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Abstract
The notion of permissiveness in Transactional Memory
(TM) translates to only aborting a transaction when it can-
not be accepted in any history that guarantees correctness
criterion. This property is neglected by most TMs, which,
in order to maximize implementation’s efficiency, resort to
aborting transactions under overly conservative conditions.

In this paper we seek to identify a sweet spot between
permissiveness and efficiency by introducing the Time-Warp
Multi-version algorithm (TWM). TWM is based on the key
idea of allowing an update transaction that has performed
stale reads (i.e., missed the writes of concurrently commit-
ted transactions) to be serialized by “committing it in the
past”, which we call a time-warp commit. At its core, TWM
uses a novel, lightweight validation mechanism with little
computational overheads. TWM also guarantees that read-
only transactions can never be aborted. Further, TWM guar-
antees Virtual World Consistency, a safety property that is
deemed as particularly relevant in the context of TM. We
demonstrate the practicality of this approach through an ex-
tensive experimental study, where we compare TWM with
four other TMs, and show an average performance improve-
ment of 65% in high concurrency scenarios.

Categories and Subject Descriptors D.1.3 [Software]:
Programming Techniques - Concurrent Programming

Keywords Software Transactional Memory; Spurious Abort;
Permissiveness; Multi-Version

1. Introduction
The advent of multi-cores has motivated the research of
paradigms aimed at simplifying parallel programming. Trans-
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actional Memory [18] (TM) is probably one of the most
prominent proposals in this sense. With TM, programmers
are only required to identify which code blocks should run
atomically, and not how concurrent access to shared state
should be synchronized to enforce isolation. TMs guarantee
correctness by aborting transactions that would otherwise
generate unsafe histories [16, 19, 25].

TM implementations achieve this by tracking transpar-
ently which memory locations are accessed by transactions.
This information is then used to detect conflicts, and pos-
sibly abort transactions with the objective of guaranteeing
a safe execution. However, to minimize instrumentation’s
overhead, practical TM implementations suffer of spurious
aborts, i.e. they abort transactions unnecessarily, even when
they did not threaten correctness.

Indeed, existing literature on Software Transactional
Memory (STM) has highlighted an inherent trade-off be-
tween the efficiency of a TM algorithm, and the number
of spurious aborts it produces — the notion of permissive-
ness [17] was proposed precisely to capture this trade-off.
A TM is permissive if it aborts a transaction only when the
resulting history (without the abort) does not respect some
target correctness criterion (e.g., serializability). Achieving
permissiveness, however, comes at a non-negligible cost,
both theoretically [21] and in practice [15]. Indeed, most
state of the art TMs [9, 10, 13, 14] are far from being per-
missive, and resort to concurrency control algorithms that
generate a large number of spurious aborts, but which have
the advantage of allowing highly efficient implementations.

1.1 Problem
To illustrate the problem, consider an example consisting of
a sorted linked-list as shown in Fig. 1. This list is accessed by
update transactions that insert or remove an element, and by
read-only transactions that try to find out if a given element
is in the list. Let us consider three transactions: a read-only
transaction T1 that seeks element D in the list; an update
transaction T2 that inserts item B; and an update transaction
T3 that removes item E. In the figure we also show a possible
execution for the operations of each transaction, and the
corresponding result, in a typical STM.
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Figure 1. Possible executions accessing a sorted list.

One widely used form of reducing spurious aborts is by
serializing a read-only transaction R before any concurrent
update transaction. The intuition is that read-only transac-
tions do not write to shared variables and, consequently, are
not visible to other transactions. Thus T1 is allowed to com-
mit in the example — many STMs skip validation for read-
only transactions at commit-time [10, 13, 14] because they
can be safely serialized in the past.

Let us now consider T3, which is an update transaction
that modifies shared variables. The execution shown for T3

dictates its abort in state of the art, practical STM algo-
rithms, e.g. [9, 13]. To minimize overheads, these algorithms
rely on a simple validation scheme, which allows update
transactions to commit only if they can be serialized at the
present time (6), i.e. after every other so far committed trans-
action. This validation mechanism has been systematically
adopted by a number of STM algorithms (and database con-
currency control schemes [2, 6]), for which reason we refer
it as classic validation rule. In the example, when T3 is val-
idated at commit, the next pointer of element A is found to
have been updated after T3 read it, causing T3 to abort. No-
tice, however, that this abort is spurious, given that T3 could
have been safely serialized “in the past”, namely before T2,
yielding the equivalent sequential history T1 → T3 → T2.

On the other hand, serializing update transactions in the
past is not always possible, as their effects could have been
missed by concurrently committed update transactions. This
would be the case, for instance, if T3 had also attempted to
insert element C, missing the concurrent update of T2 and
overwriting B. In such a scenario, a cycle in the serialization
graph would arise, and T3 could not be spared from abort-
ing. Overall, minimizing spurious aborts, in a practical way,
requires designing algorithms capable of deciding efficiently
(i.e., without checking the full conflict graph) when update
transactions can be serialized in the past.

1.2 Contribution
In this paper we present an algorithm to efficiently tackle the
problem identified above: Time-Warp Multi-version (TWM)
is a multi-versioned STM that strikes a new balance between
permissiveness and efficiency to reduce spurious aborts.

The key idea at the basis of TWM is to allow an update
transaction that missed the write committed by a concur-
rent transaction T ′ to be serialized “in the past”, namely be-
fore T ′. Unlike TM algorithms that ensure permissiveness
[21, 28], TWM exclusively tracks the direct conflicts (more
precisely, anti-dependencies [2]) developed by a committing
transaction, avoiding onerous validation of the entire con-
flicts’ graph. Thus, TWM’s novel validation is sufficiently
lightweight to ensure efficiency, but it can also accept far
more histories than state of the art, efficient TM algorithms
that only allow the commit of update transactions “in the
present” (using the classic validation rule).

Furthermore, our TWM algorithm provides Virtual World
Consistency (VWC) [19], which is a safety criterion that pro-
vides consistency guarantees even on the snapshots observed
by transactions that abort. This means that TWM prevents
typical problems (such as infinite loops and run time excep-
tions) due to observing inconsistent values not producible in
any sequential execution.

