
From Spontaneous Total Order to Uniform Total Order:

different degrees of optimistic delivery∗

Lúıs Rodrigues
Universidade de Lisboa

ler@di.fc.ul.pt

José Mocito
Universidade de Lisboa

jmocito@lasige.di.fc.ul.pt

Nuno Carvalho
Universidade de Lisboa

nunomrc@di.fc.ul.pt

Abstract

A total order protocol is a fundamental building block in the construction of distributed
fault-tolerant applications. Unfortunately, the implementation of such a primitive can be
expensive both in terms of communication steps and of number of messages exchanged.
This problem is exacerbated in large-scale systems, where the performance of the algo-
rithm may be limited by the presence of high-latency links.

Optimistic total order protocols have been proposed to alleviate this problem. How-
ever, different optimistic protocols offer quite distinct services. This paper makes an
overview of different optimistic approaches and shows how they can be combined in a
single adaptive protocol.

1 Introduction

A Total Order Broadcast protocol is a fundamental building block in the construction of
distributed fault-tolerant applications [3]. The purpose of such a protocol is to provide a
communication primitive that allows processes to agree on the set of messages they deliver
and also on their delivery order. Uniform Total Order Broadcast is particularly useful to
implement fault-tolerant services by using software-based replication [5]. A particular case,
relevant for this work, is the application of total order protocols to implement database
replication services [7].

Unfortunately, the implementation of such a primitive can be expensive both in terms of
communication steps and of number of messages exchanged. This problem is exacerbated in
large-scale systems, where the performance of the algorithm may be limited by the presence of
high-latency links. To alleviate this performance problem, Optimistic Total Order protocols
have been proposed. Such protocols provide to the application an early indication of the
estimated uniform total order. The application can use this estimate to perform a number of
actions optimistically, which are later committed when the final definitive order is established.
The goal is to execute some application steps in parallel with the communication steps of the
total order algorithm.

Different Optimistic Total Order protocols can be found in the literature [11, 4, 12]. Al-
though most of these protocols share the same designation, they offer quite different services.

∗ c© ACM, 2006. This is the author’s version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in SAC ’06: Proceedings of the 2006
ACM symposium on Applied computing, Dijon, France, 2006. This work has been partially supported by the
project IST-STREP 004758, GORDA: Open Replication of Databases.

RTO1 - Total order: Let m1 and m2 be two messages that are RTO-broadcast. Let pi and pj be
any two correct processes that RTO-deliver(m1) and RTO-deliver(m2). If pi RTO-delivers(m1) before
RTO-delivers(m2), then pj RTO-delivers(m1) before RTO-delivers(m2), and we note m1 < m2.

RTO2 - Agreement: If a correct process in Ω has RTO-delivered(m), then every correct process in
Ω eventually RTO-delivers(m).

RTO3 - Termination: If a correct process RTO-broadcasts(m), then every correct process in Ω
eventually RTO-delivers(m).

RTO4 - Integrity: For any message m, every correct process delivers m at most once, and only if
m was previously broadcast by some process p ∈ Ω.

Table 1: Regular total order properties

In this paper, we clarify the different possible definitions of optimism in the context of total
order protocols. We show that it is possible to establish a classification of optimism, that can
rank existing protocols from very optimistic to conservative. Furthermore, we show that the
different grades of optimism are useful in different operating conditions and that they can be
combined in a single adaptive protocol.

The rest of the paper is structured as follows. Section 2, clarifies the differences among the
different optimistic approaches previously proposed. Section 3 shows how different protocols
can be combined in a single adaptive protocol. Early experimental results from the combined
protocol are provided in Section 4. Section 5 concludes the paper.

2 Ranking Optimistic Approaches

At this point it is important to distinguish two alternative definitions of total order: regular
total order and uniform total order.

