
Context-aware Efficient Message Propagation

Pedro Alves
INESC-ID / Technical University of Lisbon /

Opensoft
Rua Joshua Benoliel, 1, 4C, 1250 Lisboa

pedro.alves@opensoft.pt

Paulo Ferreira
INESC-ID / IST / Technical University of Lisbon

Rua Alves Redol, 9, 1000 Lisboa
paulo.ferreira@inesc-id.pt

ABSTRACT
Applications such as Facebook, Twitter and Foursquare brought the
massification of personal short messages, distributed in (soft) real-
time on the Internet to a large number of users. These messages are
complemented with rich contextual information such as the identity,
time and location of the person sending the message.

Such contextual messages raise serious concerns in terms of
scalability and delivery delay; this results not only from their huge
number but also because the set of user recipients changes for each
message (as their interests continuously change), preventing the use
of well-know solutions such as pub-sub and multicast trees. This
leads to the use of non-scalable broadcast based solutions or point-
to-point messaging.

We propose Radiator, a middleware to assist application pro-
grammers implementing efficient context propagation mechanisms
on their applications. Based on each user current context, Radiator
continuously adapts each message propagation path and delivery
delay, making an efficient use of network bandwidth, arguably
the biggest bottleneck in the deployment of large-scale context
propagation systems.

Our experimental results demonstrate a 20x reduction on con-
sumed bandwidth without affecting the real-time usefulness of the
propagated messages.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Communication Appli-
cations

General Terms
Algorithms, Human Factors, Measurement, Performance

Keywords
Context propagation, scalability, pub-sub

1. INTRODUCTION
We are watching a radical change in the type of packets that

travel on the Internet. Facebook and Twitter (among others) brought
the massification of personal short messages or posts, distributed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ARM’12, December 3-7, 2012, Montreal, Quebec, Canada.
Copyright 2012 ACM 978-1-4503-1609-5 ...$15.00.

in (soft) real-time to a potentially large number of users.1 These
messages are complemented with rich contextual information such
as the identity, time and location of the person sending the message
(following the context model devised more than a decade ago [5]
among the CSCW community).

However, context propagation creates unique challenges in the
realm of distributed systems [2] (in addition to their huge number)
mostly related to its highly dynamic nature. To better understand
how dynamic context can be, consider the case of capturing the
geolocation of a moving person or the speed at which he is moving.
To achieve a reasonable level of accuracy, the system must capture
and propagate this information very frequently, probably at least
once per minute. Since these systems usually have hundreds
of thousands if not millions of users, we are talking about a
huge volume of information being sent to the server (assuming a
centralized topology which is the case in the vast majority of the
commercial applications on this area). Moreover, the server must
then be able to propagate this context to whoever may be interested.
The problem lies on the dynamics of those interests. For example, if
the user is interested in receiving information about friends nearby,
there will be a matching rule between his location and the location of
his friends. However, if he’s moving, and his friends are also moving,
the system has to continuously change that matching rule.

For this reason (the dynamics of context), traditional publish-
subscribe approaches are unfeasible since they assume a relatively
fixed set of matching rules. On these systems, users subscribe to
topics (subject-based systems) or predicates (content-based systems)
[6]. Then, users feed content into the system (publish) and the sys-
tem distributes events matching subscribers interest with publisher
content. Therefore, developing a "friends nearby" application using
publish-subscribe requires each client to continuously change its
interests. In fact, every time the user moves, the client application
has to send three messages when just one should suffice: (1) publish
the current location; (2) unsubscribe from the previous location, and
(3) subscribe to the current location. This leads to wasted resources
and poor scalability.

Application-level multicast tree approaches [4] fall on the same
problem: they assume that distribution rules don’t change very fre-
quently. Although they still work on these conditions, the resources
wasted by continuously rebuilding the multicast trees lead to poor
scalability. For example, the Scribe system [3] relies on the following
message types: JOIN, CREATE, LEAVE and MULTICAST. It
is easy to see the resemblance with publish-subscribe messages -
changing the matching rules implies the propagation of a LEAVE
message, a JOIN message and a MULTICAST message (the latter

1As of 2012, there are 175 million tweets (twitter messages)
being sent per day and some of these messages are distributed to
over 19 million users (the number of followers of Lady Gaga) -
http://bit.ly/zOiX8k

alone should be enough to convey all the information we need, e.g.,
the new location, in the "friends nearby" application).