We present an extensive experimental study comparing
TWM with four other STMs representative of different de-
signs, guarantees and algorithmic complexities. This study
was conducted on a large multi-core machine with 64 cores
using several TM benchmarks. The results highlight gains up
to 9×, with average gains across all benchmarks and com-
pared TMs of 65% in high concurrency scenarios. The re-
mainder of the paper is structured as follows. In Section 2 we
discuss related work. Then we focus on describing the TWM
algorithm in Section 3. We elaborate on the correctness of
TWM in Section 4 and present our experimental study in
Section 5. We conclude in Section 6.

2. Related Work
The growing interest in TM research has led to the develop-
ment of STMs designed to maximize single-thread perfor-
mance and reduce bookkeeping overhead [9, 10]. As a con-
sequence, these algorithms are optimized for uncontended
scenarios and end up rejecting a large number of serializable
schedules (i.e., producing many spurious aborts). An inter-
esting strategy in STMs has been to reduce spurious aborts
only for read-only transactions. This idea has been formally
characterized as mv-permissiveness [26], and has been used
in both single-versioned [3] and multi-versioned [11, 22, 27]
TM algorithms. Here, we seek to reduce spurious aborts even
further than mv-permissiveness.

Several proposals were designed with the main concern
of reducing spurious aborts, ultimately achieving permis-
siveness [17]. These works target different consistency cri-
teria (serializability, virtual-world consistency, opacity) and
pursue permissiveness using both probabilistic and deter-
ministic techniques. Clearly, these design decisions have
a strong impact on several important details of these al-
gorithms. Nevertheless, it is still possible to coarsely dis-
tinguish them into two classes: i) algorithms [15, 21, 28]



that instantiate the full transactions’ conflict graph and en-
sure consistency by ensuring its acyclicity [25]; ii) algo-
rithms [4, 8, 17] that determine the possible serialization
points of transactions by using time intervals, whose bounds
are dynamically adjusted based on the conflicts developed
with other concurrent transactions. Concerning the first
class of algorithms, which rely on tracking the full conflict
graph, these are generally recognized (often by the same
authors [15, 21]) to introduce a too large overhead to be
used in practical systems. Analogous considerations apply
to interval-based algorithms: as previously shown [17], and
confirmed by our evaluation study, these algorithms have
costly commit procedures, which hinder their viability in
various practical scenarios.

The TWM algorithm leverages on the lessons learnt
from prior art and identifies a sweet spot between efficiency
(i.e., avoiding costly bookkeeping operations) and the ability
to avoid spurious aborts: (1) TWM deterministically accepts
many common patterns rejected by practical TM algorithms,
by tracking only direct conflicts between transactions; and
(2) it exploits multi-versioning to further reduce aborts and
achieve mv-permissiveness.

TWM also shares commonalities with SSI [7], a tech-
nique that enhances snapshot isolation [5] DBMSs to pro-
vide serializability. In particular, both schemes track direct
(anti-dependency [2]) conflicts between transactions to de-
tect possible serializability violations. However, the two al-
gorithms differ significantly both from a theoretical and a
pragmatic standpoint. First, unlike TWM, SSI does not en-
sure mv-permissiveness (i.e., SSI can abort read-only trans-
actions). Further, SSI was designed to be layered on top, and
guarantee interoperability with, a snapshot isolation concur-
rency control mechanism designed to operate in disk-based
DBMS environments. Hence, SSI relies on techniques (e.g.,
a global lock-table that needs to be periodically garbage col-
lected to avoid spurious aborts) that would have an unbear-
able overhead in a disk-less environment, such as in TM.

Finally, TWM draws inspiration from Jefferson’s Virtual
Time and Time-Warp concepts [20], which also aim at de-
coupling the real-time ordering of events from their actual
serialization order. In Jefferson’s work, however, Time-Warp
is used to reconstruct a safe global state. In TWM, instead,
the time-warp mechanism injects “back in time” the versions
produced by transactions that observed an obsolete snapshot
(to avoid aborting them).

3. The TWM algorithm
Before presenting TWM we introduce preliminary notations.

3.1 Preliminary Notations and Assumptions
As in typical Multi-Version Concurrency Control (MVCC)
schemes, TWM maintains a set of versions for each data
item k. We refer to data items as variables. A history
H(S,�) over a set of transactions S consists of two parts:

a partial order among the set of operations generated by the
transactions in S and a version order,�, that is a total order
on the committed versions of each k.

We denote with DSG(H) a Direct Serialization Graph
over a history H, i.e., a direct graph containing: a vertex
for each committed transaction in H; an edge from a vertex
corresponding to a transaction Ti to a vertex corresponding
to transaction Tj , if there exists a read/write/anti-dependency
from Ti to Tj . These edges are labelled with the type of
the dependency: (1) A wr−−→ B when B read-depends on A
because it read one of A’s updates; (2) A ww−−→ B when B
write-depends on A because it overwrote one of A’s updates;
(3) A rw−−→ B when B anti-depends on A because A read a
version of a variable for which B commits a new version.

Throughout the description of the algorithm we consider
a model with strong atomicity [1]. Considering weak atom-
icity in multi-versioned TMs is an issue largely orthogonal to
the focus of this paper (reducing spurious aborts), and there-
fore we assume that all accesses to shared variables are trans-
actional and governed by the TM algorithm to ease presen-
tation. We also assume that transactions are statically identi-
fied as being read-only. Dynamic, or compiler-assisted, iden-
tification of such transactions may be used to this purpose,
and is also orthogonal to this work.

3.2 Algorithm Overview
Typical MVCC algorithms [6] allow read-only transactions
to be serialized “in the past”, i.e., before the commit event
of any concurrent update transaction. Conversely, they seri-
alize an update transaction T committing at time t “in the
present”, by: (1) ordering versions produced by T after all
versions created by transactions committed before t; (2) per-
forming the classic validation, which ensures that the snap-
shot observed by T is still up-to-date considering the updates
generated by all transactions that committed before t. We
note that this approach is conservative, as it guarantees se-
rializability by systematically rejecting serializable histories
in which T might have been safely serialized before T ′.

