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Abstract—A distributed system is often built on top of an
overlay network. Overlay networks enable network topology
transparency while, at the same time, can be designed to provide
efficient data dissemination, load balancing, and even fault
tolerance. They are constructed by defining logical links between
nodes creating a node graph. In practice, this is materialized by
a Peer Sampling Service (PSS) that provides references to other
nodes to communicate with. Depending on the configuration of
the PSS, the characteristics of the overlay can be adjusted to
cope with application requirements and performance concerns.

Unfortunately, overlay efficiency comes at the expense of
dependability. To overcome this, one often deploys an application
overlay focused on efficiency, along with a safety-net overlay to
ensure dependability. However, this approach results in signifi-
cant resource waste since safety-net overlays are seldom used.

In this paper, we focus on safety-net overlay networks and
propose an adaptable mechanism to minimize resource usage
while maintaining dependability guarantees. In detail, we con-
sider a random overlay network, known to be highly dependable,
and propose BUZZPSS, a new Peer Sampling Service that is
able to autonomously fine-tune its resource consumption usage
according to the observed system stability. When the system is
stable and connectivity is not at risk, BUZZPSS autonomously
changes its behavior to save resources. Alongside, it is also able
to detect system instability and act accordingly to guarantee
that the overlay remains operational. Through an experimental
evaluation, we show that BUZZPSS is able to autonomously adapt
to the system stability levels, consuming up to 6x less resources
than a static approach.

I. INTRODUCTION

Nowadays, almost every application or information service

depends, at least indirectly, on a distributed system. A critical

issue to address in a distributed system is membership. Mem-

bership is related with the ability to determine if a certain

node is taking part or not in the distributed system and which

are its peers, i.e., the nodes that are also part of the system.

In particular, from the point of view of a single node, this is

actually translated into the ability to determine the nodes with

which it can communicate with.

Naturally, the most immediate approach to implement a

membership service in a distributed system is to maintain, at

each node, a list of all other nodes in the system. This is called

full membership and most of the classical distributed systems

rely on such type of service. However, this is only achievable

in small to medium sized systems. As the system grows in

size, trying to maintain information about all the nodes in

the system becomes unfeasible and impairs system scalability.

To address these problems, membership services may provide

each node with only a small list of other nodes in the system

(partial membership). In this case, the node list is called view

as it represents the point of view of such node with respect

to the system configuration. Along this work, we focus on

partial membership for large scale distributed systems and on

the dependability of the membership service. In this context,

dependability is given by the ability of a given correct node

to reach every other correct node either directy or indirectly

by traversing the graph induced by the partial views. As we

will see below, the key is to maintain this graph connected in

an efficient manner even in the presence of faults.

An important thing to notice is that different implementa-

tions of partial membership lead to different system config-

urations and behavior. In fact, if we consider the collection

of partial views in the entire system, we can build a graph

based on the logical links of those partial views. Naturally,

depending on which type of graph emerges, the distributed

system exhibits different properties. As an example, let us

assume a distributed message dissemination application. If

node 1 wants to send a message to node 7, it must search for

node 7 in its view. If node 1 finds the correspondent link, then

it can contact node 7 directly. Otherwise it must forward the

message to other nodes. Depending on how the membership

service populates the node’s view, this process can be more or

less efficient. For instance, the membership service could have

populated the node’s views in such a way that a logical ring or

a binary tree between nodes would emerge. Here, the former

would be less efficient than the latter, because disseminating

a message in a logical ring executes in linear time, whereas

the same task in a binary tree executes in logarithmic time.

The logical graph that emerges from the collection of

the views is known as overlay network. Overlay networks

support a variety of applications and can be optimized for

content dissemination, load balance or fault tolerance. As

expected though, in the design of the overlay, one must make

a compromise between efficiency and dependability. Recalling

the message dissemination example, in order to disseminate a

message even when a fraction of the nodes may have failed,

the system must resort to redundancy, which is costly.

Regarding dependability, it is known that random over-

lay networks, where views are composed of random node

references, are particularly dependable due to their inherent



redundancy. On the other hand, tree-based overlay networks

are known to be very efficient but prone to dependability issues

due to their frailty when exposed to node failure.

In the pursuit of a system design that is both dependable

and efficient, one can resort to a mixed approach. Concretely,

it is possible to deploy, simultaneously, an efficient overlay

network and a more dependable one. The idea is to use the

efficient overlay whenever it is available while, in case of

failure, resort to the less efficient but dependable one. Alas,

this approach comes with additional resource costs as two

overlays must be maintained.