In summary, context-aware applications have the potential to
transmit a huge number of messages in a highly dynamic environ-
ment therefore raising hard challenges regarding scalability. We
argue that current approaches such as publish-subscribe [9, 12],
multicast trees [4] or gossip-based protocols [1] are not adequate to
these dynamics, because they assume the matching rules are fixed
or change infrequently (therefore changes are too expensive). Also,
since such classic approaches don’t know how to extract semantic
meaning from the exchanged messages, they can’t decide what is
the most efficient way to distribute those messages - such a burden
becomes the application programmer responsibility.

We propose an adaptable middleware where context propagation is
controlled by functions that, given the context of the recipient, dictate
in which conditions should a given context message be propagated.
These functions are, by nature, dynamic matching rules which
change automatically if the involved clients change their context.
Moreover, the retained messages (messages for which the functions
have decided that they should not be propagated immediately)
are aggregated into single compressed messages that can yield a
substantial reduction on the consumed network bandwidth. For this
reason, these functions are called aggregability functions because
they tell whether a message should be aggregated or not, and to
which level the aggregation should occur.

It is important to note that the aggregability functions (and
therefore the propagation timing) are not only dependent on the
message itself but also on the current context of both the sender
and the receiver. This is a crucial difference over other generic
message propagation approaches: since we know that messages
contain the contexts of their senders, we have more information to
make decisions about their propagation.

In short, this paper makes the following contributions:

• We present a model for context-aware applications that relies
on the concept of aggregability, a function that tells how much
aggregated a message can be before being propagated. This
function takes into account the current context of both the
sender and the receiver, making a more efficient use of the
network bandwidth and significantly improving the system
scalability.
• We present a hybrid dynamic propagation mechanism, where

a server decides if a message should be retained or transmitted
(based on the result of the aggregability function) and clients
communicate directly between them to propagate it.
• We implement and evaluate the scalability of Radiator, a

pluggable local middleware and a server that support the above
mentioned model, i.e. it supports the hybrid propagation
mechanism while still abstracting away from the application
programmer the underlying communication and context man-
agement.

In the remainder of the paper, we start by describing Radiator’s
context aggregation model. In Section 3, we present Radiator’s
architecture and Section 4 presents experimental results. Finally we
draw some conclusions.

2. CONTEXT AGGREGATION MODEL
In this section, we start by explaining the concept of context

aggregation and then we describe in detail the model supported by
Radiator.

2.1 What is context aggregation?
To help understand the concept of context aggregation, consider

a "popular spots" application example. This application shows the

most popular spots (e.g., pubs, restaurants, discos) nearby the user’s
current location, where a popular spot is a place where a large
number of users is currently located. The context of those users (in
this case, the location) must be propagated to the others but it can
be grouped before being propagated. The user doesn’t care about
individual context updates since, in this case, he only wants to know
popular spots, not who’s in there. So, instead of propagating N
messages, each one saying "user U is now at location L", we can wait
until there are N users at location L and only then propagate a single
message saying "users U1..UN are now at location L" or (in case
privacy is an issue) "N users are now at location L". In other words,
we are delaying the propagation of the first N - 1 users’ location to
improve the efficiency of the system, hence the concept of delayed
propagation. Note that the delay doesn’t break user expectations
because, for some contextual information, he doesn’t mind receiving
it with delay. For example, a popular spot doesn’t become one in
seconds and it certainly doesn’t stop being one in seconds, so a lag
of some minutes is perfectly acceptable between the time when a
spot becomes popular and the time a user is informed.

However, if a friend is in one of those spots, the user may no longer
tolerate a delay - he may want to receive that information as soon as
possible. So, the model has to accommodate multiple delay levels,
depending on the user’s context (the user’s friends are part of his
context).

All the messages that are not immediately propagated are said
to be retained. The fact that these messages are retained allows
the system to aggregate them in the most efficient way possible,
thus increasing its scalability. For example, if a group of users
share a certain context attribute (e.g., location or interest), we can
aggregate their messages based on that attribute. In some cases,
this aggregation leads to tremendous decreases in the messages’ size,
thus increasing the system’s scalability (more details in Section 4).
Also, the aggregation reduces the cognitive load that users typically
suffer when using this kind of applications (caused by the huge
number of messages received) [8].