The key idea in TWM is to allow an update transaction
to sometimes commit “in the past”, by ordering the data ver-
sions it produces before those generated by already commit-
ted, concurrent transactions. In this case we say that T per-
forms a time-warp commit. An example illustrating the ben-
efits of time-warp commits is shown in Fig. 2(a): by adopting
a classic validation scheme, B would be aborted because it
misses the writes issued by the two concurrent transactions
A1 and A2; however, B could be safely serialized before
both transactions that anti-depend on it, which is precisely
what TWM allows for, by time-warp committing B.

To implement the time-warp abstraction efficiently, TWM
orders the commit events of update transactions according to
two totally ordered, but possibly diverging, time lines. The
first time line reflects the natural commit order of trans-
actions (or, briefly, commit order), which is obtained by
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Figure 2. Example histories. The edges are labelled according to the operations they connect.

monotonically increasing a shared logical (i.e., scalar) clock
and assigning the corresponding value to each committed
transaction. TWM uses this time line to identify concur-
rent transactions and to establish the visible snapshot for a
transaction upon its start. The actual transaction serialization
order (and hence the version order) is instead determined by
means of a second time line, which reflects what we call
the time-warp commit order and that diverges from natu-
ral commit time order whenever a transaction performs a
time-warp commit. TWM keeps track of the two time lines
by associating each version of a variable with two times-
tamps, namely natOrder and twOrder, which reflect, re-
spectively, the natural commit and the time-warp commit
order of the transaction that created it.

We denote as N (T ), resp. T W(T ), the function (having
the set of transactions that commit inH as domain, and N as
co-domain) that defines the total order associated with the
natural, resp. time-warp, commit order. Further, we write
T ≺N T ′, resp. T ≺TW T ′, whenever N (T ) < N (T ′),
resp. T W(T ) < T W(T ′).

We start by discussing how to determine the serialization
order of transactions that perform a time-warp commit. Next
we describe the transaction validation logic. Finally, we ex-
plain how read and write operations are managed.

Time-warp Commit: TWM establishes the time-warp order
of a committed update transaction B (T W(B)) as follows:

Rule 1. Consider that B misses the writes of a set of com-
mitted transactions AS that executed concurrently with B
(i.e., the transactions in AS anti-depend on B). Let A be the
first transaction in AS according to the natural commit order.
Then T W(B) = N (A), which effectively orders B before
the transactions in AS , namely those whose execution B did
not witness. The versions of each variable updated by B are
timestamped with T W(B) and added to the versions’ list
according to the time-warp order.

The above rule is exemplified by the history illustrated
in Fig. 2(a): as both A1 and A2 perform a regular commit,
their time-warp order T W and natural commit order N
coincide; conversely, as B time-warp commits due to anti-
dependency edges developed towards A1 and A2, then B
is serialized by TWM before A1 (which commits before

A2 according to N ), and is assigned a serialization order
T W(B) = N (A1) = 1.

Validation Rule: As we will see shortly, the version visi-
bility rule of read-only transactions ensures that these can
always be correctly serialized, without the need for any vali-
dation phase. Update transactions, conversely, undergo a val-
idation scheme that aims at detecting a specific pattern in the
DSG, named triad. A triad exists whenever there is transac-
tion T that is both the source and target of anti-dependency
edges from two transactions T ′ and T ′′ that are concurrent
with T (where, possibly, T ′ = T ′′). We call T a pivot, and
define the TWM validation scheme as follows:

Rule 2. A transaction fails its validation if, by committing,
it would create a triad whose pivot time-warp commits.

In other words, TWM deterministically rejects schedules
in which two conditions must happen: 1) a pivot transaction
T misses the updates of a concurrent transaction T ′; and
2) a concurrent transaction T ′′ (possibly T ′) misses in its
turn the updates of the pivot transaction T . Note that the
first condition corresponds to the classic validation rule, and
that the second condition (which restricts the set of histories
rejected by TWM) is what allows to reduce spurious aborts
with respect to state of the art STMs.

Fig. 2(c) exemplifies Rule 2: when B is validated during
its commit phase, TWM detects that B is the pivot of a
triad including also A and C, and it would have to time-
warp commit before A. Consequently, B is aborted; this
history is indeed non-serializable. Note that B reaches that
conclusion by checking solely the direct anti-dependencies it
developed, hence avoiding expensive checks for cycles in the
entire DSG. Moreover, a pivot must be an update transaction
because a read-only transactions is never the target of an
anti-dependency.

Read and Write operations: It remains to discuss how
TWM regulates the execution of read and write operations.
Write operations are privately buffered during transaction’s
execution phase, and are applied only at commit time, in
case the transactions is successfully validated. To determine
which versions of a variable a transaction should observe,
TWM attributes to a transaction, upon its start, the current
value of the shared logical clock. We call this value the start



of a transaction (S(T )). TWM uses distinct version visibility
rules for read-only and update transactions:

Rule 3. If a read-only transaction T issues a read operation
on a variable x, it returns the most recent version of x (ac-
cording to the time-warp order) created by a transaction T ′,
such that T W(T ′) ≤ S(T ). If T is an update transaction,
it is additionally required that N (T ′) ≤ S(T ). This pre-
vents update transactions from observing versions produced
by concurrently time-warp committed transactions.

The rationale underlying the choice of using different vis-
ibility rules for read-only and update transactions is of per-
formance nature. TWM is designed to guarantee that read-
only transactions are never aborted. As a consequence, in or-
der to preserve correctness, TWM must ensure that the snap-
shot observed by a read-only transaction T includes all trans-
actions serialized before T , including time-warp committed
ones (see transaction C in Fig. 2(b)). The trade-off is that, in
order to be sheltered from the risk of abort, a read-only trans-
action T must perform visible reads to ensure that concurrent
update transactions can detect anti-dependencies originating
from T (necessary to implement Rule 2). Fig. 2(c) shows a
scenario in which the read-only transaction C commits and,
using visible reads, allows pivot B to detect a potential vio-
lation of Rule 2, and, hence, to abort.

