
Towards a Generic Group
Communication Service

Nuno Carvalho
José Pereira

Luı́s Rodrigues

DI–FCUL TR–06–13

September 2006

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749–016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The
files are stored in PDF, with the report number as filename. Alternatively, reports are available
by post from the above address.





Towards a Generic Group Communication Service∗

Nuno Carvalho
Universidade de Lisboa

nunomrc@di.fc.ul.pt

José Pereira
Universidade do Minho

jop@di.uminho.pt

Luı́s Rodrigues
Universidade de Lisboa

ler@di.fc.ul.pt

Abstract

View synchronous group communication is a mature technology that
greatly eases the development of reliable distributed applications by enforc-
ing precise message delivery semantics, especially in face of faults. It is
therefore found at the core of multiple widely deployed and used middleware
products. Although the implementation of a group communication system is
a complex task, application developers may benefit from the fact that multi-
ple group communication toolkits are currently available and supported.

Unfortunately, each communication toolkit has a different interface, that
differs from every other interface in subtle syntactic and semantic aspects.
This hinders the design, implementation and maintenance of applications us-
ing group communication and forces developers to commit beforehand to a
single toolkit, thus imposing a significant hurdle to portability.

In this report we propose jGCS, a generic group communication service
for Java, that specifies an interface as well as minimum semantics that allow
application portability. This interface accommodates existing group commu-
nication services, enabling implementation independence. Furthermore, it
provides support for the latest state-of-art mechanisms that have been pro-
posed to improve the performance of group-based applications. To sup-
port our claims, we present and evaluate experimentally the implementations
of jGCS for several major group communication systems, namely, Appia,
Spread/FlushSpread and JGroups, and describe the port of a large middle-
ware product to jGCS.

∗This work was partially supported by the IST project GORDA (FP6-IST2-004758). Parts of this
work were published on the proceedings of the 8th International Symposium on Distributed Objects
and Applications (DOA).

1



1 Introduction

View synchronous group communication is a coordination paradigm that eases the
development of multi-participant applications, ranging from replicated servers, co-
operative caches, multi-user cooperative application, just to name a few. The set of
protocols that implement group communication services are typically bundled in a
package called a group communication toolkit. After the pioneer work initiated two
decades ago with Isis [5], many other toolkits have been developed. Appia [14],
Spread [2], and JGroups [4] are, among others, some of the group communication
toolkits in use today. Therefore, group communication is, today, a mature technol-
ogy that, when correctly used, greatly eases the development of reliable distributed
applications. At the same time, group communication is still a hot research topic, as
performance improvements and wider applicability are sought [26, 24, 19, 21, 20].

For self-containment, we provide a brief introduction to group communication.
A group communication toolkit integrates two complementary services: member-
ship and multicast communication. Informally, the role of the membership service
is to provide, to each participant in a distributed computation, information about
who is active (or reachable) and who is failed (or unreachable). Such informa-
tion is called a view of the group of participants. The multicast service allows a
member to send a message to the group of participants with different reliability
and ordering properties. Membership and multicast need to be integrated because
reliability guarantees are usually defined in the context of the current group view.
For instance, if the membership service indicates that participants A, B and C are
active, the reliable multicast service will deliver all multicast messages to these
three participants unless one of them fails meanwhile (in which case, a new view
is installed).

From the description above it is clear that group communication is much more
than just “yet another reliable multicast protocol” given that, the added value, is
the precise semantics that are enforced among the communication and membership
services, namely in the presence of faults [7]. By ensuring that the same messages
are delivered to multiple destinations, ordered among themselves and with group
membership change notifications, each message may be handled by the application
in a predictable and globally consistent context.

Naturally, by enforcing strong semantics, group communication is more expen-
sive than other weaker forms of multicast, such as best-effort multicast. Therefore,
it should not be used when the application has weak consistency requirements. On
the other hand, group communication excels when the application is required to
maintain global invariants on distributed state. Complex distributed state main-
tenance problems are then greatly simplified [8]. Group communication is there-
fore found at the core of multiple widely deployed and used middleware prod-

2



ucts, namely, the iBus//MessageBus scalable publish/subscribe toolkit, the JBoss
and Zope application servers, the Sequoia (formerly Objectweb C-JDBC) database
cluster, and the CORBA FT high-availability service. Group communication is
also a cornerstone of innovative research prototypes such as Postgres-R [12] and
Eternal [17].

Unfortunately, each communication toolkit has a different interface, that differs
from every other interface in subtle syntactic and semantic aspects. This hinders
the design, implementation and maintenance of applications using group commu-
nication and forces developers to commit beforehand to a single toolkit, thus im-
posing a significant hurdle to portability. Such commitment is undesirable because
group communication toolkits are often optimized for specific execution environ-
ments. The ability to replace one toolkit by another has the advantage of allowing
the application to use the most appropriate toolkit for each deployment scenario.
If the application code is tightly coupled with a particular toolkit, changing the
implementation of group communication requires a costly refactoring. This also
prevents emerging loosely coupled service oriented architectures from taking full
benefit of view synchronous group communication.