Radiator is a context propagation middleware that combines the
concepts of Delayed Propagation and Aggregation to improve the
performance and scalability of context-aware applications. More-
over, these concepts are applied in a completely dynamic manner:
each message may be subject to different aggregation levels, depend-
ing on the current context of the users involved.

2.2 Model
Context-aware applications start by capturing context in the fol-

lowing form, assuming that P is a person, t a timestamp and A an
attribute:

Context = (P1..Pn,t1..tn,{A1..An})
This triplet represents the attributes that characterize the situation

of P1 to Pn during the time span between t1 and tn, roughly
following the context definition coined by Dey in his seminal paper
[5]. An attribute can be any name/value pair. For example, an
application like CenceMe [10] that shares social activities among a
group of friends, might capture context like this:

((‘Alice′), ‘22 : 30‘..‘01 : 00‘, {‘location′ : ‘Joe′sPub‘, ‘activity′ :

‘dancing′})
A crucial concept in the Radiator design is the possibility of

aggregating multiple contexts into a single one while retaining its
basic format. For example, if Alice and Marc are both dancing
together at Joe’s Pub, their context can be aggregated as follows:

((‘Alice′, ‘Marc′), ‘22 :30‘..‘01 :00‘, {‘location′ : ‘Joe′sPub‘,

‘activity′ : ‘dancing′})
This context could be further aggregated with other contexts and

so on and so forth. The advantages of this aggregation are twofold:
(1) it reduces the cognitive load on the user by presenting a summary
of what’s going on instead of multiple single activities and (2) it

Scenario Description Aggregability function
Traffic monitoring Aggregate speedometer and GPS data {time : 300}

within 300 seconds periods
Road hazards detection Aggregate vertical accelerometer and GPS {volume : 5}

data until 5 hazards detected
Popular spots + Aggregate location until 10 different users {people : 10} if stranger
Friends location in the same spot but for friends {volume : 1} if friend

send immediately (non-aggregated)
Friends location Aggregate location based on how far the user {volume : distance}
in crowded spaces is from the recipient (further away implies
(concerts, street markets) more aggregation)

Table 1: Different context propagation scenarios and the corresponding aggregability function

significantly reduces the necessary network bandwidth, specially if
combined with a compression algorithm.

Related to aggregation, the Radiator also introduces the concept
of delayed propagation, based on the principle that some context
messages may be temporarily retained before being propagated while
still fulfilling user expectations. For example, Paul won’t mind
receiving a message saying that Alice and Marc are dancing at Joe’s
Pub with a 5 minutes delay unless he’s just passing nearby, in which
case the delay could prevent him from stopping by (when he receives
the message he’s already too far from the pub). In fact, the urgency
level depends on many factors: location, social distance (e.g., if it’s
a friend or an acquaintance), current activity, mood, etc.

Radiator allows programmers to define the tolerable propagation
delay based on the current context of the users involved in each
message (sender and recipient). As already mentioned, this is
achieved through an aggregability function. Let CP be the current
context of a given person P and Cx the context of someone else to be
propagated to P . The aggregability function G(CP , Cx) represents
how much aggregated Cx must be before being transmitted to P ,
taking into consideration his current context CP . G returns a tuple
in the following format:

G(CP , Cx)→ {type : value} , type :: [volume|time|people]
The value is an integer representing a threshold of aggregated

messages. This threshold may represent a quantity (volume), a
time range (time) or the number of different users contained in
the aggregation (people). If the type is time, context messages
will be aggregated until the number of seconds between the oldest
and newest retained message is equal or greater than value. The
types volume and people are similar in the fact that they represent
the maximum number of aggregated messages: volume is the
number of different messages while people represents the number of
different users involved on those messages. For example, if G returns
{people : 4}, the system will aggregate messages until there are four
different users involved, before propagating them. The people type
is useful to implement k-Anonymity [13] style privacy mechanisms.2

To better illustrate the generality of the aggregability concept,
Table 1 shows some examples of aggregability for real-world sce-
narios. For simple propagation needs, such as traffic monitoring or
hazards detection, we define a simple threshold for the maximum
delay (1st row) or the number of retained messages (2nd row). More
interesting scenarios are those in which the aggregation depends
on contextual information such as the social distance (3rd row) or
the geographical distance (4th row). This is possible because the
aggregability function takes two arguments: the context of the sender
and the context of the receiver. Based on that context, it is possible
to infer factors such as the ones previously mentioned. This gives
great flexibility to the application programmer who can easily fit the

2It is out of the scope of this paper to analyze how privacy can be
achieved using Radiator; the idea is to aggregate as many messages
as needed to ensure anonymity.