On the other hand, adopting visible reads for update trans-
actions would not render them immune to aborts. Hence,
TWM spares them from the cost of visible reads during their
execution. Conversely, TWM adopts a lightweight approach
ensuring that the snapshot visible for an update transaction T
is determined upon its start, and prevent it from reading ver-
sions created by concurrent transactions that time-warped.
This guarantees that the snapshot observed by T is equiva-
lent to one producible by a serial history defined over a sub-
set of the transactions inH, even if T aborts.

Struct Attribute Description

Var readStamp ts of globalClock when this Var was last read
latestVersion pointer to the most recent Ver of this Var

Ver

value the value of the version
natOrder ts of the natural commit order of the version
twOrder ts of the time-warp order of the version

nextVersion pointer to the version overwritten by this one

Tx

writeTx false when this Tx is identified as read-only
readSet not used in read-only Tx
writeSet not used in read-only Tx

start ts of the globalClock when this Tx started
source true when another tx anti-depends on Tx
target true when Tx anti-depends on another tx

natOrder ts of the natural commit order of this Tx
twOrder ts of the time-warp order of this Tx

Table 1. Data structures used in TWM (ts = timestamp).

3.3 Pseudo-Code Description
The pseudo-code of the TWM algorithm is reported in
Algs. 1 and 2. In Table 1 we describe the metadata used
in the pseudo-code for ease of readability.

Any transaction tx starts by reading the global logical
clock (globalClock), which defines S(tx). In the READ op-
eration we first check for a read-after-write. Otherwise, if
the reader is a read-only transaction, it invokes function
SEMIVISIBLEREAD in line 10. For a practical implementa-
tion we used a scalar for each variable (attribute readStamp).
This scalar represents the latest global clock at which some
transaction read the variable. This corresponds to a semi visi-
ble read scheme, as we do not track individually each reader
as other more onerous approaches [4, 15, 17, 21]. To con-
clude the read operation, we iterate through the versions
ordered by T W until a condition is satisfied that reflects
Rule 3.

TWM avoids any validation for read-only transactions.
For update transactions, the COMMIT function starts by val-
idating the writes and reads as per Rule 2. When validat-
ing a write (function HANDLEWRITE) we first lock the vari-
able and then verify if there existed a concurrent transaction
that read any of the variables written by tx, meaning there is
an anti-dependence from that reader to tx. When validating
a read (function HANDLEREAD) we make the visible read
(line 47). Then tx is said to be the source of an edge if tx
read a variable and there exists a version for it that was com-
mitted after tx started. This means that such version was
not in the snapshot of tx and thus an anti-dependency ex-
ists from tx to the transaction (say B) that produced that
version. In such case, tx tries to time-warp commit and se-
rialize before B. In the case that B had set its source flag
during its previous commit, then tx now fails to commit (as
exemplified in Fig. 2(d) with transaction C conducting the
validation). In that case, note that B had time-warp com-
mitted, so if tx now committed as well, B would become a
pivot breaking Rule 2. This check is also performed for up-
date transactions during the read operation (line 16) in order
to early abort them.

Also note that each anti-dependency, of which tx is
the source, is stored locally during the commit procedure
(line 54). This is used to implement the time-warp commit
according to Rule 1 (see line 69). At this point tx aborts only
if it raised both flags (source and target in line 64 and ex-
emplified by Fig. 2(c) with B conducting the validation).
Otherwise, N (tx) is computed by atomically incrementing
the global clock and reading it. The new writes are com-
mitted and stamped with both T W(tx) (as its version) and
N (tx) (as the time at which it was created). Function CRE-
ATENEWVERSION places each committed write in the list
of versions by using T W(tx) to establish the order. Because
this order is non-strict, there may occur time-warp clashes
between transactions, i.e., A =TW B. For a set of trans-
actions that time-warp clash and write to the same variable



Pseudo-code 1 of TWM (1/2).
1: BEGIN(Tx tx, boolean isWriteTx):
2: tx.start← globalClock . corresponds to S(tx)
3: tx.writeTx← isWriteTx

4: READ(Tx tx, Var var):
5: if tx.writeTx then
6: if ∃ ‹var, value› ∈ tx.writeSet then
7: return value . tx had already written to var
8: tx.readSet← tx.readSet ∪ var . performed by update txs
9: else

10: SEMIVISIBLEREAD(tx, var, globalClock) .read-only txs
11: . ensure a concurrent committer sees the visible read
12: wait until not locked(var)
13: Ver version← var.latestVersion
14: while (version.twOrder > tx.start) ∨ . rule 3 for read-only tx

(tx.writeTx ∧ version.natOrder > tx.start) do . write tx
15: if (tx.writeTx ∧ version.natOrder 6= version.twOrder) then
16: abort(tx) . early abort update tx due to rule 2
17: version← version.nextVersion
18: return version.value

19: SEMIVISIBLEREAD(Tx tx, Var var, long ts):
20: do
21: long lastRead← var.readStamp
22: while lastRead < ts ∧ CAS(var.readStamp, lastRead, ts) = failed

23: WRITE(Tx tx, Var var, Value val):
24: tx.writeSet← (tx.writeSet \ ‹var, _› ) ∪ ‹var, val›

25: CREATENEWVERSION(Tx tx, Var var, Value val):
26: Ver newerVersion← ⊥
27: Ver olderVersion← var.latestVersion
28: while tx.twOrder < olderVersion.twOrder do
29: newerVersion← olderVersion
30: olderVersion← olderVersion.nextVersion
31: if tx.twOrder = olderVersion.twOrder then
32: return . no tx will ever read this value, skip it
33: Ver version← ‹val, tx.natOrder, tx.twOrder, tx, olderVersion›
34: . insert according to time-warp order...
35: if newerVersion = ⊥ then
36: var.latestVersion← version . ...as the latest version
37: else
38: newerVersion.nextVersion← version . ...or as an older version

k, CREATENEWVERSION keeps only the update to k of the
transaction T that has the least value for N (the other trans-
actions execute line 32). In other words, the transactions in a
time-warp clash are serialized in the inverse order ofN , be-
cause the one that happened earlier according to the natural
commit order was missed by all others in the clash.