Regular total order broadcast is defined on a set of processes Ω by the primitives (1) RTO-
broadcast(m) which issues message m to Ω, and (2) RTO-deliver(m) which is the corresponding
delivery of m. When a process pi executes RTO-broadcast(m) (resp RTO-deliver(m)), we say
that pi “RTO-broadcasts m” (resp “RTO-delivers m”). Regular total order is characterized by
the properties depicted in Table 1. Informally, a regular total order protocol ensures that two
correct processes (i.e., processes that never crash) deliver exactly the same set of messages in
the same order.

The uniform version can be obtained by replacing properties RTO1 and RTO2 by prop-
erties UTO1 and UTO2 presented in Table 2. Uniform total order is stronger as it ensures
that, if a processes pi delivers two messages in a given order, all processes will deliver the
same messages in that order, even if pi fails. Uniform total order is the desired consistency
criteria in applications such as database replication, given that certain messages may cause a
transaction to be aborted or committed. If the delivery of a message to a process causes this
process to commit a transaction before crashing, all other processes need also to deliver the
same message to ensure a consistent outcome of the transaction.

An optimistic total order protocol includes an additional primitive UTO-opt-deliver(m).
When a process pi executes UTO-opt-deliver(m), we say that pi “UTO-opt-delivers m”. The

2

UTO1 - Uniform Total order: Let m1 and m2 be two messages that are UTO-broadcast. Let pi

and pj be any two processes that UTO-deliver(m1) and UTO-deliver(m2). If pi UTO-delivers(m1)
before UTO-delivers(m2), then pj UTO-delivers(m1) before UTO-delivers(m2), and we note m1 < m2.

UTO2 - Uniform Agreement: If a process in Ω (correct or not) has UTO-delivered(m), then every
correct process in Ω eventually UTO-delivers(m).

Table 2: Uniform total order properties

p1

p2

p3

p4
2ms 2ms

3ms

5ms

2ms
2ms

3ms

6ms

p5

Figure 1: Network with 5 nodes.

order by which a process p UTO-opt-delivers messages is an estimate of the order by which
p will UTO-deliver the same messages. Note that in some cases the estimate may be wrong,
i.e., the order by which messages are UTO-opt-delivered may differ from the order by which
they are UTO-delivered (although in stable periods it is desirable that it is the same). Note
also that it is possible that a message is directly UTO-delivered without ever being UTO-opt-
delivered.

The purpose of the optimistic delivery is to allow the application to execute some steps
in parallel with the communication steps of the total order protocol. These steps can later
be committed or aborted when the final definitive order is established. Naturally, the earlier
the optimistic delivery can be provided, the more steps can be executed in parallel. However,
the speedup gains obtained from this parallelism, can be compromised by the need to abort
steps, when the estimate proves to be inaccurate.

To illustrate the trade-offs involved in an optimistic total order protocol, we will use the
most intuitive algorithms to establish total order: the sequencer based algorithm. Note that
a similar discussion could be made using other total order algorithms, but the simplicity of
the sequencer approach makes the text more clear. In a sequencer based algorithm, one of
the processes in the system, designated the sequencer, has the onus of assigning a sequence
number to every message it receives. All processes, including the sequencer, deliver messages
according to these sequence numbers.

To better describe the steps involved in an uniform total order protocol, we will use the
network illustrated in Figure 1. The figure shows a network with five nodes p1−p5 connected
by point-to-point links. The average delay of each link is also depicted (for instance, the
average delay in the link p1 − p3 is 5ms).

Let us now consider a particular run using the network above. This run is depicted in
Figure 2. At time t0 = 0 process p2 sends a message m2 and process p3 sends a message
m3. Assume that process p4 receives message m3 at time t3 = 3 and message m2 at time
t6 = 6. We name the order by which messages are received at each process from the underlying

3

p1 p2 p3 p4 p5

0

1

2

3

4

5

6

7

8

9

10

m2 m3

m2 m3

m3

m3

m3

m2

m2

m2

sn(m2)

sn(m3)

Figure 2: A run.