In this paper, we consider this mixed approach and focus

on the dependable overlay used as a safety net. In particular,

we propose a novel, dependable membership service that

autonomously adapts to the deployment environment. The

goal behind our approach is to provide an overlay that is

continuously available, ensuring the system’s dependability,

with minimal resource usage cost. The intuition driving our

design is that, typically, a distributed system instability is not

constant. There are periods of system stability, where nodes

do not fail, and periods of system instability, where nodes fail.

Additionally, instability periods may be of different severity.

Consequently, the dependable overlay network should be able

to adjust its resource usage accordingly.

The main contribution of the paper is BUZZPSS, a depend-

able membership service that automatically adapts its resource

usage according to the system actual stability degree. In a

nutshell, BUZZPSS leverages online learning techniques to

fine tune the rate at which nodes exchange messages with the

peers in their view, such that this rate increases when nodes

are leaving the system, and decreases otherwise.

Our experimental evaluation shows that BUZZPSS is able to

significantly reduce the overall resource usage when compared

with the traditional, static approach. Moreover, we show

that BUZZPSS is able to do so completely autonomously,

dynamically, and with minimal configuration effort.

The rest of the paper is organized as follows. In Section II,

we provide some background and lay down some useful ab-

stractions for the remainder of the paper. Section III describes

the design of BUZZPSS and the intuition that drove it. The

results experimental evaluation are presented in Section IV.

In Section V we present a brief survey of related work and

conclude the paper in Section VI.

II. BACKGROUND

For the purpose of clarity, in this paper, we consider the

following abstraction. We consider a membership service that

provides each node in the system with a list of peer references.

These references abstract the actual physical network and

represent a logical link between nodes and can be typified

as an IP:port pair. It is assumed that these logical links can

be mapped to physical links but how this is achieved is out of

the scope of the present paper.

Additionally, we refer to the list of peer references main-

tained at each node as node view.

As described previously, we focus on partial membership

where views are necessarily small with respect to the system

size. Membership services are also known in the literature as

Peer Sampling Services (PSSs) [1]. As the name suggests, a

PSS implies a continuous sampling activity, which is necessary

for the system to cope with node entrances and departures.

In fact, node views need to be dynamically maintained in

order to reflect such changes in the system configuration. The

way this is achieved is implementation dependent. Different

implementations can offer different properties with respect to

the view characteristics. For instance, some implementations

may ensure that nodes in the view are alive and reachable,

while other may relax those guarantees and simply ensure that

those nodes are alive and reachable with a certain probability.

In the context of the present paper, we are interested in peer

sampling services that ensure connectivity between nodes at

all times. Concretely, we are interested in providing a safety

net membership service to which nodes can always resort

in case other, more efficient, services are not available. Our

main goal is thus to design and implement a dependable

peer sampling service whose resulting overlay network is a

connected graph. By definition, a connected graph is a graph

where there is path between every pair of vertices. In our case,

vertices are nodes and paths represent communication paths.

Consequently, if there is a path between nodes it means that

nodes can communicate with each other.

Different peer sampling services have been proposed in the

literature [2], [3], [4], [5]. However, in this paper, we focus

specifically on Cyclon [3]. The reason behind this decision

is that Cyclon maintains a random overlay network between

nodes. Random overlays are extremely resilient and offer

desirable data dissemination guarantees as well [6], [7].

Cyclon works in two phases. First, it goes through a

bootstrapping process, which can be centrally managed (for

instance, resorting to well-known entry points from which new

nodes can obtain references to other nodes) or rely on random

walks [3]. In either case, the bootstrapping process provides

each node with a list of f nodes randomly sampled from the

entire system (which corresponds to the node’s partial view).

This first phase is only run once at system initialization. The

second phase is run throughout the entire system lifetime. In

this second phase, each node periodically exchanges its view

with other nodes in the system and these periodic information

exchanges allow the protocol to cope with system dynamism.

The PSS proposed in this paper follows the same bootstrap-

ping phase as Cyclon but improves on the exchange phase.

Thus, from this point on, we focus on the latter.

In Cyclon, each node is configured to run its exchange

phase every T units of time. Each exchange works as follows.

Node references in the view are tagged with an age. Such

age is increased by one every T units of time. At each

exchange, nodes choose the oldest node in their view and

send to it their view, replacing the receiver node’s reference

with a self-reference of age 0. Upon the reception of an

exchange message, nodes incorporate the received nodes into

their view replacing the oldest reference with the one with age
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Fig. 1: Gossip period T and message rate that cause the overlay

to break, for churn levels of 2%, 5%, and 10%.