3.4 Garbage collection, privatization and lock-freedom
Garbage Collection: The time-warp commit mechanism
does not raise particular issues for the garbage collection of
versions. Indeed, it can rely on standard garbage collection
algorithms for MVCC schemes that maintain any version
that can possibly be read by an active transaction (as in
different implementations in [14, 22, 27]). The key idea
of those algorithms is the following: assume that T is the
oldest active transaction, with S(T ) = k; then versions up

Pseudo-code 2 of TWM (2/2).
39: HANDLEWRITE(Tx tx, Var var): . check if tx is the target of an edge
40: lock(var)
41: . lines 10, 12 and 40 ensure readers are visible to tx or blocked
42: if var.readStamp ≥ tx.start then
43: . detect concurrent transactions that read var
44: tx.target← true

45: HANDLEREAD(Tx tx, Var var): . check if tx is the source of an edge
46: . tx can now do visible reads without affecting its validation
47: SEMIVISIBLEREAD(tx, var, globalClock)
48: wait until not locked(var) by tx′ 6= tx
49: . check writes committed concurrently to tx’s execution
50: Ver version← var.latestVersion
51: while version.natOrder > tx.start do
52: if version.natOrder 6= version.twOrder then
53: abort(tx) . rule 2
54: tx.antiDeps.add(version.natOrder) . used to compute T W(tx)
55: tx.source← true
56: version← version.nextVersion

57: COMMIT(Tx tx):
58: if !tx.writeTx then
59: return . read-only txs never abort
60: . check for rw edges from/to concurrent txs
61: ∀var ∈ tx.writeSet do: HANDLEWRITE(tx, var)
62: ∀var ∈ tx.readSet do: HANDLEREAD(tx, var)
63: if tx.target ∧ tx.source then
64: abort(tx) . rule 2
65: tx.natOrder← incAndFetch(globalClock) . computeN (tx)
66: if (tx.antiDeps = ∅) then
67: tx.twOrder← tx.natOrder . T W(tx) = N (tx)
68: else
69: tx.twOrder←min(tx.antiDeps) . compute T W(tx)
70: ∀ ‹var, value› ∈ tx.writeSet do:
71: CREATENEWVERSION(tx, var, value)
72: releaseLock(var)

to (and excluding) k can be garbage collected — note that
the newest version is preserved regardless of this condition.

One may argue that a problematic scenario may arise if
some update transaction U time-warp committed such that
T W(U) < k. For that to happen, there must exist some
transaction Z concurrent with U such that: U rw−−→ Z and
N (Z) < k. But this is impossible because we assumed
that T was the oldest active transaction, so Z could not be
concurrent with U and obtain natural commit order k.

Privatization Safety: Recall that, in our assumptions, we
precluded non-transactional accesses to simplify presenta-
tion. However, another relevant concern is that of privati-
zation safety [23]. This implies that a transaction P should
be able to safely make some shared data only available to
it (privatizing it) and work on it without transactional barri-
ers. The challenge here is to ensure that the thread execut-
ing P and concurrent transactions do not interfere with each
other. However, similarly to the concern of garbage collec-
tion, time-warping does not present additional challenges to
privatization. Existing approaches to support privatization,
in fact, are based on the notion of quiescence, which forces



privatizing transactions to wait for concurrent transactions to
finish [22] (using, if possible, explicitly identified privatizing
operations to minimize waiting). These techniques suffice to
ensure that, once a privatizing transaction P has committed,
no transaction can time-warp commit and serialize before P .

Lock-Freedom: Finally, recent work has motivated the
adoption of lock-free synchronization schemes to obtain
maximum scalability [14, 17], for which reason in the pro-
totype implementation we have used the lock-free commit
procedure of [14]. As this concern is orthogonal to our focus,
we preserved a simpler presentation with locks, and delegate
additional details to our technical report [12].

4. Correctness Arguments
In this section we provide arguments on the correctness of
the TWM algorithm. We begin by discussing the serializ-
ability of committed transactions in TWM, by showing that
the serializability graph of histories accepted by the TWM
algorithm is acyclic.Next, we discuss the consistency guar-
antees provided also to non-committed transactions, namely
Virtual World Consistency [19].

4.1 Rejecting Non-Serializable Histories
To prove serializability, we first define a strict total order
(O) on the transactions in the committed projection of H
(noted H|C), and then we show that any edge between two
transactions in DSG(H|C) is compliant with O. The strict
total order O is obtained from the non-strict total order
defined by T W , which we recall can have ties in presence of
time-warp clashes, breaking ties as follows. We order update
transactions in O using the time-warp order and, whenever
there is a time-warp clash, i.e., A =TW B, we use the
natural commit order N as a tie breaker and serialize B
before A inO iff A ≺N B. This results in a strict total order
becauseN defines a strict total order as well. Any read-only
transaction T is serialized in O according to S(T ), which
surely makes them coincide with some update transaction in
O. To tie-break, we place the read-only transactions always
later than coinciding update transactions in O. If two read-
only transactions obtain the same value (because they started
on the same snapshot), any deterministic function suffices
as a tie break (for instance, the identifier of the thread that
executed the transaction).

In order to prove the acyclicity of DSG(H|C), we show
that for any committed transactions A and B such that A ≺O
B, there cannot be any edge from B to A in the DSG. We
prove this claim by contradiction, considering individually
each type of edge. First, let us assume that B ww−−→ A ∈
DSG(H|C). According to function CREATENEWVERSION
this is possible iff B ≺TW A. This, however, contradicts the
assumption A ≺O B, because it implies that A 4TW B.