UTO−broadcast

SO SETO RTO UTO

UTO−deliver

UTO−opt−deliver

Figure 3: Optimism rank.

transport protocols the spontaneous order (SO).
In the same example, assume that m2 is received by process p1, the sequencer, at time

t2 = 2 and m3 at time t5 = 5. Assume that the sequencer assigns sequence number to messages
in the order it receives them. Clearly, in this example, the spontaneous order observed at
p4 would be different than the final order as assigned by the sequencer. Sequence numbers
assigned by the sequencer will be received at process p4 at times t7 = 7 and t10 = 10. In this
case, as soon as the sequence number is received we have assured regular total order (RTO).
Note that if both p1 and p4 fail, it is still possible that the remaining processes assign a
difference order to messages m2 and m3.

The final uniform total order (UTO) can only be guaranteed when p4 is sure that the
sequencer numbers have been received by all the remaining processes (or, at least, a majority).
In our example this would happen at time t13 = 13.

Note that, if p4 can estimate that the delay between p1 and p3 is 3ms higher than the
delay between p1 and p2, it could attempt to reproduce the order by which the sequencer
receives messages m2 and m3 by artificially delaying the delivery of m3 by a delta of 6ms
(i.e., by delivering m3 at time t9 = 9). A clever scheme inspired in this insight has been
proposed to establish a statistically estimated total order (SETO) before the regular total
order is known [12].

4

SETO OPT RTO OPT

ADAPTIVE OPT

Figure 4: Adaptive protocol.

Figure 3 shows a time line of total order delivery. Naturally, spontaneous order occurs
first in the time line and uniform total order occurs last. The question now is to decide which
of the intermediate orders should be used to support optimistic delivery.

Clearly, spontaneous total order is only an accurate indication of the final delivery if all
nodes use the same local area network segment, as assumed in [11]. On the other hand, the
statistically estimated total order is a good choice in stable networks, where the network
delays have small variance and can be accurately estimated. In unstable networks, regular
total order is the best choice for optimistic delivery, as it only provides inaccurate information
in the rare cases where a node crashes.

3 An Adaptive Protocol

Given that SETO is the best choice to provide optimistic delivery in stable networks while
RTO is the best choice in unstable networks, it is interesting to design an adaptive protocol
that can dynamically commute from one scheme to the other as a function of the measured
network stability.

It is interesting to observe that such protocol can be obtained as a modular composition
of two different total order protocols, as depicted in Figure 4. In steady-state, the adaptive
protocol would simply receive TO-broadcast/ TO-deliver requests/indications and forward
them to the most appropriate protocol.

Obviously, the key aspect of the adaptive protocol is the algorithm used to commute from
one underlying total order protocol to another. To our knowledge, there is little work in
the literature on how to efficiently perform this sort of transition. Previous work [8] requires
messages to be buffered during the reconfiguration. Here we propose a generic transition
protocol that does not require the traffic to be stopped, allowing a smooth adaptation to
changes in the underlying network. Let us assume that the adaptive protocol is using protocol
TO-A to order messages and pretends to commute to protocol TO-B.

The transition protocol operates as follows. A control message is sent to all nodes to
initiate the reconfiguration. When a node receives this control message, the adaptive protocol
starts broadcasting all messages using both TO protocols. If a node has no message to be
sent, it should send a special null message to ensure a faster termination of the reconfiguration
process. When a node starts receiving messages from both TO protocols it performs the
following steps: messages received from TO-A are delivered as normally; messages received
from TO-B are buffered in order.

As soon as a message from each and every node is received from both TO protocols the
reconfiguration is concluded using the following “sanity” procedure. Firstly, from the buffer
of messages received from TO-B are removed all messages that have already been delivered
by TO-A. Secondly, all messages remaining in the buffer are delivered in order. Finally,
from this point on, all messages received from TO-A are simply discarded and messages

5

WAN

���
���
���
���
���
���

���
���
���
���
���
���

Network A

���
���
���
���
���
���

���
���
���
���
���
���

Network B

Figure 5: Network used in the simulation.

received from TO-B are delivered instead. No further message is sent using TO-A (until a
new reconfiguration is needed).