In this report we tackle the problem of defining a generic interface that may be
used to wrap multiple toolkits. The interface, called Group Communication Service
for Java, or simply jCGS, has been designed for the Java programming language
and leverages on several design patterns that have recently become common ground
of Java-based middleware. The interface specifies not only the API but also the
(minimum) semantics that allow application portability. jGCS owns a number of
novel features that makes it quite distinct from previous attempts to define standard
group communication interfaces, namely:

• jGCS aggregates the service in several complementary interfaces, namely a
configuration interface, a message passing interface, and a set of member-
ship interfaces. The configuration interface specifies several opaque config-
uration objects that encapsulate specifications of message delivery guaran-
tees. These are to be constructed in an implementation dependent manner to
match application requirements and then supplied using some dependency
injection technique. The message passing interface exposes a straightfor-
ward interface to sending and receiving byte sequences, although concerned
with high throughput, low latency and sustainable concurrency models in
large scale applications. Finally, a set of membership interfaces expose dif-
ferent membership management concepts as different interfaces, that the ap-
plication might support or need.

• jGCS provides support for recent research results that improve the perfor-
mance of group communication systems, namely, semantic annotations [20,

3



21, 19] and early delivery [18, 25, 24, 22].

• open source implementations of jGCS for several major group communica-
tion systems have been already developed, namely, Appia [14], Spread [2]
(including the FlushSpread variant), and JGroups [4]. Besides making jGCS
outright useful in practice, these validate that the interface is indeed generic.

• the interface introduces negligible overhead, even when the jGCS is imple-
mented as wrapper layer and is not supported natively by the underlying
toolkit.

• the interface has been already integrated in existing middleware products. In
particular, we also describe here the port to jGCS of the Sequoia database
clustering middleware (formerly Objectweb C-JDBC), as an illustration of
the expressiveness and performance of jGCS.

There were previous attempts to define generic group communication inter-
faces. As it will become clear after we present our work, those attempts have
approached the problem from quite different, and often orthogonal angles. We will
postpone comparison with related work until Section 6.

The rest of this report is structured as follows. In Section 2 we briefly describe
the goals that we propose to achieve with the presented service and the pitfalls
that need to be avoided in the design of such a service. Section 3 introduces the
jGCS interface. Section 4 describes existing jGCS bindings and Section 5 offer a
performance evaluation of the jGCS. Section 6 compares jGCS with related work
and Section 7 concludes the report.

2 jGCS Design Goals and Pitfalls

The design of the jGCS is shaped by a number of goals that determine also a
number of tradeoffs. In this section we enumerate and describe each of these goals.
Furthermore, the design of the jGCS is also shaped by the need to avoid a number
of pitfalls: features that would at first sight seem desirable but which in fact are
not and would force unbearable compromises. In this section we discuss not only
the goals that we aimed with the design of the jGCS but also the pitfalls we have
avoided in the process.

2.1 Goals to Achieve

Goal 1: No changes to payload required. The first goal is that when the jGCS
is implemented on top of an existing toolkit, no assumptions or changes are made

4



on message payload. This means that implementing jGCS does not require spe-
cific data formats, additional message headers or additional messages exchanged.
Naturally, toolkits that adopt jGCS as their native interface are free to implement
jGCS-specific optimizations. As a result, applications using a specific protocol
through jGCS are interoperable with legacy versions using native interfaces. Fur-
thermore, no Java specific constructs or data formats are forced on the application,
most notably, no Java serialization is required. This makes it possible to easily
translate the proposed API to languages in the same family such as C++ or C#.

Goal 2: Support service locator and dependency injection patterns. Complex
applications of group communication can make use of multiple groups and even
multiple service guarantees selected independently for each message. On the other
hand, different sets of guarantees might be available on each implementation of
jGCS. It is therefore required that all details regarding protocol configuration and
service selection are encapsulated in objects that can be supplied to the application
by a third party (i.e. the configurator) using a service locator1 [1] or the dependency
injection patterns2. As an example, this allows substitution by a stronger service,
when the exact service required by the application is not available in the target
environment.

Goal 3: Support multiple group-based programming paradigms. jGCS is
flexible enough to support different flavors of multicast communication based on
process groups. Most notably, jGCS supports both open groups (where any process
can send messages to the group) and closed groups (where only group members
can send messages to the group). Open groups are useful in client/server applica-
tions while closed groups are useful for coordination and synchronization among
servers.

Additionally, besides the more common multicast group paradigm, in which
messages are targeted to all group members, jGCS supports peer groups, in which
messages are target to specific members of the group. As an example, a multicast
group is useful for data replication while a peer group is useful in a load balancing
application. Note that both flavors require precise knowledge of current member-
ship to function properly.

Goal 4: Export a flexible subsetable interface. Supporting existing toolkits
requires an extensive interface. This includes facilities for sending and receiving

1http://java.sun.com/blueprints/corej2eepatterns/Patterns/ServiceLocator.html
2http://www.martinfowler.com/articles/injection.html

5



messages according to each group communication paradigm, as well as to receive
membership notifications with various degrees of detail.