Now let us consider that B wr−−→ A. First suppose that A
is an update transaction. Then, according to line 14, A can
read a version created by B iff N (B) ≤ S(A). However,

the time-warp commit timestamp of a transaction is always
less or equal than its natural commit timestamp (T W(B) ≤
N (B)); also, an update transaction A can only time-warp
due to concurrent transactions, meaning they commit af-
ter S(A) and thus S(A) < T W(A). Hence, we obtain
T W(B) ≺ T W(A), contradicting the initial assumption.
Now consider that A is a read-only transaction. Then, ac-
cording to line 14, A can read a version created by B (con-
current with A’s execution) iff T W(B) ≤ S(A). Given
that A is a read-only transaction, T W(A) = S(A), hence
T W(B) ≤ T W(A). The case T W(B) < T W(A) clearly
contradicts the initial assumption. If T W(B) = T W(A),
then we note that A is a read-only transaction that clashes
with B; according to the rules we used to derive O then A
is ordered after B in O, which again contradicts the initial
assumption (A ≺O B).

Finally we consider that B
rw−−→ A. First assume that

B is a read-only transaction. Then the version written by
A is not visible to B iff S(B) < T W(A). But since B
is read-only, then S(B) = T W(B), and we once again
contradict the initial assumption. Assume now that B is an
update transaction, for which we have two possible cases
depending on whether B commits before or after A in the
natural commit order. Consider the first case where B ≺N
A. Then B performs some visible read in line 47; later
A triggers the condition in line 42 and sets A.target ←
true. Consequently A cannot time-warp commit or else both
target and source flags would be true and A would abort
in line 64. Then T W(B) < N (A) = T W(A), which
is a contradiction with the initial assumed order. Lastly,
consider the second case where A ≺N B. Then B triggers
the condition in line 51. If A time-warp commits, then B
aborts in line 53. Otherwise, B adds A to it’s antiDeps set
which results in T W(B) ≤ (N (A) = T W(A)) (according
to line 69). The case where B ≺TW A trivially violates
our assumption. The tie-break in the time-warp clash, where
B =TW A, is broken in the inverse natural commit order
(recall A ≺N B), which also contradicts the assumption.

4.2 Virtual World Consistency
So far we have argued that TWM ensures serializability for
committed transactions. But running (or already aborted)
transactions are equally important in TWM because certain
phenomena must be prevented with regard to them [16, 19].
If a transaction executing alone is correct, then it should be
correct when faced with concurrency under a TM algorithm.
This translates to a sense of consistency sufficiently strong
in which hazards, such as infinite loops or divisions by zero,
are avoided — this is considered an imperative requirement
in TM algorithms [10, 16] and it is guaranteed by Virtual
World Consistency [19].

VWC is a correctness criterion stronger than serializabil-
ity, as it prevents transactions from observing snapshots that
cannot be generated in any sequential history. Besides se-



rializability for committed transactions, VWC also requires
that, for every aborted or running transaction T , there is a
legal linear extension of partial order past(T), where past(T)
is obtained from the sub-graph of DSG(H) containing all the
transactions on which T transitively depends, and removing
any anti-dependencies. A legal linear extension of past(T) is
a linear extension Ŝ(T ) of past(T) where every transaction
T ′ ∈ past(T ) observes values written by the most recent
transaction that precedes T ′ in Ŝ(T ).

Recall that we have argued the absence of cycles in
DSG(H|C). Note that past(T) is a subgraph of DSG(H),
on which non-committed transactions are also considered;
but they must be sinks in that subgraph (because anti-
dependencies are removed) and thus we also argue that
past(T) is also acyclic. It then follows that a linear extension
Ŝ(T ) of past(T) must exist. Ŝ(T ) is legal because transac-
tions read the most recent version committed according to
T W (see line 14). But, since past(T) respects the T W or-
der, we get that T must be legal and so we argue that TWM
provides VWC.

Another similar, albeit stronger, correctness criterion is
that of opacity. In the following we discuss why TWM does
not guarantee opacity [16], and then explain how TWM
might be adapted to ensure this property. Briefly, the opacity
specification requires 2 properties: O.1) the existence of an
equivalent serial history HS that preserves the real-time or-
der of H; O.2) that every transaction in HS is legal. TWM
does respect property O.1 (not shown here for space con-
straints). Concerning property O.2, we note that two concur-
rent transactions R and W can perceive two different serial-
ization orders — this is a consequence of the different ver-
sion visibility conditions in line 14 according to the nature
of the transaction. These two orders, denoted respectively
as HR

S and HW
S for transactions R and W , exist in case a

third concurrent transaction A time-warp commits before R
and W . In this case, A may be included in HR

S but not in-
cluded inHW

S . But then, in such case, TWM would abort W
due to line 53, thus not endangering serializability. Then, this
makes HW

S a legal sequential history, but it is incompatible
with the serial history equivalent toH, which we denoted as
HS . This is why TWM does not abide by property O.2.

We stress that the fact thatHR
S andHW

S may not be com-
patible is acceptable by VWC. This is because any transac-
tion in HW

S that is not compatible with HS aborts, and in
VWC aborted transactions can observe legal linear exten-
sions of different causal pasts. We also remark that it would
be indeed relatively straightforward to adapt TWM to en-
sure property O.2, and hence opacity: it would be sufficient
to homogenize the logic governing the execution of read op-
erations for both read-only and update transactions, allow-
ing update transactions to observe the snapshots generated
by concurrent transactions and forcing them to use visible
reads, just like read-only transactions. As discussed in Sec-
tion 3, the choice of using non-visible reads for update trans-

actions is motivated by performance considerations. Indeed,
by adopting VWC rather than opacity as reference correct-
ness criterion, it is possible to maximize its efficiency via
lightweight conflict tracking mechanisms, while still pro-
viding robust guarantees concerning the avoidance of unex-
pected errors due to inconsistent/partial reads.

5. Evaluation
In this section we experimentally evaluate the performance
of a Java-based implementation of TWM. To access its
merit, we compare it with four other STMs representative
of different designs: (1) JVSTM [14] is multi-versioned
and guarantees abort-freedom for read-only transactions; (2)
TL2 [10] is a simpler TM based on timestamps and locks; (3)
NOrec [9] uses a single word for metadata (a global lock),
thus being even simpler than TL2; and (4) AVSTM [17] is
also single-version, but on top of that it is also probabilisti-
cally permissive with regard to opacity. This allows to con-
trast TWM directly against a different design that minimizes
spurious aborts (AVSTM); against TMs representative of
single-thread efficient designs (TL2 and NOrec); and against
a multi-versioned TM (JVSTM). Note that both JVSTM and
AVSTM are lock-free (similarly to our prototype of TWM,
as mentioned in Section 3.4), whereas TL2 and NOrec are
lock-based. Finally, TWM and AVSTM exploit alternative
mechanisms to validate transactions, whereas the others rely
on the classic validation.