Clearly, the above protocol is not fault-tolerant as, in order to terminate the reconfigura-
tion, a message is awaited from each and every node. Different strategies can be used to make
the protocol fault-tolerant, depending on the fault-model. To illustrate one of these strategies,
probably the simplest, we assume that both total order protocols are implemented on top of a
view-synchronous [2] group communication service, a typical implementation in systems such
as [13, 6, 9]. In such case, when a failure occurs, all correct processes receive a new view, with
updated group membership information. Furthermore, the view-synchronous communication
ensures that all processes have delivered exactly the same set of messages prior to the view
delivery. Therefore, if a crash occurs during the reconfiguration, each process can perform the
“sanity” procedure described in the previous paragraph as soon as the first view is delivered.

In addition to the reconfiguration protocol, another important aspect of the operation of
the adaptive protocol is the definition of the threshold that triggers the reconfiguration. This
threshold is application dependent, and should be set by the application.

4 Experimental results

We have performed a number of experiments to validate the comparative behavior of Sta-
tistically Estimated Total Order (SETO) and Regular Total Order (RTO) protocols. The
experiments were made using the SSFNet network simulator [10, 1]. The network topol-
ogy used consists on a wide area network with two clouds, connected by one link. Each
cloud contains one router that is used to connect the clouds. The other nodes form a group
membership. Figure 5 shows the network used in the experiments.

The average latency in the long-haul connecting the two networks is 20ms; this is the
major source of latency in this experimental setting. In order to simulate instability in
the network the standard deviation of the transmission delays of the long-haul link is made
variable between 0% to 10%.

Every node in the simulation receives messages from the sending group members. Senders
transmit messages at a variable, uniformly distributed rate. In Network A we have two nodes
that actively send messages while in Network B there is only one sender. The sequencer is

6

Type of Delivery Error Rate
Spontaneous 66%
SETO 13%

Table 3: Error Rate in Stable Network

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6 7 8 9 10

E
rr

or
 R

at
e

in
 S

E
T

O
 D

el
iv

er
y

(%
)

Standard Deviation of Transmission Delay (%)

Figure 6: Error Rate in SETO Delivery

located in Network A. All values depicted in the figures and tables below were measured at
a node located in Network B.

This configuration was chosen to illustrate the behavior of SETO protocol in particular
conditions. As said before, spontaneous order is only accurate when all nodes execute on the
same local area network segment. By having sender nodes on both networks the spontaneous
delivery will become an inaccurate estimation of the final delivery. This scenario thus make
the case for other types of optimistic deliveries. The second aspect that we want to illustrate
is the impact of the variation in the transmission delays in the performance of the SETO
protocol. By having two senders in Network A we will be able to observe that some messages
sent by these nodes will exchange their delivery order when traversing the long-haul link in
their way to Network B producing, once more, an inaccurate estimation of the final delivery
at B.

As described in Section 2, optimistic delivery is only useful if highly accurate, i.e., if
the application is not required to rollback the execution steps performed optimistically very
often. Table 3 clearly shows that in heterogeneous networks (i.e., in networks were nodes
have different distances to the sequencer) the spontaneous order in an unacceptable source
for optimistic delivery, as the error rate is extremely high even in a stable network where
the standard deviation is 0%. On the other hand, the SETO approach, in a stable network,
can provide a significantly smaller error rate and provides an interesting source of optimistic
delivery.

In Figure 6, we show the impact of network instability on the accuracy of SETO. As can
be seen, an increase in the standard deviation of the transmission delay in the long haul link
makes the error rate of the SETO protocol increase, reaching 40% for a σ = 10%. These
results confirm the results published in [12] and clearly show that SETO accuracy is highly
dependent on the network stability.