In some scenarios, there may be an overlap among the services provided by
jGCS and other services already in-use in the target system, such as best-effort
reliable multicast protocols and cluster management infrastructure. Therefore, it
may be useful to deploy just parts of the jGCS to avoid redundancy. Due to this
reason, jGCS has been designed to be subsetable, in the sense that parts can be in-
dependently reused, without carrying along with partially implemented interfaces
and runtime exceptions.

As we will see, the subsetable property is also useful to accommodate multiple
view synchrony variants (however, see Pitfall 2 below).

Goal 5: Non-blocking input/output and container-managed concurrency. The
jGCS supports an event-driven interface. The application registers a number of
callback listener interfaces to be notified of messages arriving and changes to group
composition. The rationale for this is twofold. First, avoiding the requirement to
have threads blocked on input/output improves scalability and allows application
containers to manage threading under a single integrated policy. Second, order-
ing guarantees directly translate into synchronization requirements, thus allowing
jGCS implementations to cooperate with application containers to optimize the
number of concurrent threads.

Goal 6: Accommodate latest research results. Finally, it is a goal of the jGCS
to allow recent research results, such as support semantic annotations [20, 21, 19]
and early delivery [18, 25, 24, 22], to be easily accommodated. In fact, the goal is
to foster programming idioms that naturally take advantage of such results as they
become available. Section 3 will address this topic in detail.

2.2 Pitfalls to Avoid

Pitfall 1: Specify a common set of service guarantees. By assuming that pro-
tocol configuration and selection of service guarantees are hard-coded within the
application, portability to multiple protocol implementations can only be achieved
by standardizing on a limited set of guarantees that must exist everywhere. Such
agreed set is either very small, and thus of limited use, or large and not portable
to multiple implementations. jGCS avoids this pitfall by assuming a configuration
step as described in Goal 2, that matches available service guarantees to application
requirements.

6



Pitfall 2: Exclusively reuse existing standard interfaces. The semantics of
view synchronous group communication are so different from other message pass-
ing middleware, such as JMS, that any attempt to map these semantics into other
paradigms introduces substantial obstacles to all goals enumerated in the previous
section. Furthermore, given the semantic mismatch, it is also likely that no signif-
icant portability advantages result from the exercise. A better option is to provide
a syntactically incompatible interface that embodies similar structure and the same
patterns such that programmers can easily make the transition.

Pitfall 3: Provide interfaces for protocol composition. A lot of research effort
has been invested in composing group communication protocols from fine-grained
components by using uniform interfaces [9, 10, 14] or even standard ad-hoc inter-
faces [27]. The main problem is that the mapping of an existing implementation to
a component interface is not straightforward and thus the approach is not general.
Furthermore, interfaces that allow efficient assembly of fine-grained protocol com-
ponents are likely to impose a specific runtime that is not acceptable as a general
purpose application programming interface.

3 A generic Group Communication Service

This Section describes jGCS, a generic group communication service for Java.
We provide a specification of the API and of the minimum semantics that support
application portability. The service is organized in four complementary interfaces,
namely: the configuration interface, the common interface, the data interface, and
the control interface. Each of these interfaces is decribed below.

3.1 Configuration Interface

The configuration interface decouples the application code from specific imple-
mentations by requiring that a third party, the configurator, matches available ser-
vices with application requirements. Besides the obvious portability advantages,
this also fulfills Goal 2. This interface, shown in Figure 1, is composed by opaque
objects as follows:

ProtocolFactory The protocol factory serves as the interface entry point and trig-
gers the initialization of runtime instances of a protocol implementation. At
the semantic level, it encapsulates an implicit service guarantee specification
which is enforced for all sessions.

7



Figure 1: Configuration interfaces.

GroupConfiguration A group configuration encapsulates the address of a group
that can be used to open a session that subsequently allows messages to be
sent or received, or the membership to be observed. As the ProtocolFactory,
at the semantic level it also encapsulates an implicit service guarantee spec-
ification which is enforced for all messages exchanged. This object may be
used as a key in hashtables.

Service A service encapsulates a specification of the guarantees to be enforced
on a particular message. Upon encountering a service specification that is
unknown or incompatible with group or protocol configuration, the imple-
mentation must throw an exception. A partial order is defined on guarantees
provided by services by extending the Comparable interface (i.e., some ser-
vices may be stronger than, and subsume, other services). Therefore, the
application can use the service interface to discover if a service guarantee is
subsumed by some other.

Annotation An annotation is an optional field that encapsulates semantic knowl-
edge about a message that can be used by the protocol to optimize perfor-
mance. The contents of the annotation are therefore implementation specific
and protocols should silently ignore unknown annotations without erroneous
or unpredictable behavior.

Configuration objects should be easily stored and retrieved in configuration
files and directory services. It is therefore advisable that implementations provide
configuration objects with one or more of the following properties: are serializable,
can be constructed from properties files, and export parameters according to Jav-
aBean conventions. For the same reason, these objects should not be used to keep
session state at runtime.

8



Figure 2: Common interfaces.

3.2 Common Interface

A protocol session is represented by a Protocol instance, obtained from the con-
figuration stored in a ProtocolFactory. Using a Protocol instance it is possible to
obtain, for a specific GroupConfiguration, a data and a control session. All further
operation are invoked through one of these two interfaces, as depicted in Figure 2.