0. Additionally, they reply to the sender with their own view.

The result is a view exchange (or swap) where, from the point

of view of the entire system, views are refreshed and updated.

This way, nodes which are alive refresh their references in

other node’s views and nodes that are no longer active are

eventually removed from every view.

Naturally, the T parameter is of critical importance as it

defines the rate at which the protocol is able to incorporate

system membership changes. A very low T means that nodes

frequently exchange information and adapt quickly to node

entrance and departure. In contrast, high values of T slow

down the adaptation process (an excessively high T may even

lead to graph partitions if the system is under high levels

of node departures). Hence, one can say that peer sampling

services have an inherent trade-off between dependability

and efficiency (in terms of number of messages exchanged).

Figure 1 supports this claim by plotting, for different levels of

churn (namely 2%, 5%, and 10%), the gossip period T and

the message rate that cause the overlay to break. The results

where obtained from simulations of 2000 seconds with 100

nodes (each with a view size of 8), where churn was applied

to the system during the interval [250s, 1500s].
As the data shows, different levels of churn require different

peer sampling rates. For example, with 2% of churn, the

value of T can be safely set below 125s (which is the value

that breaks the overlay), thus yielding a low message rate.

Conversely, for a churn level of 10%, T must to be much lower

(less than 30s) in order to maintain the overlay connected.

Of course, for this latter case, the system will require more

network bandwidth, as the message rate increases.

In the next section, we describe our technique to address

the challenge of finding the value of T that allows the overlay

to be both efficient and dependable, even in the presence of

variable levels of churn.

III. SELF-TUNING PEER SAMPLING

As shown in the previous section, configuring a peer sam-

pling service (PSS) requires judiciously choosing the shuffling

interval T . In fact, this choice corresponds to a non-trivial

trade-off between dependability and efficiency. On one hand,

a short T allows nodes to maintain fresh views (thus ensuring

reliability when nodes leave the network), but implies a large

number of messages being exchanged among the peers. On

the other hand, a long T dramatically reduces the bandwidth

occupation, albeit at the cost of the system’s robustness.

In this section, we describe an adaptive solution, called

BUZZPSS, to tune the shuffling period according to the

system’s status. The underlying intuition is simple: increase

the value of T when the system is stable (i.e., nodes are not

leaving/joining the network), and reduce this value otherwise.

Designing such a self-tuning peer sampling service raises

two main challenges though: i) how to assess the stability

of the system (nodes have to decide on whether to change

the shuffling interval based solely on local knowledge), and

ii) how to define the magnitude of the adjustment of the

gossip period (modifying T by a small amount will not incur

significant efficiency improvements, whereas a coarse-grained

adjustment might prevent the system from converging to a

stable scenario).

We address the first challenge by observing nodes’ average

view age at the beginning of each shuffling period. Each entry

in a node’s view has an age indicating how many intervals have

passed since the moment it was created by the neighbor node

it points at [3]. Nodes that are alive communicate periodically

with each other, sending their IDs with age 0. Hence, the age

of a neighbor provides a rough estimation on whether that node

is alive or not. Moreover, for a stable system, the average age

of a node’s view should remain consistent across time.

BUZZPSS relies on this observation to assess the stability

of the system. Concretely, at the beginning of each shuffling

period, BUZZPSS computes the current average view age and

compares this value to that of the previous iteration. If the

current average age is higher than the previous average age

(within a given limit L), then BUZZPSS decreases T to force

the node to refresh its view at a higher rate. Conversely, if the

current average age is lower than the previous average age,

then BUZZPSS increases T to save network bandwidth.

To address the second challenge, we leverage an online

learning technique similar to gradient descent [8]. Online

learning techniques are appealing for the context of this

work, because they allow finding the shuffling interval that

ensures stability even in the presence of irregular levels

of churn. Moreover, unlike classic, offline machine-learning

techniques [9], [10], online learning does not require any

preliminary training phase nor suffers from overfitting.

In the following, we describe BUZZPSS in detail. We start

by giving an overview of the gradient descent technique. Then,

we show how BUZZPSS uses this method to automatically

tune the length of the gossip period in order to improve band-

width efficiency, without compromising reliability. Finally, we

present an optimization to the base self-tuning algorithm,

which leverages the stability of the system to further save

network bandwidth.

A. Gradient Descent Overview

Gradient descent is a widely used algorithm for function

approximation and is particularly well suited for exploration



problems. In gradient descent methods, one wants to learn

the vector of parameters θ that allow a given approximation

function hθ to better fit a data set. For each observed state

of the system represented by s, a common strategy for the

exploration of θ is to try to minimize the error between the

approximate value given by hθ(s) and the target value y.

