement Point itself).
It is important to point out that in policy engines that don’t
support periodic reevaluation, there’s no need for an Executor-
like module. In that case policies are either authorized or
denied upon action submission, and the effects of the action
are presumed to take place immediately, thus preventing policy
infractions. Obviously, as stated in the previous section, that
is not usually the case in practical situations, like those stated
in the usage scenarios, and thus the need for reevaluation
mechanisms in the policy engine.

The Time Tracker provides time-related mechanisms to
control the reevaluation of policies.

The Policy Monitor and the Policy Decision Point (PDP),
are the core of the Heimdall platform. They are described
below in more detail.

The Policy Information Point (PIP) is the event repository
in Heimdall. It filters and stores the events which are relevant
for policy evaluation.

Finally, while the Policy Repository holds all the policy
specifications, the Heimdall Web View allows a policy admin-
istrator to create and edit policies in a user-friendly manner. In
addition, he can also instantiate and/or extend policy patterns,
thus enforcing common usage scenarios with minimal effort
and increased quality assurance.

A. Policy Monitor

The Policy Monitor module is the overall coordinator of
Heimdall. It manages policy decision queries received from
the Grid Container authorization modules (through the Event
Bridge). These queries are forwarded to Heimdall Policy Deci-
sion Point (PDP), which returns a DENY/AUTHORIZE/NOT
APPLY decision. In addition, it assures the system is in a
consistent state with respect to history-based policies, by en-
forcing policy reevaluation whenever applicable, and activating
custom-defined actions when an infraction is detected. For this
task, the Policy Monitor manages policy instances whenever
policy reevalutions are necessary, by storing the policy ID, a
reevalution timer and the current event (in order to assure a
similar reevalution of the policy).

In order to illustrate these concepts we represent in Figure
5 a generic execution of a system enforcing the RestrictCPU-
Usage policy presented previously in Figure 3.

Initially events A and B are received by Heimdall, represent-
ing job submission requests belonging to the same user. They
are processed by the Policy Monitor, which uses the PDP in
order to assess authorization decisions. The RestrictCPUUsage
rule applies to these events, and both decisions authorize the
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job. However, as this policy requires a periodic reevaluation,
the Policy Monitor requests a timer for each of the policy
instances from the Time Tracker Module.

Afterwards, at periodic intervals, policy instances associated
with events A and B are independently reevaluated, in order
to validate that the system remains in a consistent state (i.e.
that the User CPU Usage Quota wasn’t exceeded).

After some time, event C is received, denoting a Job Conclu-
sion that matches event B Job Submission. This fact is verified
by the PDP, at Policy Monitor request. The Policy Monitor
thus contacts the Time Tracker to cancel the associated timer.

At a later instant, the CPU Usage Quota is effectively
exceeded, a condition that is verified by the PDP through the
DENY decision in the evaluation of the RestrictCPUUsage
policy. This fact directs the Policy Monitor to terminate
all associated resource/service usage (in this case the job
submission generated by event A). Additionally to canceling
the timer in the Time Tracker Module, the Policy Monitor
commands the Executor to terminate the job by contacting
the Grid Container.

B. Policy Decision Point (PDP)

The mechanism associated with the Policy Decision Point
(PDP) basically evaluates a certain policy against the current
event and the content of the PIP. Following evaluation, the
mechanism returns one of three possible results (for clarity
we consider the RestrictCPUUsage policy to illustrate PDP
operation):

• It returns ALLOW if the trigger and obliged expressions
are true (i.e. the current event denotes a Job Submission
and the User CPU Usage Quota wasn’t exceeded).

• It returns DENY if only the trigger expression is true (i.e.
the current event denotes a Job Submission and the User
CPU Usage Quota is already exceeded).

• It returns NOT-APPLY if the trigger expression is false
(i.e. the current event doesn’t denote a Job Submission).



It is important to notice that the policy administrator can
either define policies using a DENY-overrides (a DENY
decision in one of the rules finalizes the evaluation) or a
AUTHORIZE-overrides (an AUTHORIZE decision in one of
the rules finalizes the evaluation), as referred in [10].