Both data and control sessions identify group members using objects of type
java.net.SocketAddress. This directly allows a large number of protocols to be
supported without any form of address conversion. Protocols that use different
address formats, can easily be wrapped. Examples of the use of both native and
wrapped member identifiers are described in Section 4.

Finally, exceptions thrown by the jGCS extends the JGCSException class,
which itself extends the java.io.IOException interface. Usually, a nested imple-
mentation dependent exception can be obtained by using the standard getCause
method. Exceptions thrown asynchronously within the protocol implementation
are delivered to the application using the ExceptionListener interface. This can be
registered using either session object.

3.3 Data Interface

The data interface provides the methods for messages to be sent and received.
Whenever the application multicasts a message there is always a specific qual-
ity of service, i.e. a specific set of guarantees, associated with the request. The

9



Figure 3: Message passing interfaces.

guarantees can be implicitly derived from the group or protocol configuration or
explicitly set using a Service parameter. The data interface shown in Figure 3 is as
follows:

DataSession The data session provides methods for sending messages in both
multicast and peer groups. It also allows registering listeners for the vari-
ous events.

Message This interface wraps payload and sender address. According to Goal 1,
the only payload supported is a byte array. As instances can only be created
by the DataSession, it can be implemented as a thin layer on implementation
specific objects to avoid having to perform additional buffer copy operations.

MessageListener Handles delivery of message payload. This is the main entry
point for incoming data. When no separate ServiceListener is being used, it
does service notification implicitly.

ServiceListener Handles delivery of service notification events. As described be-
low, applications that do not need to be optimized for concurrency can ignore
this interface.

The data interface exposes one of the key features of view synchronous group
communication: messages are delayed by the protocol implementation to be de-
livered to the application only after global guarantees have been ensured, namely,
regarding order and stability. For instance, when providing uniform agreed (or
safe) guarantees [7], the implementation must collect a number of acknowledg-
ments from different members before issuing the message delivery.

10



However, recent work on group communication [26, 24] has shown that it is
useful to deliver the payload to the application as soon as it is received and later
notify the application that the requested service has been ensured. This allows
increased concurrency and masking of latency, by allowing the application to start
processing the message earlier, at least, by deserializing the message in parallel
with the execution of the remaining of the protocol. Examples of this strategy can
be found in systems based on optimistic atomic multicast protocols [11].

jGCS supports this optimization as described in Figure 4. The application reg-
isters a ServiceListener with the DataSession. The protocol is allowed to deliver
payload without ensuring services. Upon handling the message, the application
chooses how to proceed:

• Returns a context reference (any POJO) which the protocol associates with
the message. Typically, the context contains a pre-processed message. When
service is ensured, the protocol calls back into the application providing
references to both the context object and the service object that has been
achieved. The application then resumes processing the message.

• Returns a null reference. This informs the protocol that no further notifi-
cations or service guarantees are required for this message and no further
callbacks happen.

Notice that even if the protocol implementation does not natively support this
interface, the binding can trivially support it by performing both callbacks only af-
ter the final delivery. Currently, the only toolkit that natively supports this interface
is Appia [15].

On the sender side, the jGCS also provides mechanisms to prevent the appli-
cation from being blocked when invoking the interface. For instance, a specific
protocol implementation may not accept requests until some service is ensured.
Also, an implementation may perform end-to-end flow control, thus throttling the
sender in a similar fashion. The non-blocking interface works as follows. Upon
sending a message, an application might also specify a context. This means that
multicast does not block and the application gets notified using the service listener
callback.

An additional advantage of jGCS is that it does not impose artificial limits to the
application concurrency, namely in the processing of incoming messages. In fact,
jGCS allows for concurrent message delivery notifications whenever the requested
service does not impose ordering on messages. Therefore, only total ordering con-
straints prevent concurrent deliveries. Also, this applies both to payload deliveries,
when no service listener has been registered, as well as to service callbacks. Notice

11



Figure 4: Data session usage.

that in the later, payload deliveries can always be performed concurrently, up to an
optimal concurrency degree, that can be coordinated with application containers.

Finally, the jGCS provides support for the use of semantic knowledge to im-
prove system performance. This is achieved by letting application annotate mes-
sages with control information that can be used by the group communication toolkit
to selectively relax reliability, order and view synchrony guarantees [21, 20, 19].
For that purpose, the application should obtain one or more annotation objects in
an implementation specific fashion. These are then handed to the protocol as pa-
rameters in the multicast operation. Although these objects are implementation
specific, this interface does not pose a threat to portability as, by definition, a se-
mantic annotation can be safely ignored.

3.4 Control Interface

The control interface provides a flexible subsetable interface for a wide range of
membership management protocols. The most simple interface is suitable only for
best-effort multicast protocols and is shown in Figure 5:

ControlSession Provides methods for entering and leaving a group, as well as for
registering a listener for control events.

12



Figure 5: Interface extensions for view synchrony.

ControlListener Allows a simple notification of members entering and leaving
the group. Precise semantics of these events, namely regarding concurrency
with message deliveries, depends on the implementation.