Consider the following least-squares cost function that, for

a given value of θ and state s, measures how close hθ(s) is

to the corresponding y:1

J(θ) =
1

2
(y − hθ(s))

2 (1)

The gradient descent algorithm thus consists in adjusting the

estimation of θ after each state observation such that J(θ)
becomes smaller and, hopefully, converges to the minimum.

The update rule of θ at each iteration i is written as follows:

θi+1 = θi − α∇Ji(θ) (2)

where α is the so-called learning rate and ∇Ji(θ) is the gra-

dient of the cost function (i.e., the vector of partial derivatives

of J with respect to θ). This equation is also known as the

Widrow-Hoff learning rule and allows the gradient descent

algorithm to systematically take steps in the direction of the

steepest decrease of J . Also, note that the magnitude of the

update of θ is proportional to the error: for observations on

which the prediction of hθ(s) nearly matches the actual value

of y, there is little need to change the parameters; in contrast,

if the approximation value is far from the target value, θ will

suffer a larger modification.

In the next section, we show how BUZZPSS applies the

gradient descent method to dynamically tune the gossip period

of a peer sampling service.

B. Using Gradient Descent Exploration

BUZZPSS employs gradient descent to adapt T such that

the difference between the average ages of a node’s view,

observed in two consecutive periods, is minimized. Concretely,

at iteration i, BUZZPSS adjusts the length of the gossip period

T using the following update rule:

Ti+1 = Ti − α(curAge − prevAge) (3)

where curAge and prevAge represent, respectively, the current

average view age and the previous average view age of the

node. Although other metrics could have been used, from our

experiments the average view age offers good results as we

will show further on. Notice that T is naturally decreased

(increased) when the view’s current average age is higher

(lower) than the previous average age. This way, BUZZPSS is

able to dynamically adapt the shuffling period to variations in

the node population.

The magnitude of the adjustment is defined by the module of

the error term |curAge − prevAge|, multiplied by the learning

rate. Hence, for gradient descent to be effective, one must

1Since we are interested in performing online learning, our definition of
the cost function J(θ) is only considering a single data point. This data point
corresponds to the system state observed at each iteration.

Algorithm 1: BUZZPSS self-tuning configuration.

Input: learnRate // initial learning rate for gradient descent

T // initial gossip period

minT // minimum value of T allowed

view // node’s partial view

1 // adjust T using gradient descent

2 curAge ← getAverageAge(view)
3 error ← curAge − prevAge

4 tmpT ← T − learnRate × error

5 T ← max(minT, tmpT)

6 // apply bold driver to learning rate

7 if |error| ≤ prevError then
8 learnRate ← learnRate × 1.05 // increase learning rate by 5%

9 else

10 learnRate ← learnRate/2 // reduce learning rate by 50%

11 end

12 prevAge ← curAge

13 prevError ← error
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set the learning rate to an appropriate value, which can be

challenging. Setting α too high may cause the algorithm to

skip the global minimum of J . In turn, if α is too small, the

algorithm will need many iterations to converge.

BUZZPSS addresses this issue by applying a technique

called bold driver [11] to dynamically adapt the learning

rate. Bold driver compares the error rate between consecutive

iterations and, in case the error has reduced, the technique

increases α by a small amount (typically 5%); otherwise,

the technique decreases α drastically (typically by 50%). The

rationale of bold driver is that the farther one is from the

optimal value, the larger the step towards the solution should

be (i.e., the learning rate should be higher). On the other hand,

the closer one is to the solution, the lower the learning rate

should be, in order to avoid skipping the function minimum.

Algorithm 1 describes how BUZZPSS implements the afore-

mentioned procedures. The algorithm starts by computing the

current average view age (line 2) and uses Equation 3 to

compute the new value of T (lines 3-4). BUZZPSS then

checks whether the newly obtained period is higher than the

minimum value allowed, and updates T accordingly (line 5).



Algorithm 2: BUZZPSS self-tuning configuration with

stability reward.