We used Java implementations for all the STMs, by ob-
taining the code for JVSTM from its public repository, TL2
and NOrec from their respective ports to the Deuce frame-
work, and by porting AVSTM to Java. All implementations
were modified to share a common interface that uses man-
ual instrumentation relying on a concept similar to that of
VBoxes [14]. This means that the benchmarks were manu-
ally instrumented to identify shared variables and transac-
tions, resulting in an equal and fair environment for com-
parison of all TMs. We also identified read-only transac-
tions in the benchmarks, and allowed implementations to
take advantage of this when possible. This means that TWM,
JVSTM and TL2 do not maintain read-sets for such transac-
tions and their commit procedure needs no validation. NOrec
requires the read-set for re-validation of a transaction T
when the global clock has changed, and AVSTM requires
it for an update transaction T that is committing to update
the validity interval of concurrent transactions T ′ that read
items committed by T .

In the following experimental study we seek to answer the
following questions: (1) What is the performance difference
of TWM to each of the other design class of STM? (2) Where
does the difference in performance come from? (3) What is
the overhead in reducing aborts with respect to the classic
validation?

To answer the above questions, we conducted experi-
ments on a variety of benchmarks and workloads. We first



present results with a classic micro-benchmark for TM,
namely Skip List. Then, we consider the more complex
and realistic benchmarks from the STAMP suite [24]1.
STAMP contains a variety of transactions, with different
sizes and contention levels. However, contrarily to the Skip
List micro-benchmark, STAMP does not have read-only
transactions, which is a disadvantage to multi-version TMs.
The following results were obtained on a machine with four
AMD Opteron 6272 processors (64 total cores), 32GB of
RAM, running Ubuntu 12.04 and Oracle’s JVM 1.7.0_15
and each data point corresponds to the average of 10 exe-
cutions. Finally, we use the geometric mean when we show
averages over normalized result and use as abort rate metric
the ratio of number of restarts to the number of executions
(encompassing committed and restarted transactions).

5.1 Skip List
We begin by studying the behavior of time-warping in a tra-
ditional data-structure. As described in Section 1.1, concur-
rent traversals and modifications in data-structures, such as
a skip-list, are perfect examples of the advantages of time-
warping: a transaction T1 modifying an element near the end
of the list need not abort because a concurrent transaction T2

modified an element in the beginning of the list and commit-
ted; TWM can automatically, and safely, commit T1 before
T2, whereas classic validation precludes the commit of T1.

For this micro-benchmark we used the source code avail-
able in the IntSet benchmark in the Deuce framework. We set
up the skip-list with 100 thousand elements and 25% update
transactions that either insert or remove an element. Fig. 3(a)
shows the scalability results for this workload, where TWM
performs best after 16 threads, and below that is compet-
itive with the other TMs. At 64 cores TWM achieves the
following speedups: 2.8× for TL2; 9.4× for NOrec; 4.3×
for JVSTM; and 1.8× for AVSTM. It is actually interest-
ing to assess that, at a low thread count, NOrec performs
best. However, this difference quickly fades at a low thread
count and its performance plunges due to the overly pes-
simistic validation procedure — this is visible on Fig. 3(b)
where its abort rate quickly grows to approximately 70%.
Note that JVSTM’s update transactions incur in a significant
cost due to the multi-version maintenance — this cost is am-
plified by the non-negligible percentage of update transac-
tions, which have no advantage in the availability of multi-
versions. TWM, instead, takes advantage of multi-versions
even for update transactions due to time-warping.

Overall, as we can see in Fig. 3(b), the source of our gains
is two-fold: TWM clearly aborts much less transactions than
classic validation TMs; on the other hand, despite TWM
aborting slightly more than AVSTM, it introduces a much
lower overhead, as we will discuss in detail next.

1 Additional experiments are available in our technical report [12].
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Figure 3. SkipList with 25% modifications.

5.2 Overhead Assessment
To better understand the nature of each design, we conducted
worst-case experiments to assess the cost of reducing spu-
rious aborts. We first conducted an experiment with two
shared variables, both incremented once by every transac-
tion, to create a scenario with very high contention, whose
conflict patterns cannot be accommodated by the TWM al-
gorithm (as well as by the other considered TMs).

We can see the throughput for this experiment in Fig. 4(a),
where the slowdown of TWM is comparable to that of
JVSTM and TL2, being 7% and 12% worse with respect
to those two TMs. Both AVSTM and NOrec perform worse
beyond 8 threads due to the internal validation procedures
— we shall see this in detail next.

We also modified the SkipList micro-benchmark to have
each thread modify an independent skip-list. Consequently,
no transaction ever runs into conflicts, although they still
activate the validation procedures as every transaction per-
forms some writes. The results of this experiment are shown
in Fig. 4(b). As expected, every TM is able to scale as this
scenario is conflict-free. Moreover, the relative trends are
consistent with those observed for the highly-contended sce-
nario with the shared counters.

To better understand the previous results, we instru-
mented the prototypes to collect the time spent by trans-
actions on each phase of the TM algorithm. Fig. 4(c) shows
the results relative to the previous experiment. We consid-
ered four different phases: the read corresponds to time spent
in read barriers; readSet-val and writeSet-val are the val-
idations conducted by the transaction, including those at
a commit-time and when executed during the transaction
execution in the case of NOrec — note that the write-set
validation only exists in the case of TWM and AVSTM; and
finally commit corresponds to the rest of the time spent in the
commit phase (for instance, writing-back, or helping other
transactions in the case of lock-free schemes).