This interface can be used separately for failure detection or cluster manage-
ment infrastructure, which are not directly related to group communication. No-
tice also that implementations can choose to distinguish members that have left the
group voluntarily and in a controlled fashion from members that have failed and
thus been forcibly excluded. The former allows recovery from a known state and
thus is more efficient.

Support for view synchronous group communication differs wether the under-
lying implementation provides sending view delivery [7], and thus blocks applica-
tions briefly before installing new views. This reflects in the following interfaces
(Figure 5):

Membership Describes a view of the group. This can be used to obtain a ranked
list of all members, whose sort order depends on the implementation but

13



which should be the same everywhere. It can also be used to obtain informa-
tion on the event leading to the view change, namely, which processes have
just been included and excluded and why.

MembershipID Provides an opaque unique identifier of the view, suitable for be-
ing exchanged and stored persistently. This can be obtained from the cur-
rently installed Membership object.

MembershipSession Provides methods to obtain the current membership and reg-
ister the callback for view change events.

MembershipListener Handles notifications of view change.

BlockSession Used only by implementations enforcing sending view delivery,
providing methods for signaling that the application has blocked and that
view change can proceed.

BlockListener Handles requests by the protocol for the application to block.

Support for view synchronous group communication requires that membership
notifications are coordinated with message and service notifications performed by
the corresponding data session. In detail, the implementation must ensure that
the view change notification is mutually exclusive with any other view dependent
event, namely, message delivery and service ensured callbacks. This means that no
other notification is issued concurrently with the view change. Although protocol
implementations might allow this restriction to be lifted, this should be possible
only by explicitly selecting a configuration option. On the other hand, block noti-
fications can be issued without any concurrency restrictions. This means that it is
up to the application to synchronize with any other active threads.

4 jGCS Bindings

jGCS was implemented in several group communication toolkits and primitives:
Appia [14], JGroups [4] and Spread [2]. To validate the generality of the service,
the jGCS was also implemented using IP Multicast and NeEM [20]. All these
bindings are open source and available on SourceForge.net3. These toolkits and
the implementations are described in the following paragraphs.

3jGCS and its bindings are available in http://jgcs.sf.net

14



Appia binding

Appia [14] is a layered communication support framework that was implemented
in the University of Lisbon. It is implemented in Java and aims at high flexibil-
ity to build communication channels that fit exactly in the user needs. The QoS
offered by a channel can be statically configured by an XML file or dynamically
assembled by the application at run time. The application can create several chan-
nels with different QoSs and send messages to different channels, depending on
the QoS required by each message. In contrast with traditional layered protocols,
components of Appia channels can be shared and thus offer multiple related Qual-
ities of Service (QoS). This makes it easy, for instance, that several channels can
be bound to the same group membership.

Although Appia is protocol independent, in the sense that it can be used to com-
pose any protocol as long as it respects the predefined interface, it includes an ex-
tensive layer library targeted at view synchronous group communication. Namely,
it has protocols that implement virtual synchrony, causal order, and several imple-
mentations of total order algorithms.

The implementation of jGCS is build directly on the Appia protocol composi-
tion interfaces as an additional layer. jGCS configuration objects thus define the
micro-protocols that will be used in the communication channels. Each Service
identifies an Appia channel and messages are sent through the channel that fits the
requested service. As Appia supports early delivery in totally ordered multicast,
this is exposed in the jGCS binding using the ServiceListener interface. Appia
implements all extensions of the ControlSession, depending on the channel config-
uration.

JGroups binding

JGroups [4] is a group communication toolkit modelled on Ensemble [9] and im-
plemented in Java. It provides a stack architecture that allows users to put together
custom stacks for different view synchronous multicast guarantees as well as sup-
porting peer groups. It provides an extensive library of ordering and reliability
protocols, as well as support for encryption and multiple transport options. It is
currently used by several large middleware platforms such as JBoss and JOnAS.

The JGroups implementation of jGCS also uses the configuration interface
to define the micro-protocols that will be used in the communication channel.
JGroups can provide only one service by the applications, since configurations
only support one JGroups channel per group communication instance. JGroups
implements all extensions of the ControlSession.

15



Spread binding

Spread/FlushSpread [2] is a toolkit implemented by researchers of the Johns Hop-
kins University. It is based on an overlay network that provides a messaging ser-
vice resilient to faults across local and wide-area networks. It provides services
ranging from reliable message passing to fully ordered messages with delivery
guarantees. The Spread system is based on a daemon-client model where gener-
ally long-running daemons establish the basic message dissemination network and
provide basic membership and ordering services, while user applications linked
with a small client library can reside anywhere on the network and will connect
to the closest daemon to gain access to the group communication services. Al-
though there are interfaces for Spread in multiple languages, these do not support
the FlushSpread extension, which provides additional guarantees with a different
interface.

The Spread and FlushSpread implementations of jGCS use the configuration
interface to define the location of the daemon and the group name. The implemen-
tation to use (FlushSpread or just Spread) is also defined at configuration time. In
Spread, the quality of service is explicitly requested for each message, being thus
encapsulated in Service configuration objects.