Figure 1: The Radiator includes a pluggable local middleware
and a server. Client applications use the middleware to
propagate and receive context through direct calls. The
aggregation/propagation is abstracted away from the application
programmer.

specific requirements of his application into a single function and
start benefiting from the Radiator middleware without further effort.

3. ARCHITECTURE
The Radiator architecture has two main components (Figure 1):

1. A local middleware that acts as a pluggable component to
applications that completely abstracts away the application
from the underlying propagation infrastructure;

2. A server, to which the local middleware connects, that as-
sumes three responsibilities:

(a) Clients management - Keeps track of all the clients
of the application (namely their id and IP address). It
also manages the connection with each of these clients:
IP renewal, intermittent connectivity, dead/unreachable
client detection, etc. Most importantly, it manages the
current context of every client which is crucial to the
context aggregation process.

(b) Context aggregation - Applies the aggregability func-
tion to every incoming context message, providing both
the sender and recipient’s contexts. It also manages the
list of retained messages and the thresholds at which
messages are no longer retained and start being propa-
gated.

(c) Context propagation - Delivers the context messages to
all clients triggered by the context aggregation compo-
nent. The delivery can be done using direct connections
to the clients, peer-to-peer propagation between clients
or a combination of both.

We now describe in more detail the context propagation compo-
nent.

Figure 2: Radiator uses an hybrid propagation model. Some
messages are pushed directly to the client while others are
pushed between peers following a previously defined dynamic
chain.

3.1 Server - Context propagation
The "Context Propagation" component at the server is responsible

for distributing the context messages (possibly aggregated) to their
recipients. Every client will eventually receive all context messages
but, depending on the aggregability function, some may receive the
messages faster than others.

The propagation can be done through direct connections from
the server to every recipient or through peer-to-peer communication
between recipients. In any case, the communication is always
initiated by the sender (push approach) so there is no need for
clients to poll the server or other clients for new messages (causing
unnecessary traffic and delays).

The centralized approach, where the server is responsible for
pushing messages to every client has the advantage of being simple
to implement and allowing clients with network restrictions (e.g.,
behind a firewall). However, if the number of recipients is large, the
server starts suffering from scalability problems, since it has to push
the message to everyone.

Radiator introduces an alternative propagation mechanism that is
highly dynamic. First, all clients that can communicate directly with
other clients (i.e., are not subject to firewall restrictions) send an
attribute p2p_enabled to the server when they register themselves
into the system. Afterward, for every message ready for propagation,
the server checks which of the recipients are p2p_enabled. Those
that are not p2p_enabled receive the message through a direct push
as already described. The others are divided into groups of k
elements (k is configurable as a percentage - if the percentage is
20% and there are 100 p2p_enabled recipients, then k is 20). Each
group is processed as a chain of peers through which the message
must get through. The message is propagated from the server to
the first peer which then propagates to the second peer and so on
and so forth. From now on, we will name these groups as chain of
recipients. So, for each chain of recipients, the server sends only one
message which is then disseminated directly between the recipients
(p2p propagation).

Figure 2 shows a possible scenario: there are five recipients for
a given message where only one of them is not p2p_enabled. In
this case, the chain of recipients size is setup to be 50%. We can
see that the server pushes the message directly to client A (not
p2p_enabled) and divides the remaining recipients in two groups.
Then, it pushes the message to client B telling him that it should
push that message further to client C and does the same for client D
which must push forward to client F. It is obvious from this example
that the server must do only 3 pushes instead of 5 if there wasn’t any
p2p propagation. In fact, the server will always push N messages,
where (k is the chain of recipients percentage):

N = Nnon_p2p + (Np2p ∗ k/100)

Note that, due to its dynamic nature, this chain of recipients is very
flexible making it specially suitable to highly dynamic conditions
such as those usually found in context-aware applications. Since
these conditions may vary very frequently, Radiator continuously
recalculates the chain of recipients for each message.