In this plot, we see that the commit is generally the main
source of overhead as the threads increase. TL2 obtains
the least overhead because transactions are conflict-free and
the workload is write-intensive, which implies extra costs
for schemes that minimize aborts and for multi-version al-
gorithms. Initially, NOrec also benefits from these circum-
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Figure 4. Overhead assessment with 100% writes.

stances to yield the least overhead. However, it quickly be-
comes less efficient as the global commit lock becomes a
bottleneck and the commit time increases significantly due
to threads waiting to commit. Moreover, its read-set valida-
tion time also increases because transactions re-validate the
read-set when they notice the global clock has changed (due
to an update transaction committing).

On the other hand, the lock-free schemes also incur in
some overhead right from the start. Both TWM and AVSTM
conduct additional validations that are useless in this sce-
nario, as it is conflict-free, and are noticeably making them
more expensive. Yet, TWM preserves the overheads rather
low as the scale increases, whereas AVSTM suffers consid-
erably as we reach 64 threads, making it the most expensive
TM at that scale, slightly above NOrec. The main culprit for
this cost in AVSTM is that a committing update transaction
must possibly update metadata of every concurrent transac-
tion. As a result of this onerous check, the commit and vali-
dations cost grow considerably with the number of threads.

Finally, we highlight that TWM’s overheads are consis-
tently close to those of JVSTM. They are also both higher
than those of TL2 due to the management of multi-versions
and lock-freedom guarantees. Yet, TWM manages to reduce
spurious aborts with respect to both JVSTM and TL2. This
illustrates the appeal of TWM, which escapes the overheads
of aiming for permissiveness, while improving performance
in high concurrency scenarios.

5.3 Application Benchmarks
In this section we present additional experiments with larger
benchmarks to demonstrate the ability of TWM to reduce
spurious aborts.

For that, we studied the performance of these TMs in
STAMP, for which we used an existing port to Java in Deuce
framework. Fig. 5 presents the time to complete each bench-
mark, excluding Yada (not available in the Java port) and
Bayes (excluded given its non-determinism). Note that in
these plots lower is better.

TWM behaves slightly worse than JVSTM and TL2 in
both Intruder and Kmeans with an average slowdown of

7%. On the other benchmarks, it is either on par with the
best TM (Genome, SSCA2, Vacation (low)) or it obtains im-
provements over all TMs (Labyrinth and Vacation (high)).
We have manually inspected each benchmark to understand
if there are opportunities for time-warp to reduce spurious
aborts: this is the case for Genome, Labyrinth and Vacation.
The other three only generate simple conflict patterns that
cannot be surpassed with time-warping. Yet, TWM manages
to perform among the best TMs in every benchmark. Con-
versely, AVSTM only obtains considerable improvements in
Vacation (high), although it still performs worse than TWM.

Fig. 5(i) shows the geometric mean (and deviation) of the
speedup of TWM relative to the other TMs across all the
STAMP benchmarks. The overall trend is that TWM is more
beneficial than classic validation TMs as the thread count
increases. The average improvement across all the bench-
marks is 31% over JVSTM, 12% over TL2, 16% over NOrec
and 21% over AVSTM. Additionally, if we only consider
the benchmarks with possibility of time-warping, TWM ob-
tains an average improvement of 36% over JVSTM, 37%
over TL2, 41% over NOrec, and 37% over AVSTM. Note
that the gains over AVSTM are mostly due to a more effi-
cient algorithm, rather than by abort reduction (as shown in
Table 2).

6. Final remarks
This paper presented TWM, a novel multi-version algorithm
that aims at striking a balance between permissiveness and
efficiency. TWM exploits the key idea of allowing update
transactions to be serialized “in the past”, according to what
we called a time-warp time line. This time line diverges from
the natural commit order of transactions in order to allow up-
date transactions to commit successfully (but in the past) de-
spite having performed stale reads. Past solutions have tried
to maximize permissiveness via costly and inefficient proce-
dures. TWM explored a new validation strategy that results
in less aborts, without hindering efficiency (e.g., by avoiding
expensive checks of the transactions’ dependency graph).
Furthermore, TWM ensures mv-permissiveness and VWC.
Our experiments comparing a variety of TMs evidenced the
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Figure 5. Scalability in the STAMP benchmarks.

Benchmark
STM genome intruder kmeans-l kmeans-h labyrinth ssca2 vac-l vac-h

TWM 3.8 3.8 1.4 4.2 8.8 10.5 6.4 17.8
JVSTM 15.4 3.2 1.6 4.9 12.3 11.3 12.1 41.1

TL2 12.1 4.8 3.8 3.4 13.8 11.7 10.0 41.4
NOrec 21.1 6.0 3.8 6.4 27.6 14.9 19.9 55.0

AVSTM 13.0 3.5 2.6 4.8 10.4 11.5 9.4 18.9

Threads
STM 4 8 16 32 64

TWM 1.2 4.4 6.6 9.9 15.7
JVSTM 1.8 7.0 10.2 15.7 21.2

TL2 2.6 6.5 11.4 16.1 20.9
NOrec 3.4 9.6 18.6 24.9 34.0

AVSTM 2.5 5.5 8.6 12.7 17.6

Table 2. Average abort rate (%) across each STAMP benchmark (left) and each thread count (right).

merits of time-warping with an average improvement of 65%
in high concurrency scenarios and gains extending up to 9×.
Further, we showed that TWM introduces very limited over-
heads when faced with contention patterns that cannot be
optimized using TWM. We opted for a multi-version scheme
for time-warping, although part of our ideas can also be ap-
plied to single-versioned TMs. The extent to which that can
be advantageous is interesting future work.

The recent release of hardware support for TM is another
source of interesting open questions. Hardware vendors have
opted for a paradigm of best-effort semantics for the first

generation of Hardware TMs, in which no guarantee is given
that a transaction will ever complete successfully. One of
the main reasons for such weak semantics is the difficulty in
dealing with arbitrarily large transactions, while preserving
a simple hardware design. The proposed alternative is thus
to use software fallback paths, namely to an STM implemen-
tation. Consequently, it is interesting to explore the integra-
tion of STM implementations with reduced spurious aborts,
such as TWM, in the fallback paths for hardware implemen-
tations. The difficulty is in the efficient integration of both
systems, which becomes more challenging with the meta-



data and validations conducted in such STM algorithms. We
hope to provide answers to this problem in our future work.
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