Input: learnRate // initial learning rate for gradient descent

T // initial gossip period

minT // minimum value of T allowed

view // node’s partial view

L // error range within which the system is considered stable

reward // reward value

1 // variable initialization

2 wpos ← 0
3 window[S] ← {True}

4 // in each iteration

5 curAge ← getAverageAge(view)
6 error ← curAge − prevAge

7 if |error| > L then
8 // the system is not stable: adjust T using gradient descent

9 window[wPos%S] ← False
10 tmpT ← T − learnRate × error

11 T ← max(minT, tmpT)

12 // apply bold driver to learning rate

13 if |error| ≤ prevError then

14 learnRate ← learnRate × 1.05 // increase learning rate by 5%

15 else
16 learnRate ← learnRate/2 // reduce learning rate by 50%

17 end
18 prevAge ← curAge

19 prevError ← error

20 else
21 // the system is stable

22 window[wPos%S] ← True
23 isStable ← True
24 for i ← 0; i < S; i++ do
25 isStable ← isStable ∧ window[i]

26 end

27 if isStable then
28 // reward stability by augmenting T

29 T ← T + reward

30 end
31 end
32 wPos ← wPos + 1

It is important to define a minimum interval length for T

to prevent nodes for being constantly exchanging messages

among themselves (which floods the network).

Afterwards, BUZZPSS uses the bold driver technique to

adjust the learning rate (lines 7-11) and, finally, updates the

values of prevAge and prevError for the subsequent iteration

(lines 12-13). It should be noted that Algorithm 1 is performed

by each node individually. Therefore, different nodes may

exhibit different shuffling periods for the same iteration. How-

ever, in a stable system, all nodes are expected to eventually

converge to similar values of T . This behavior can be observed

in Figure 2, which depicts the CDF of T during a stable

period of 100 seconds, for a system with 100 nodes. We used

Algorithm 2 in the experiment and computed the value of T

of each node at every 20-second interval. As expected, the

results show that all nodes exhibit similar values of T , as the

CDF contains short tails.

C. Improving Bandwidth Efficiency by Rewarding Stability

Algorithm 1 allows BUZZPSS to find the gossip period

that yields a consistent average view age across iterations.

However, the value of T to which gradient descent converges

does not guarantee optimality in terms of bandwidth efficiency.

In fact, for a fully stable system (where nodes never leave

the network), T could in theory be set to infinity, as the

connectivity would always be ensured. Naturally, in practice,

this cannot be ensured and T needs a finite upper bound.

To further improve BUZZPSS’s efficiency, we extend Al-

gorithm 1 to leverage stability scenarios. The key idea is to

augment T by a reward amount whenever the average view age

does not exceed a given limit L for S consecutive iterations.

Algorithm 2 describes the optimized version of BUZZPSS.

The algorithm resorts to a sliding window (implemented

as a vector of size S) to check the stability of the system.

All positions are initially set to true (lines 2-3) and, in each

iteration, BUZZPSS updates the head of the window with a

true or false value depending on whether the system is stable

or not, respectively. BUZZPSS evaluates system’s stability

by checking whether the error between the previous and the

current average view age falls within the error limit L (line

7). If the error is higher than L, then the system is considered

unstable (line 9) and BUZZPSS should adjust T using gradient

descent. In other words, BUZZPSS performs Algorithm 1

(lines 8-19). Otherwise, the system is considered stable for

that iteration (line 22).

When BUZZPSS observes S consecutive stable iterations,

it increases T by a reward amount, previously defined. Note

that a single “unstable iteration” suffices for BUZZPSS to stop

conceding rewards for, at least, the next S iterations. This

design choice allows BUZZPSS to react quickly to changes

in the view’s age (typically caused by churn), thus ensuring

robustness in the presence of catastrophic failures.

IV. EVALUATION

Our evaluation of BUZZPSS focuses on answering the two

following questions:

• Dependability: Does BUZZPSS maintain the overlay

connected in the presence of variable levels of churn?

• Efficiency: Does BUZZPSS achieve significant resource

usage savings?

We evaluated BUZZPSS by using the Minha frame-

work [12]. Minha emulates various Java Virtual Machines on

top of a single one, thus making it possible to run multiple

hosts on a single machine. In our case, we conducted the

experiments on an Intel(R) Xeon(R) CPU E5-2670 v3 @

2.30GHz (24 core) machine with 96GB of memory.

Simulations were performed for a population of 100 nodes

with a view size of 8. Each experiment run took 2000 seconds,

where churn was applied every 10 seconds during a given

period of time.

Based on preliminary observations, the configuration of

BUZZPSS is as follows: T was initially set to 5 seconds, minT

to 2 seconds, learnRate to 1 second, reward to 5 seconds,2

2The learnRate was chosen in order to minimize convergence issues during
the initial phase of the algorithm, whereas reward was chosen to rapidly
improve efficiency in stable scenarios. We defer a more thorough sensitivity
analysis of the initial parameters of the system to future work.



the error limit L to 2 (meaning that we consider the system to

be stable if the variation in the average view age between

iterations is less than 2), the sliding window size S to 3

(meaning that reward is given when the system is deemed

stable for 3 consecutive iterations).