Other bindings

To prove the generality of jGCS, we provide also two implementations, based
on the well known IP Multicast and on the Network-friendly Epidemic Protocol
(NeEM) [20]. The NeEM protocol is an epidemic multicast protocol (also called
probabilistic or gossip-based) in wide-area networks that uses multiple TCP/IP
connections in a non-blocking fashion. The resulting overlay network is automati-
cally managed by the protocol. The implementations of jGCS that use IP Multicast
and NeEM allow peers to join and leave the multicast group, and send and receive
messages to/from other peers. One application that uses only these functionalities
can easily be ported to other implementations.

5 Performance Evaluation

We have done a number of experiments to assess the overhead imposed by the
use of jGCS to wrap different group communication toolkits. Namely, we want to
assess the impact of the extra level of indirection between the application and the
toolkit introduced by jGCS.

For this purpose we have made two different sets of tests. In the first set we
have made standalone throughput measurements for two different toolkits, both

16



1000 2000 3000 4000 5000 6000 7000 8000
Message size (bytes)

400

600

800

1000

1200

1400

Th
ro

ug
hp

ut
 (k

bp
s)

Appia + jGCS
Appia

(a) Appia throughput.

1000 2000 3000 4000 5000 6000 7000 8000
Message size (bytes)

400

600

800

1000

1200

1400

Th
ro

ug
hp

ut
 (k

bp
s)

JGroups + jGCS
JGroups

(b) JGroups throughput.

Figure 6: Throughput of the toolkits with and without the jGCS.

with and without the jGCS. In the second set of tests we have integrated jGCS in a
production environment, namely in the Sequoia database clustering middleware.

5.1 jGCS for Appia and JGroups

To measure the impact of the jGCS on the maximum throughput of existing group
communication toolkits we have selected Appia and JGroups. To run the exper-
iments, we have implemented three different versions of a test application that
transmits a number of messages of a configurable payload size to the group. One
version uses the Appia native interface, other uses the JGroups native interface, and
the last version uses jGCS. This allowed us to run four different configurations: (i)
the test application with Appia; (ii) the test application with JGroups, (iii) the test
application with jGCS, configured to use Appia and (iv) the test application with
jGCS, configured to use JGroups.

Measurements were obtained with the following environment. The JGroups
and the Appia protocol stack were created using similar configurations. All tests
used a virtual synchrony protocol stack and a token based total order protocol.
All tests were made with a group of three members, each member sending 10 000
totally ordered messages to the group. Each member of the group runs in a Pentium
IV/2.8GHz server with 1Gb of memory. The three machines are connected through
100Mbps ethernet switch. Each test was made with different message sizes.

The Figure 6 shows the throughput of the two group communication toolkits,
using directly the interface provided by the toolkit and using jGCS. As we can see
in 6(a), the Appia implementation of jGCS does not cause a significant overhead
and this overhead is increasingly less noticeable as the message size grows. In the
case of JGroups, in 6(b), the overhead caused by the jGCS is also very small but

17



0 200 400 600 800 1000 1200 1400
0

2

4

6

8

10

12
Throughput Over Time

No
rm

al
ize

d 
W

IP
S

Time (s)

(a) With jGCS.

0 200 400 600 800 1000 1200 1400
0

2

4

6

8

10

12
Throughput Over Time

No
rm

al
ize

d 
W

IP
S

Time (s)

(b) Without jGCS.

Figure 7: Throughput of Sequoia in WIPS.

Implementation Mean Std. Dev. Samples
Native 39.96 41.10 3846

With jGCS 40.26 52.97 3832

Table 1: Latency of client requests of TPC-W (ms).

it grows as the message size increases. This is explained as follows: For improved
performance, JGroups delivers messages in a buffer that can be reused later by the
protocol, forcing the application to locally copy data during delivery. The native
JGroups test application does not perform this copying, and thus has better perfor-
mance. On the other hand, the current jGCS binding does this copying in order to
provide the same service as other bindings and thus incurs in additional overhead.
In the future, this decision should probably be left to the configurator, thus making
it possible to achieve the same performance as with the native interface.

5.2 jGCS in Sequoia

The second set of tests measure the overhead of having jGCS in a real applica-
tion. To do these tests we used Sequoia, a middleware database replication system
that exports a JDBC interface to applications and routes client requests to a set of
databases. Sequoia is composed by a JDBC driver, that is used by applications
that want to access the databases and a controller that receives the client requests
and forward them to a set of databases. For availability and fault tolerance, the
Sequoia controller can (and should) be replicated. Each controller manages a set

18



of databases. In a system with more than one controller, the application can use
any controller to make the requests. The controllers exchange their requests using
view synchronous total order, to execute the same set of requests in the same order
in all databases.

The implementation of primitives that make use of group communication is
distributed as a separate package, Hedera (formerly ObjectWeb Tribe). In detail,
it provides access to an application specific subset of group communication and
additional functionality for explicitly acknowledged messages, multiplexing and
dispatching. Hedera has been previously implemented twice, using JGroups and
Appia. We thus ported Hedera to jGCS which allowed us to use Sequoia with any
jGCS implementation that supports the required service guarantees.