V. IMPLEMENTATION

In order to increase code portability, Heimdall was imple-
mented in Java, and deployed using Java Runtime Engine
1.4.2. The current prototype implementation is integrated with
Globus Toolkit 4.0 (GT4) authorization modules, as described
below. Work is in progress towards integration with other Grid
engines, namely Condor.

For lack of space, we focus this section on Heimdall
mechanisms for job execution control in GT4. However,
extrapolation to other kinds of resource usage control should
be easy.

In the first place, the Event Bridge must receive a descrip-
tion of relevant actions that are requested from the Globus
Container, in order to authorize/deny its execution. Thus, we
extended GT4 ManagedJobService classes in order to contact
Heimdall Event Bridge and generate ”Job Submission”, ”Job
Concluded” and ”Job Failed” action descriptions. We consider
this to be a simple and efficient approach, yet allowing us to
implement all job-related policies already mentioned.

The Policy Decision Point is an extension of the previous
Heimdall Evaluation Engine implementation, itself extending
the reasoning engine proposed by Ribeiro[5] with additional
history-based and obligation semantics.

The Policy Monitor controls the overall deployment and
enforcement of policies in the system. For that purpose it
holds a vector with the identifier of all deployed policies in the
system, and another vector with a descriptor for all history-
based policy reevaluation instances (i.e. policies involving an
action that is still executing). This latter vector holds, besides
the policy identifier, the current event that was authorized at
submission time, and a timer object, received from the Time
Tracker Module. Whenever an event is received from the Event
Bridge, the Policy Monitor uses the Policy Decision Point to
evaluate the event against all deployed policies. Additionally,
it also checks if the event concludes any of the executing
history-based policy instances. In what concerns the execution
of custom actions upon policy infraction, the Policy Monitor
possesses a distinct thread of execution, which is activated by
the Time Tracker module in case a timer expires.

The Policy Information Point is implemented as a set of
event repositories, one for each of the policies in the system.
At policy deployment time, each of these repositories is
dynamically generated according to policy definitions, in order
to optimize event storage and retrieval. A filtering mechanism
discards any event that is not relevant for the evaluation of the
policy (e.g. if a policy controls a payment service, it doesn’t
need to store events related to file access). In addition, the
repository stores only useful evaluation fields (e.g. if a policy
controls the number of books sold, it doesn’t have to store the
price of the books). This approach allows us to minimize Log

dimension, and thus enhance performance of event retrieval
(for more details see [5]).

Finally, the Executor Module parses and invokes the
defined custom actions. More specifically, in the case
of job termination in GT4, the Executor contacts the
GT4 Job Management Web Service in order to terminate
the specified job. Additionally, HTTP-based callbacks (e.g.
http://myserver/customAction.jsp?id=1) are available, and new
interface modes are being developed and will be available
shortly.

VI. EVALUATION

In order for Heimdall to be of practical use, a grid container
should be able to request an authorization decision without
incurring in significant performance penalties.

As is usual in history-based policy engines, Heimdall per-
formance is directly related to the time it takes to search past
events in the Policy Information Point (policy evaluation time
increases with the number of events in the PIP).

Furthermore, Heimdall’s reevaluation semantics oblige the
management of policy reevaluation instances. On each event
reception, the reevaluation trigger and conclusion conditions
must be verified, in order to potentially start a new policy
instance or finish an existing one. It is important to notice that,
in the context of the reevaluation concept, only the instance
management (i.e. create and finish instances) has influence in
the system performance. The policy reevaluations themselves
have only minor effects, as their periodicity can be customized
according to the system characteristics.

In order to assess the adequacy of Heimdall in what respects
performance, we performed a practical simulation in a Pentium
4, 2.8GHz, 512MB PC, running Linux Suse 9.3.