We evaluated BUZZPSS on the following scenarios.

• Uniform Churn. We performed three experiments, each

corresponding to a different uniform level of churn,

namely 2%, 5%, and 10%. For each experiment, churn

was applied from second 250 to second 1500. Churn is

implemented by removing a node and adding a fresh

one. The added node is provided with an initial view

of random nodes sampled from the system simulating

a bootstrapping phase. After this bootstrap phase, each

node tags its view nodes with an high age. By high

we mean significantly higher than the expected system

average. This implementation detail allows to accelerate

the incorporation of these nodes in the system and to

trigger the automated peer sampling service adaptation.

Note that considering this high age for the initial view

does not impact the original Cyclon protocol but allows

BUZZPSS to quickly detect system instability.

• Variable Churn. We performed a single test where the

churn level varies along time. In particular, during in-

terval [250s, 550s] we applied churn of 5%; for interval

[800s, 1100s[ we applied churn of 10%; finally, for inter-

val [1100s, 1500s] we applied churn of 30%. Once again,

churn is implemented by replacing a node for a fresh one.

As a remark, notice that between the first two periods of

churn, there was a hiatus of 250 seconds where the system

remained stable. In contrast, between the latter two churn

intervals, churn increased directly from 10% to 30%.

• Catastrophic Failure. We performed a single experiment

where 50% of the system node crashes instantly. The goal

of this scenario is to observe the behavior of BUZZPSS

in the presence of a catastrophic failure, without other

nodes joining the system.

For each scenario, we assessed the dependability and ef-

ficiency of BUZZPSS by, respectively, checking whether the

overlay broke at the end of the experiment and measuring the

length of the gossip period T at every 10-second interval. Ad-

ditionally, we measured the message rate, which is computed

as the mean number of messages exchanged per second in

the entire network, and the average view size across all node

views in the system.

In the following, we present the outcomes of our experi-

ments and discuss the main findings.

A. Uniform Churn

Figure 3 depicts the gossip period and the message rate

exhibited by BUZZPSS for the different scenarios of uniform

churn (i.e., 2%, 5%, and 10%). To assess the benefits of

rewarding stability, we plot the results for both the baseline

version of BUZZPSS, dubbed BUZZPSSGRAD, which solely

uses gradient descent to adapt the value of T (see Algo-

rithm 1), and the extended version of BUZZPSS, dubbed

BUZZPSSREW, which increases T when the system is stable.

In addition, we also illustrate in Figure 3 the gossip period

for which the overlay breaks, denoted TBreak. The TBreak value

was obtained through experiment and represents the minimum

T for which we found the overlay would break. This means

that static configurations with T higher than TBreak, despite

incurring less bandwidth cost, will not ensure connectivity for

the corresponding churn level.

Dependability. For all churn scenarios, both BUZZPSSGRAD

and BUZZPSSREW were able to maintain the overlay con-

nected during the experiment. Interestingly, Figure 3a shows

that 2% churn did not have a significant negative impact on

the network, as some nodes still considered the system to be

stable. This caused BUZZPSSREW to reward stability for those

cases (notice the slight increase of T for BUZZPSSREW).

On the other hand, in Figure 3c, BUZZPSSREW even had

a T above TBreak when the churn started, but our self-tuning

mechanism was able to rapidly detect that some nodes left

the network and adapted the shuffling period to accommodate

for this fact. The average view age variation (Figures 3g-3h)

reflects well BUZZPSS’s self-tuning ability: while, for TBreak,

the average age tends to increase when churn begins (which

will eventually partition the overlay), both BUZZPSS schemes

adapt to a state where the average age remains stable and the

overlay robust. Note that BUZZPSSGRAD shows lower view

age than BUZZPSSREW in Figure 3g because its T is shorter

than that of the latter, which minimizes the impact of churn.

Another observation is that, as expected, the higher the

churn, the quicker is the reduction of T (notice that the slope

of the curve for BUZZPSSREW is steeper in Figure 3c than

in Figure 3a). These results provide evidence to support our

claim that BUZZPSS is effective in adapting T to cope with

the churn level.

Efficiency. Analyzing the message rate of the two BUZZPSS

algorithms, the data shows that BUZZPSSREW is clearly more

efficient than BUZZPSSGRAD. While the latter algorithm ad-

justs T until the average view age remains consistent across

iterations, BUZZPSSREW further reduces the network band-

width usage by attempting to increase the shuffling period

when the system appears to be stable. For instance, at second

250, which corresponds to the end of initial period of stability,

BUZZPSSREW presents a message rate 2.6x smaller than that

of BUZZPSSGRAD (2.6 messages/s against 6.8 messages/s).