Performance figures were obtained in a system configured as follows. The
clients are a Java implementation of the TPC-W4 that use the Jakarta Tomcat to
make requests to a database. The requests are made to a sequoia controller that
replicates the requests. Sequoia is configured to use three controllers, each one
controls one MySQL database. The emulated browsers of the benchmark used
and Tomcat run in one machine. The other three machines have one instance of
the Sequoia controller and one instance of the MySQL database each. All four
machines are connected by a 100Mbps ethernet switch and have the same memory
and processing power of the machines used in the previous tests. In these tests, the
benchmark was configured to have always 20 clients (emulated browsers) making
requests to the database, in the Ordering Mix (50% of write operations).

The Figure 7 shows the throughput of the Sequoia controller in normalized
Web Interactions Per Second (WIPS), one of the measurements that is made by
the implementation of TPC-W used. The Figure shows that the throughput of the
system is not affected by the usage of jGCS in the whole system, since the number
of WIPS over time is equivalent. More detailed values can be found on Table 1.
This table shows that latency results of test system using the Appia toolkit, either
through the native interface or through jGCS, are in practice the same. In fact,
the difference is not statistically relevant, even with a very low confidence level,
as confidence intervals overlap significantly. This shows that the use of jGCS is
negligible in the overall performance of a complex system.

6 Related Work

Although there have been multiple attempts to ease the development of applications
based on group communication by standardizing their interfaces and their seman-
tics, most of these efforts have quite different goals and, therefore, can be seen

4http://www.ece.wisc.edu/∼pharm/tpcw.shtml

19



as complementary (instead of competing) efforts. We discuss four non mutually
exclusive approaches.

The first approach attempts to hide the complexity of group communication by
wrapping it in higher level abstractions. The rationale for this line of work is that
there is a category of users that would like to benefit from the advantages provided
by group communication (namely, easy maintenance of consistent global states)
but that do not want to invest in understanding the semantics of view synchronous
communication. A particularly popular approach is to wrap view synchronous
communication in RPC-like interface, such as RMI [16]. While the above may
be true, using such interfaces often introduce a significant performance overhead
that is unacceptable for programmers attempting to build high-performance appli-
cations such as replicated database middleware. In our view, the widespread use of
the Java programming language and the broad adoption of several design patterns
used in jGCS allow to conciliate the programmer familiarity with the satisfaction
of performance constraints.

A second line of work attempts to fit the view synchronous interface into widely
adopted interfaces such as, for instance, SNMP messages [27] or JMS [3, 23]. The
rationale for this line of work is that a view synchronous services can be easily
adopted if exported using an interface that is familiar to most programmers. We
see this category as a complementary line of work, given that the simplicity is
achieved at the cost of loosing some of the benefits of both paradigms. Namely,
many JMS applications rely of persistence or transactional services that are not
provided directly by group communication toolkits. On the other hand, the notion
of explicit membership, a keystone of view synchronous communication, conflicts
with the goal of decoupling publishers from subscribers. Therefore, group com-
munication can be a valuable tool to increase the reliability of messaging services
but, certainly, one service cannot simply replace the other.

A third alternative aims at standard semantics for view synchronous commu-
nication [13]. The rationale for this type of work is that it would be easier to see
a wider adoption of view synchronous communication toolkits if all provide the
same guarantees. Although this is a valid goal, practice has shown that it is hard
to make the community converge on such an common semantics, given that each
toolkit exploits a different angle to provide better performance for some distinct
target application areas. Instead of trying to define unique semantics, jGCS only
defines minimum common semantics and provides the necessary hooks to support
specific features using a flexible interface.

A final approach is to make the service provided by the group communication
toolkit highly reconfigurable, usually provided through the composition of micro-
protocols [9, 14]. The rationale for this type of work is that applications are better
served if the toolkit can be tailored exactly to their specific needs. Toolkit reconfig-

20



uration is an important topic. Our own work with the Appia toolkit has addressed
this facet extensively. However, existing protocol composition mechanisms are
typically tied to concrete language or run-time constructs from which the applica-
tion should be shielded. The configuration interface of the jGCS decouples the way
the application expresses its requirements from the mechanisms used to configure
the underlying toolkit.

The work with jGCS is unique in the sense that it provides a low-level inter-
face to view-synchronous communication, that allows the implementation of high-
performance higher level abstractions while, at the same time, promotes a level of
decoupling between the application and the underlying toolkit, that allows the ap-
plication to be portable. Higher level primitives, such as state transfer, multiplexing
and dispatching, or explicit acknowledgment, commonly found in group commu-
nication wrappers as Maestro [6] or Hedera should be built on jGCS services.

7 Conclusions

This report describes a generic interface for group communication to be used as a
service to the applications – the Group Communication Service, or simply jGCS.
The report presents the goals to achieve and features to avoid and presents the
interfaces and how should it work in order to achieve the desired goals.

Results show that the jGCS interfaces can be implemented using most of the
state of the art group communication toolkits. It is also shown that the overhead
caused by the jGCS service is negligible and do not affect real applications, im-
proving modularity and configurability. This service was implemented in Java and
is hosted at SourceForge.net (http://jgcs.sf.net).

References

[1] D. Alur, J. Crupi, and D. Malk. Core J2EE Patterns: Best Practices and
Design Strategie. Prentice Hall / Sun Microsystems Pres, 2001.