Consider the following usage scenario, presented in Figure
6.

p r o v i d e d G r i d J o b s = P a s t E v e n t s @{
. a u t h o r . homeHost ! = ce . t a r g e t . homeHost &
. t a r g e t . homeHost = ce . t a r g e t . homeHost &
. a c t i o n . name = ” Job Concluded ”

}
consumedGr idJobs = P a s t E v e n t s @{

. a u t h o r . homeHost = ce . t a r g e t . homeHost &

. t a r g e t . homeHost ! = ce . t a r g e t . homeHost &

. a c t i o n . name = ” Job Concluded ”
}

p o l i c y F a i r U s a g e{
REEVAL TRIGGER : ce . a c t i o n = ” Submit j o b ” ;
REEVAL CONCLUSION : ce . a c t i o n = ” Job Concluded ” ;
REEVAL MATCH : ce . p a r a m e t e r [ 0 ] ;
REEVAL PERIOD : 1 5 MINUTE;
. . .
? F a i r U s a g e :

ce . a c t i o n . name = ” Job Submiss ion ”
: :
p r o v i d e d G r i d J o b s .SUM( . a c t i o n . p a r a m e t e r [ 1 ] . v a l u e ) >

consumedGr idJobs .SUM( . a c t i o n . p a r a m e t e r [ 1 ] . v a l u e )
}

Fig. 6. Example of a CPU Fair Usage policy in xSPL (note that the
parameter[1] of ”Job Concluded” event contains the job execution
time).

The FairUsage policy specifies that an organization cannot
consume more CPU resources than it has provided in the past.



This is a common grid usage scenario, which can be deployed
in a regular virtual organization scheduler.

We assume a virtual organization with 10 hosts (an host can
represent more than one container) and 50 users per host. In
addition, the scheduler never selects the user’s home host for
execution, and the usage is always authorized (i.e. each host
has provided more than it has consumed in the past).

For lack of space, we restrict the presented evaluation to
a single policy. However, further evaluations show that indi-
vidual policy reevaluation time is independent of the number
of policies in the system (e.g. evaluating two events for the
same policy, or the same event for two similar policies takes
the same time).

During the simulation we iteratively submit a job for each
one of the users (500 in total), and later conclude the jobs.
Thus the average amount of reevalution instances in the system
is 250 (half the number of submitted jobs). Additionally, at
simulation setup time, we submit a number of auxiliary jobs
(0, 500, 1000, 2000 and 4000 respectively for each of the
presented runs), which are never concluded, thus creating a
number of pending reevaluation instances. This allows us to
test the effects of the reevaluation concept in the overall policy
evaluation time.

Job Cycle Time

0

2

4

6

8

10

1,
00

0
5,

00
0

9,
00

0

13
,0

00

17
,0

00

21
,0

00

25
,0

00

29
,0

00

Number of Events in the PIP

T
im

e 
in

 m
ill

is
ec

o
n

d
s

without reevaluation

250 reevaluations

750 reevaluations

1250 reevaluations

2250 reevaluations

4250 reevaluations

Fig. 7. Job Cycle Evaluation Time in the FairUsage Policy.

The lines in the chart presented in Figure 7 correspond to
different simulations with a distinct number of reevaluation
instances in the system (from 250 to 4250 in average). The
values in the chart were obtained by running job cycles (job
submission plus job conclusion) and averaging the evaluation
time every 1,000 cycles. Notice that each average is presented
in the end of the associated interval (e.g. the average evaluation
time in the 10,000-11,000 interval is presented in the 11,000
index) and every job cycle corresponds to two events in the
PIP.

The obtained results indicate a rather acceptable perfor-
mance for the FairUsage Policy. The job cycle time ranges
from nearly 0 to 9 milliseconds, a clearly negligible result
when compared with the 403 milliseconds average job sub-
mission time we obtained with Globus Toolkit 4.0 (Heimdall
policy evaluation takes about 1% of total job submission time).

Furthermore, the results show that the system scales effi-
ciently with the increase in the number of events in the Policy

Information Point and the number of policy reevaluation
instances.

VII. RELATED WORK

Due to the fact that existing grid platforms only provide
limited expressiveness in authorization modules, a number
of policy engines was integrated with these platforms. Each
one addresses a specific issue, but they all lack Heimdall’s
expressiveness and enforcement capabilities with respect to
history-based policies.