7

Type of Delivery Time of Delivery
Spontaneous 13429 µs

SETO 20891 µs

Regular 40835 µs

Uniform 42528 µs

Table 4: Type of TO Delivery vs Time of Delivery

Table 4 shows the time line of deliveries in our experiment. The values are averages of all
messages received by our target node in Network B. Naturally, spontaneous order provides
the smaller latency, given that messages are delivered as soon as they are received from the
network. The value depicted in the table can be explained as follows. We recall that the
measurements are made in a received in Network B. There are two senders in Network A and
their messages suffer and average delay of 20ms. The messages from sender located in Network
B suffer a negligible delay. Since all senders transmit at approximately the same average rate,
the average delay becomes approximately 13ms. A similar reasoning explains the figures
depicted in the remaining rows. The interesting aspect is that SETO offers significantly less
latency than regular delivery. Therefore, in stable networks SETO is the source of choice
for providing optimistic delivery. Also, regular delivery is still faster than the final uniform
delivery and provides room for optimistic execution of application steps.

5 Conclusions

SETO protocol provides a fast and accurate estimation of the final total order in stable
networks. Unfortunately, in unstable networks, SETO delivery is highly inaccurate, producing
a very high rate of rollbacks. In such networks a RTO delivery is more suited, because of its
robustness regarding variability in the transmission delays.

An adaptive protocol was proposed to capture the requirements of today’s wide area
networks, where the stability of the transmission links may vary very frequently. This protocol
commutes from a SETO to a RTO as a source for optimistic delivery. In periods of stable
network operation, the protocol commutes back again to a SETO delivery, thus allowing early
message processing. Early experimental results were obtained to validate the approach.

Future work will address the use of our novel adaptive protocol in a concrete wide-area
database replication system and to seek for the optimal commuting threshold for that appli-
cation (as we have mentioned, this parameter is application dependent). Also, we plan to
further improve the reconfiguration algorithm and study the potential advantages of providing
multiple intermediate delivery indications to the application.

6 Acknowledgments

The authors are grateful to J. Pereira and to the anonymous reviewers for their comments on
earlier versions of this paper.

8

References

[1] The SSFNet project: http://www.ssfnet.org.

[2] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed systems. Technical Report
87-811, Department of Computer Science, Cornell University, Ithaca, New York, February 1987.

[3] D. Powell (Guest Ed.). Special issue on group communication. Communications of the ACM,
39(4):50–97, 1996.

[4] P. Felber and A. Schiper. Optimistic active replication. In Proceedings of 21st International
Conference on Distributed Computing Systems (ICDCS’2001), Phoenix, Arizona, USA, April
2001. IEEE Computer Society.

[5] R. Guerraoui and A. Schiper. Software-based replication for fault tolerance. IEEE Computer,
30(4):68–74, 1997.

[6] M. Hayden. The Ensemble System. PhD thesis, Cornell University, Computer Science Depart-
ment, 1998.

[7] Y. Lin, B. Kemme, M. Patiño-Martnez, and R. Jiménez-Peris. Consistent data replication: Is it
feasible in wans? In Proceedings of Europar Conf. (EUROPAR), 2005.

[8] X. Liu and R. van Renesse. Fast protocol transition in a distributed environment. In Proceedings
of the 19th ACM Conference on Principles of Distributed Computing (PODC 2000), page 341,
Portland, OR, July 2000.

[9] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol kernel supporting multiple co-
ordinated channels. In Proceedings of the 21st International Conference on Distributed Computing
Systems, pages 707–710, Phoenix, Arizona, April 2001. IEEE.

[10] D. Nicol, J. Liu, M. Liljenstam, and G. Yan. Simulation of large-scale networks using ssf. In
Proceedings of the 2003 Winter Simulation Conference, 2003.

[11] F. Pedone and A. Schiper. Optimistic atomic broadcast. In Proceedings of the 12th International
Symposium on Distributed Computing (DISC’98), 1998.

[12] A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Optimistic total order in wide area networks. In
Proc. 21st IEEE Symposium on Reliable Distributed Systems, pages 190–199. IEEE CS, October
2002.

[13] R. van Renesse, K. Birman, R. Cooper, B. Glade, and P. Stephenson. Reliable Multicast between
Microkernels. In Proceedings of the USENIX workshop on Micro-Kernels and Other Kernel Ar-
chitectures, pages 27–28, April 1992.

9