[2] Y. Amir, C. Danilov, and J. Stanton. A low latency, loss tolerant architec-
ture and protocol for wide area group communication. In IEEE International
Conference on Dependable Systems and Networks, June 2000.

[3] Y. Amir and A. Munjal. JMS4Spread: http://www.spread.org/jms4spread/.

[4] B. Ban. Design and implementation of a reliable group communication
toolkit for java, 1998.

21



[5] K. Birman and R. van Renesse, editors. Reliable Distributed Computing with
the Isis Toolkit. IEEE Computer Society Press, 1993.

[6] Ken Birman, Roy Friedman, and Mark Hayden. The Maestro group manager:
A structuring tool for applications with multiple quality of service require-
ments. Technical report, Ithaca, NY, USA, 1997.

[7] Gregory V. Chockler, Idid Keidar, and Roman Vitenberg. Group communica-
tion specifications: a comprehensive study. ACM Comput. Surv., 33(4):427–
469, 2001.

[8] R. Guerraoui and A. Schiper. Software-based replication for fault-tolerance.
IEEE Computer, 30(4):68–74, April 1997.

[9] M. Hayden. The Ensemble System. PhD thesis, Cornell University, Computer
Science Department, 1998.

[10] M. Hiltunen, R. Schlichting, and G. Wong. Implementing integrated fine-
grain customizable QoS using Cactus. In Fast Abstracts, The 29th Interna-
tional Symposium on Fault-Tolerant Computing Systems, pages 59–60, Madi-
son, Wisconsin, USA, June 1999.

[11] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Processing transactions
over optimistic atomic broadcast protocols. In Proceedings of 19th Interna-
tional Conference on Distributed Computing Systems (ICDCS’99), 1999.

[12] Bettina Kemme and Gustavo Alonso. Don’t be lazy, be consistent: Postgres-
R, a new way to implement database replication. In The VLDB Journal, pages
134–143, 2000.

[13] Arnas Kupsys, Stefan Pleisch, Schiper Schiper, and Matthias Wiesmann. To-
wards JMS compliant group communication - a semantic mapping. In NCA
’04: Proceedings of the Network Computing and Applications, Third IEEE
International Symposium on (NCA’04), pages 131–140, Washington, DC,
USA, 2004. IEEE Computer Society.

[14] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol kernel
supporting multiple coordinated channels. In Proceedings of the 21st In-
ternational Conference on Distributed Computing Systems, pages 707–710,
Phoenix, Arizona, April 2001. IEEE.

[15] José Mocito, Ana Respı́cio, and Luı́s Rodrigues. On statistically estimated
optimistic delivery in wide-area total order protocols. Technical Report
DI/TR/2006, University of Lisbon, June 2006.

22



[16] A. Montresor, R. Davoli, and O. Babaoglu. Group-enhanced remote method
invocations, 1999.

[17] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Eternal - a component-
based framework for transparent fault-tolerant corba. Software Practice and
Experience, July 2002.

[18] F. Pedone and A. Schiper. Optimistic atomic broadcast. In Proceedings of the
12th International Symposium on Distributed Computing (DISC’98), 1998.

[19] F. Pedone and A. Schiper. Handling message semantics with generic broad-
cast protocols. Distributed Computing Journal, (15):97–107, 2002.

[20] J. Pereira, L. Rodrigues, M. J. Monteiro, R. Oliveira, and A.-M. Kermarrec.
NeEM: Network-friendly epidemic multicast. In Proceedings of the 22th
IEEE Symposium on Reliable Distributed Systems (SRDS’03), pages 15–24,
Florence,Italy, October 2003.

[21] J. Pereira, L. Rodrigues, and R. Oliveira. Semantically reliable multicast:
Definition, implementation and performance evaluation. IEEE Transactions
on Computers, Special Issue on Reliable Distributed Systems, 52(2):150–165,
February 2003.

[22] L. Rodrigues, J. Mocito, and N. Carvalho. From spontaneous total order to
uniform total order: different degrees of optimistic delivery. In Proceedings
of the 21st ACM Symposium on Applied Computing (SAC’06), Dijon, France,
April 2006. ACM.

[23] SoftWired. ibus/messagebus: http://www.softwired.ch/.

[24] António Sousa, José Pereira, Francisco Moura, and Rui Oliveira. Optimistic
total order in wide area networks. In Proc. 21st IEEE Symposium on Reliable
Distributed Systems, pages 190–199. IEEE CS, October 2002.

[25] Jeremy B. Sussman, Idit Keidar, and Keith Marzullo. Optimistic virtual syn-
chrony. In Symposium on Reliability in Distributed Software, pages 42–51,
2000.

[26] P. Vicente and L. Rodrigues. An indulgent uniform total order algorithm with
optimistic delivery. In Proceedings of the 21th IEEE Symposium on Reliable
Distributed Systems (SRDS’02), pages 92–101, Osaka, Japan, October 2002.

23



[27] Matthias Wiesmann, Xavier Défago, and André Schiper. Group communica-
tion based on standard interfaces. In Proc. 2nd Int’l Symp. on Network Com-
puting and Applications (NCA-03), pages 140–147, Cambridge, MA, USA,
2003. IEEE.

24