At the end of the experiment, BUZZPSSREW achieves an

improvement in efficiency with respect to BUZZPSSGRAD that

is even more significant (up to 5.4x).

Finally, the comparison between BUZZPSS and TBreak

shows that there is still some room for further reduction of

network bandwidth, specially during the churn intervals. The

reason is because BUZZPSS applies a conservative approach:

the difference between the average view age between consecu-

tive iterations must not exceed the allowed limit L, in order to

prevent the overlay from breaking. This approach causes T to

converge to a value that, while ensuring that the average age

falls within the threshold, might not be the highest value that

allows the overlay to remain connected. Finding such optimal
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Fig. 3: Uniform churn. Gossip period (higher is better), message rate (lower is better), and average view age (lower is better)

for three different uniform levels of churn: 2%, 5%, and 10%. BUZZPSSGRAD corresponds to Algorithm 1, BUZZPSSREW

corresponds to Algorithm 2, and TBreak is the gossip period for which the overlay breaks. Both BUZZPSS versions yield a

connected overlay for all scenarios.

value of T is not straightforward and we leave this research

problem for future work.

B. Variable Churn

Figure 4 depicts the gossip period, the message rate, and

the average view age exhibited by BUZZPSS for a scenario

in which the churn level varies along time and interleaves

with intervals of stability. Once again, we plot the results for

BUZZPSSGRAD, BUZZPSSREW, and TBreak. In the following,

we discuss the outcomes of the experiments in terms of

dependability and efficiency.

Dependability. Both BUZZPSSGRAD and BUZZPSSREW
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Fig. 4: Variable churn. Gossip period (higher is better), message rate (lower is better), and average view age (lower is better)

for the scenario with variable churn. BUZZPSSGRAD corresponds to Algorithm 1, BUZZPSSREW corresponds to Algorithm 2,

and TBreak is the gossip period for which the overlay breaks. Both BUZZPSS versions yield a connected overlay.

managed to effectively tune the gossip period and keep the

overlay robust in the presence of the different levels of churn.

Even when 30% of the nodes were replaced every 10 seconds,

BUZZPSS provided a dependable peer sampling service. The

average view age variation (plotted in Figure 4c) corroborates

the effectiveness of the adjustment of the gossip period: the

magnitude of the decrease of T during churn intervals always

allowed the average view age to reach a value that suffices to

cope with the node replacement rate.

Efficiency. As expected, Figure 4 shows once again

that BUZZPSSREW consistently outperformed BUZZPSSGRAD.

However, the figure also shows a (somewhat) surprising out-

come: using BUZZPSSREW resulted in much better network

usage than TBreak (up to 6x less messages exchanged per

iteration). The reason is because TBreak is set statically, hence,

it must correspond to a value that accounts for the potential

highest churn level supported (30% in our experiment). As

a consequence, the system ends up exchanging much more

messages than necessary during periods where the node pop-

ulation changes a smaller rates. In contrast, BUZZPSSREW is

able to adjust the sampling period in real time according to

the needs of the overlay, thus exchanging much less messages

than static configurations.

C. Catastrophic Failure

The results for the catastrophic failure test are depicted in

Figure 5. As it is observable, the massive departure of 50% of

system nodes does not impact the behavior of the membership

service. This is expected and desirable. In fact, even with

50% of nodes failing, the overlay maintains connectivity due

to its randomness characteristics. Moreover, because nodes

continue the view exchange process, failed nodes are quickly

removed from node views not impacting the average view size

(Figure 5c). BUZZPSS leverages such desirable properties and

does not impact them negatively.

Dependability. With this result we show that BUZZPSS still

guarantees dependability, i.e., guarantees connectivity between

all system nodes even when the system suffers from major

failures. Naturally, like every other overlay network BUZZPSS

cannot cope with a major failure that instantaneously breaks

the overlay. If the overlay instantly breaks there is always the

need for external intervention to repair it.

Efficiency. Finally, with respect to efficiency, BUZZPSS

once again allows to save resources when using BUZZPSSREW.

The membership service detects that the system maintains its

desirable characteristics and increases T leading to reduced

message exchanges.
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Fig. 5: Catastrophic failure. Gossip period (higher is better), message rate (lower is better), and average view age (lower

is better) for the scenario with a catastrophic failure (i.e., 50% of the nodes fail instantly). BUZZPSSGRAD corresponds to

Algorithm 1 and BUZZPSSREW corresponds to Algorithm 2. Both BUZZPSS versions yield a connected overlay.