4. EVALUATION
This section presents results of several experiments to evaluate the

scalability of the Radiator implementation.
In particular, we measure the tradeoff between network bandwidth

consumption and the average propagation time (i.e., the time it takes
for a message to go from the sender to the recipient). To study this
tradeoff, we take three approaches:

• We evaluate different aggregability functions (using a non-
chained approach)
• We evaluate a chained (p2p) and a non-chained (broadcast)

scenarios using the same settings
• We evaluate several chained scenarios using different chain of

recipients sizes

4.1 Experimental setup
We developed a traffic monitoring and hazard detection applica-

tion because it is the kind of context-aware application that usually
suffers from the problems outlined on this paper: huge number of
messages (e.g., 70.000 cars per day on US expressways [7]) and
highly dynamic matching rules (cars in transit are, most of the time,
changing their location and speed).

For this experiment, the application produces random context
messages (related to traffic information). Each message contains
information about the current location, speed and number of hazards
detected by the client. The application then uses the Radiator
local middleware to propagate these messages to other clients. The
experiment was conducted using 7 machines (each one is a 2x 4-Core
Intel Xeon E5506@2.13GHz running Ubuntu 10.04.3) connected
through a Gigabit LAN switch. The server runs on a dedicated
machine; the other 6 machines run the application (with multiple
threads where each thread simulates a client).

Several metrics such as CPU, memory and network bandwidth
consumption are captured using the sysstat tool 3. The average delay
between message transmission and reception was also recorded (the
average delay between the moment a client sends a message and the
moment another client receives the message).

4.2 Aggregation/compression
To measure the impact of the aggregation on the system scalability

(as related to the consumed network bandwidth), we launched
60.000 clients4 (threads) across 6 different machines, each client
propagating 1000 messages. We experimented different aggregabili-
ty/compression settings:

• Vol: 1 (no gzip) - Messages are immediately propagated,
uncompressed. All other scenarios are performed with com-
pression turned on using gzip (the default settings). We
decided to include an uncompressed experiment to understand
the impact of compression on the bandwidth.
• Vol: 1 - Messages are immediately propagated.
• Vol: 20 - Messages are retained in the server until there are

20 pending messages, which are then propagated in a single
message.

3Available at http://sebastien.godard.pagesperso-orange.fr/
460.000 nodes is close to the average number of cars on US
expressways, according to USGS data [7]

Figure 3: Server outbound network usage over time, for different
aggregability settings

• Vol: 50 - Messages are retained in the server until there are
50 pending messages, which are then propagated in a single
message.

Settings Avg. Outbound Avg. Lag (sec)
Bandwidth (kB/s)

vol 1 (no gzip) 1751 41
vol 1 1324 42

vol 20 1222 34
vol 50 797 36

Table 2: Average outbound network usage (from the server) and
lag for different settings

We decided to change the volume parameter (as opposed to the
time parameter, for example) because it is easier to manipulate.
However, as we observed experimentally, changing the time and
volume parameters redound in the same effect.

Figure 3 and Table 2 show the results concerning the server
outbound bandwidth and average delay (between a client sending
a message and another client receiving it), under these settings. As
expected, the non compressed scenario is the worse performer in the
experiment. We can see in Figure 3 that even without aggregation
(vol 1), the mere act of compressing achieves a 25% reduction on
consumed bandwidth. Aggregating with vol 20 yields another 8%
decrease and with vol 50 we achieve a substantial reduction of 40%
over the non aggregated compressed scenario. This is because, as we
aggregate more messages, the compression algorithm becomes more
effective because of the increased redundancy.

We can also see in Figure 3 that the consumed bandwidth is much
more uniform on the unaggregated scenarios, because messages are
immediately propagated (i.e., constant flow of data). On aggregated
scenarios, messages are retained in the server and propagated in
batches, originating big fluctuations on network usage. Nevertheless,
the average consumption is relatively stable.