CAS (Community Authorization Service)[11] is the policy
engine that is bundled with Globus Toolkit[12]. It allows local
grid administrators to delegate the definition of users and
privileges to a central authority in the virtual organization.
Alternatively, these definitions would need to be replicated
throughout the virtual organization. However, local resource
managers still have to be modified in order to enforce the
defined policies. Furthermore, CAS policies are based in a
RBAC model, which by itself lacks expressiveness to enforce
the usage scenarios we presented in Section I. It’s interesting
to note that Heimdall itself can be deployed locally in each
resource manager to interpret and enforce CAS-defined poli-
cies.

Akenti[13] is an authorization platform which issues asser-
tions containing the user privileges in what concerns a certain
resource. Policies and assertions are specified in a custom
XML policy language[14] and, as is the case with CAS, Akenti
is not concerned with policy enforcement, which it delegates
to the resource manager[14].

Cardea[15] was developed as part of NASA Information
Power Grid to manage authorization requests. It is based
upon the XACML standard for policy specification and SAML
for assertion communication between platform components.
However it doesn’t support history-based policies.

PRIMA[16] focus on access control for small and dynamic
working groups. Thus, besides allowing the management of
resources privileges using an ACL and RBAC approach, it also
enforces these privileges through the dynamic configuration
of local user accounts. It uses X.509 Attribute Certificates for
policy specification and is currently integrated with POSIX file
system ACLs and the Grid Access Control Lists (GACLs) of
project Slashgrid. However, as is the case with PERMIS[17],
which is also based in X.509 Attribute Certificates, PRIMA
lacks the support for history-based policies.

Sundaram[18], [19] describes a policy framework for usage
management in grids. Policy rules are defined in XML files
using a custom language based in attribute-value pairs. It
allows policy administrators to impose resource consumption
limits and additionally automates task submission privilege
validation on the user side.

Keahey et al[20], [21] integrated a policy engine into the
Globus GRAM (Grid Resource Allocation and Management)
module. It allows the definition of fine-grain usage rules
using an extension to RSL (Resource Specification Language),
that contains tags such as ”action”, specifying the semantics
associated with the job. The presented tags are hardly suitable



for complex usage scenarios, being focused for simple job
management within the Virtual Organization.

Verma et al[22] proposed a policy service for grid com-
puting which intends to provide cooperating VO-level and
local policy definition and enforcement. However, history-
based policy support is not mentioned.

The SESAME[8] proposes a DRBAC (Dynamic Role-based
Access Control) model for grid authorization control. DRBAC
is implemented by incorporating a state-machine that allows
the evaluation of environment variables (e.g. current time and
location) in addition to traditional RBAC semantics. History-
based policies can be defined and enforced by using these
state-machines. However, scalability issues are paramount with
this approach, and the small-scale examples shown in the
presented evaluation fail to prove SESAME’s usefulness in
real world scenarios, containing a large number of nodes in
the state-machine.

Wasson[23] proposes a system to support resource pro-
visioning in virtual organizations (VOs)[12]. The system is
centered around the concept of a Grid Bank which provides
users with credits to use the VO’resources. Although including
different components for policy monitoring, accounting and
enforcement, it is focused on controlling just three types of
policies involving provisioning, which limits its applicability.

In conclusion, all these systems lack the necessary semantics
for effective history-based policy enforcement.

VIII. CONCLUSIONS

In this paper we evidenced the relevance of history-based
policies in the context of grid platforms. We showed sev-
eral usage scenarios, in which the required usage semantics
cannot be defined using traditional authorization mechanisms,
thus obliging ad-hoc extensions to the security architecture.
Furthermore we demonstrated the adequacy of the policy
reevaluation concept for history-based policy enforcement.

We developed a prototype of the Heimdall platform, which
allows the specification and enforcement of history-based
policies in Globus Toolkit 4.0. In addition, this platform can
be easily integrated with other grid containers through its
interface modules.

Finally, we found the performance penalization associated
with Heimdall operation to be negligible. Our evaluations
show that the performance of the Heimdall platform in terms
of event processing is adequate for practical situations, effi-
ciently scaling for a large number of events in the Policy Infor-
mation Point and thousands of policy reevaluation instances.
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