V. RELATED WORK

There is an extensive body of work on PSS algorithms cov-

ering aspects such as topology-awareness [13], security [14]

or slicing [15]. Several approaches explicitly maintain two

overlays with different goals. For instance, HyParView [16]

maintains an overlay with a very large view for robustness

and a small one use exclusively for dissemination. Other

approaches, such as Brisa [17], keep an unstructured overlay

for robustness and build a sub-overlay organized as a tree.

In this paper we focus exclusively on simpler techniques

whose goal is to maintain the safety overlay connected even

in adverse environments.

Generic overlays algorithms such as Cyclon [3] or News-

Cast [18] are a good fit to act as safety overlays as their main

design concern is robustness. For this class of algorithms, a

wide range of trade-offs can be obtained simply by varying

few parameters, as has been shown in [2]. For instance, within

the same implementation one can tune the overlay to have a

better degree distribution (i.e., close to a uniform distribution)

or to be very fast at removing references to failed nodes.

However, to the best of our knowledge, few proposals study

the tuning of the period parameter as a mechanism to provide

new trade-offs. One notable exception is [5], which tunes the

period parameter of NewsCast. The period is adjusted in two

cases: to overcome the effects of message loss and to provide

better samples to an application that requires more samples per

period than the ones available in the view. Another example is

[19], which proposes an adaptive mechanism to tune the rate

of message emission in heterogenous systems. The key idea of

this approach is to disseminate and collect information about

the resources available in the nodes of the view such that every

node can adjust its emission rate according to the amount of

resources available to the neighbor nodes and to the global

level of congestion in the system. As we focus explicitly on a

safety-net overlay, our goal is instead to reduce resource usage

to the minimum while still ensuring connectivity.

Regarding online learning using gradient descent, this ap-

proach has been successfully applied in prior work to design

adaptive systems for other purposes rather than the one pre-

sented in this work. For instance, Tuner [20] exploits gradient

descent and reinforcement learning to adaptively determine

the retry-on-abort policy for hardware transactional memory.

In the context of data analysis, [21] uses gradient descent to

automatically tune the parameters of spectral clustering. The

work in [22] also resorts to this online learning technique to

adjust the parameters of fuzzy logic controllers.

VI. CONCLUSION

In this paper we presented BUZZPSS, an adaptable and de-

pendable peer sampling service. The main goal of BUZZPSS

is to offer a reliable overlay network on which a distributed

system can rely as a safety net. In detail, BUZZPSS is intended

to maintain connectivity between system nodes at all times by



ensuring that there is always a logical path between every

pair of nodes. Additionally, and as the key contribution of the

paper, BUZZPSS is intended to dynamically adapt its resource

usage according to the system stability level.

BUZZPSS is built on top of Cyclon, a gossip-based peer

sampling service. Cyclon is a proactive membership service

that maintains a random overlay network across system nodes.

The intuition behind this approach is twofold. First, random

overlay networks are known to be highly resilient [7], [6].

Second, proactive approaches to fault tolerance are suitable

for scenarios of high instability. This follows from the fact

that proactive approaches take the initiative and continuously

try to repair the system.

Unfortunately, these approaches are resource consuming

and, during periods of system stability, even wasteful. Un-

like traditional proactive approaches, BUZZPSS is fully au-

tonomous and relies on online learning techniques to infer the

stability of the system and adjust the proactive mechanism

action rate accordingly.

We evaluate BUZZPSS on a number of different scenarios

and levels of churn. The results of our experiments show that

our approach is effective and can lead to significant resource

usage savings.

Nevertheless, there are some open research challenges that

we intend to address in the future. First, the current version

of BUZZPSS needs to be parameterized with a maximum

value for T . Without this upper bound, a long period of

stability may lead BUZZPSS to increase T to a value that will

impede the system to detect a sudden period of instability, thus

compromising the dependability of the overlay. To address

this issue, we plan to devise a mechanism to automate the

configuration of the maximum value of T .

Finally, in this paper, we have considered scenarios of

churn where nodes leave and are replaced by new ones,

assuming negligible periods of bootstrapping. Experiments

with a larger number of nodes, different bootstrapping periods,

additional churn patterns, and variable network latency in

a non-simulated setting can lead to additional challenges to

BUZZPSS, which we plan to address in the future.
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lightweight membership service for large-scale group communication,”
International COST264 Workshop on Networked Group Communication,
pp. 44–55, 2001.

[5] N. Tölgyesi and M. Jelasity, “Adaptive peer sampling with newscast,” in
International Euro-Par Conference on Parallel Processing, ser. Euro-Par
’09. Springer-Verlag, 2009, pp. 523–534.
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