Another important insight from these results is the impact of the
different aggregability settings on the average message propagation
delay. Table 2 shows that even in the scenario with vol 1 (where
messages are not being retained in the server) there is already
a substantial average lag of 42 seconds (between sending and
receiving a message) caused by 60.000 clients continuously pushing
information and overloading the server’s outbound network link. The
stress on the network link is key to explaining why the aggregated
scenarios (vol 20 and vol 50) actually decrease the lag even though
messages are being retained at the server. By sending much fewer

Figure 4: Server outbound network usage over time, for different
sizes of recipients chains

messages the server is reducing the stress in the outbound network
link and increasing the throughput. In a sense, we can say that under
heavy load, it is unavoidable that there will exist message retention
on the network link so we might as well retain them at the server.

4.3 Hybrid propagation
Even with aggregation, the server outbound bandwidth can eas-

ily become the bottleneck on large-scale distributed context-aware
systems. We use the same setup (simulating 60.000 clients) to
evaluate the hybrid propagation mechanism described in Section 3.1
for different chain of recipients sizes. As already mentioned, this
size (represented as a percentage) is the maximum number of clients
in a group (chain) for which the server sends only one message
which is then disseminated directly between them (p2p propagation).
We tested the following chain sizes (represented by the k parameter
described in Section 3.1):

• no chain - server sends messages to every client.
• k = 0.02 - server sends messages to 5000 groups of 12 clients

each.
• k = 0.05 - server sends messages to 2000 groups of 30 clients

each.
• k = 1 - server sends messages to 100 groups of 600 clients

each.
• k = 5 - server sends messages to 20 groups of 3000 clients

each.
• k = 10 - server sends messages to 10 groups of 6000 clients

each.

Without lack of generality, to simplify the analysis, we started by
conducting the experiment without aggregation (vol 1).

Figure 4 shows the outbound network usage over time (during
the experiment) under these chain sizes. Even with a chain size
of 0.02% there is already a significant decrease over the no chain
scenario (approximately 26%). Note that, even if the server sends
messages to 12x fewer clients, we incur the overhead of including
all the recipients’ IDs and addresses in the message (messages
become much bigger). As we increase the chain size, the server
outbound bandwidth decreases, since the server sends fewer mes-
sages. Obviously, the outbound bandwidth consumption on the other
machines increases but in a real scenario we expect this not to be a
problem since each client will have his own machine/device to run
the application. We can also see that the decrease is logarithmic -
the reduction that we get when we go from a chain size of 0,02% to
0,05% is much greater than the reduction we get when we go from

Chain size Avg. Lag (sec)
No chain 42

0,1% 70
1% 74
5% 223

10% 295

Table 3: Average lag for different chain of recipients sizes (vol 1)

Chain size Settings Avg. Lag (sec)
1% vol 1 74
1% vol 20 41
1% vol 50 53

Table 4: Average lag with chain size 1% for different volumes

1% to 10%. This is because the cost of including information about
the members of the group (increasing the message size) no longer
justifies the gain of establishing fewer connections. It’s worthy to
note that even though messages size increases (due to the inclusion
of the recipients chain), this allows a highly dynamic reconfiguration
capability of the propagation paths; this solution is better than using a
specific protocol (with specific control messages) for the propagation
paths reconfiguration (e.g. multicast trees), specially if it occurs very
frequently.

Table 3 shows the average lag in seconds for different sizes of
recipients chains. We can observe that there is an increase in the
average lag as we go from a non chained (direct push) model to a
chained (p2p) model. This is due to the fact that, in the latter, the
messages must travel through the chain of recipients instead of being
directly pushed from the server to each recipient. Nevertheless, the
average lag only grows 66% and 76% even though the message has
to travel through 60 clients (k=0,1%) and 600 clients (k=1%). If
we increase the size of the chain too much (above 5%), the number
of hops the message has to travel starts to severely penalize the
average lag and the technique is no longer effective. In this case, a
good equilibrium seems to be achieved with a chain size of 1%: the
consumed outbound is reduced to 4,4% of the non-chained scenario
while the corresponding delay only increases 76%.

Using the chain size of 1% (the one that reached the best compro-
mise between bandwidth and lag), we experimented with different
aggregability functions, more specifically, setting different volumes.
The results are shown in Table 4. We can see that aggregating
messages has the same effect it had in the non chained experiment:
the lag decreases from vol 1 to vol 20, and while it increases again
with vol 50, it remains smaller than the vol 1 lag. The explanation
is the same: since the server is sending much fewer messages (and
note that these messages are bigger as they now carry the chain
of recipients), the server’s network link is less stressed, allowing a
greater throughput.

5. CONCLUSIONS
In this paper, we present Radiator, a dynamic adaptable middle-

ware for efficient distribution of context messages. Unlike current
selective message distribution approaches which rely on relatively
stable sets of matching rules (the rules that dictate who receives a
certain message), our approach relies on functions that, given the
current context of sender and receiver, decide under which conditions
a message should be distributed.

Moreover, we introduce the concept of propagation based on
a chain of recipients that, unlike pub-sub and application-level
multicast tree approaches, can quickly react to highly dynamic ever-
changing rules. In fact, as our experiments have shown, the tree
can be continuously rebuilt and still achieve significant bandwidth

reduction and no penalty on the average propagation time. This is
only possible because of our delayed propagation mechanism that,
when paired with compressed aggregated messages, makes a much
more efficient use of the network bandwidth.

By combining both techniques (aggregation/compression and chain-
based propagation) we were able to reduce the server’s outbound
bandwidth 20x without penalizing the average propagation delay in
a given scenario (partition 1% and vol 20).

6. REFERENCES
[1] A. Allavena, A. Demers, and J. E. Hopcroft. Correctness of a

gossip based membership protocol. In Proceedings of the
twenty-fourth annual ACM SIGACT-SIGOPS symposium on
Principles of distributed computing - PODC ’05, page 292,
New York, New York, USA, July 2005. ACM Press.

[2] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on
context-aware systems. International Journal of Ad Hoc and
Ubiquitous Computing, 2(4):263, 2007.

[3] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron.
SCRIBE: A large-scale and decentralized application-level
multicast infrastructure. IEEE Journal on Selected Areas in
communications, 20(8):1489–1499, 2002.

[4] M. Castro, M. Jones, and A. Kermarrec. An evaluation of
scalable application-level multicast built using peer-to-peer
overlays. IEEE INFOCOM, 2:1510–1520, 2003.

[5] A. Dey and G. Abowd. Towards a better understanding of
context and context-awareness. In CHI 2000 workshop on the
what, who, where, when, and how of context-awareness,
volume 4, pages 1–6, 2000.

[6] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The
many faces of publish/subscribe. ACM Computing Surveys,
35(2):114–131, June 2003.

[7] M. Gruteser and D. Grunwald. Anonymous Usage of
Location-Based Services Through Spatial and Temporal
Cloaking. Proceedings of the 1st international conference on
Mobile systems, applications and services - MobiSys ’03,
pages 31–42, 2003.

[8] J. Hudson, J. Christensen, W. Kellogg, and T. Erickson. I’d be
overwhelmed, but it’s just one more thing to do: Availability
and interruption in research management. In Proceedings of
the SIGCHI conference on Human factors in computing
systems: Changing our world, changing ourselves, number 4,
pages 97–104. ACM, 2002.

[9] A. Mathur, R. W. Hall, F. Jahanian, A. Prakash, and
C. Rasmussen. The Publish / Subscribe Paradigm for Scalable
Group Collaboration Systems. Ann Arbor, 1001(313):48109,
1995.

[10] E. Miluzzo, N. Lane, K. Fodor, R. Peterson, and H. Lu.
Sensing meets mobile social networks: the design,
implementation and evaluation of the cenceme application. In
6th ACM conference on Embedded network sensor systems,
page 337, New York, New York, USA, 2008. ACM Press.

[11] D. Salber, A. Dey, and G. Abowd. The context toolkit: Aiding
the development of context-enabled applications. In
Proceedings of the SIGCHI conference on Human factors in
computing systems: the CHI is the limit, page 441, New York,
New York, USA, 1999. ACM.

[12] B. Segall and D. Arnold. Elvin has left the building: A
publish/subscribe notification service with quenching. in
Proceedings AVVG 1997, Brisbane, September, 1997.

[13] L. Sweeney. k-anonymity: A model for protecting privacy.
International Journal of Uncertainty Fuzziness and
Knowledge-based Systems, 10(5):557–570, 2002.

	Introduction
	Context aggregation model
	What is context aggregation?
	Model

	Architecture
	Server - Context propagation

	Evaluation
	Experimental setup
	Aggregation/compression
	Hybrid propagation

	Conclusions
	References

