Low-Code Software Security

Miguel Pupo Correia

ISCTE-IUL Low-code Software Development
Summer School 2018

L) LiSBOA | e
TECNICO . .
LISBOA nescid
FCT Fundagio para a Ciéncia e a Tecnologia Oa ‘*’%@m

MINISTERIO DA CIENCIA, , TECNOLOGIA E ENSINO SUPERIOR



Motivation: bad software

e NASA Mars Climate Orbiter
— $165 million

— Crashed due to a units
conversion bug

e NASA Mars Pathfinder
— $265 million

— Stopped for several hours due
to a priority-inversion bug




Motivation: May 12,2017

R N —

e e e —

sevn. .-

S—

Can | Recover My Files!
Sure We puarantes that you can
not 50 enough time

some of your fi
ou want to decrypt all yo
bave 3 days to submit |
you doo t pay in 7 days, y

B e memen s Ataque informatico. O que foi, como se espalhou,

Empresas e bancos alvos de ataque informético

Na PT, trabalhadores receberam ordem para desligar as maquinas e e
ser mandados para casa. Veja a mensagem recebida pelos trabalhadc

o How Do | Pay? quem o travou
Payment &5 accepted in Bitcon ¢ . . .
TVI2410LET Plesse check the curmt peies o Um poderoso virus entrou por uma falha do Windows e alastrou na rede. Criou

ichick <How to buy bitcolns .
it send the correct ameumt . O CaA0s em hospitais e empresas de todo o mundo.
After your payment, click «Chae

OBSERVADOR.PT

1 .. bitcoin

NHS hit by massive ransomware attack, many
hospitals and clinics offline
The ransomware attack appears to be spreading to more NHS trusts.

ARSTECHNICA.CO.UK

OBSERVADOR®
Portugal Telecom alvo de ataque informéatico Ataque informéatico mundial: empresas portuguesas
internacional afetadas

A Portugal Telecom é um dos alvos do ataque informatico que afetou vérias
empresas em Portugal, Espanha e Alemanha. A espanhola Telefénica é outr...

OBSERVADOR.PT

Virus afeta apenas os utilizadores que tenham sistema operativo da Microsoft

DN.PT | POR DIARIO DE NOTICIAS 3



Motivation: 2017 in numbers

Coin mining [cryptojacking] was the biggest growth area

Ransomware infections are up 40 percent in 2017, driven
primarily by WannaCry

| in I3 URLs analyzed at the gateway were found
to be malicious. In 2016 this number was | in 20

62 percent increase in overall botnet activity

zero-day vulnerabilities recorded in 2017: 4262

new discovered mobile malware variants grew 54%

24,000 malicious mobile applications blocked per day




Motivation: last week (!)

@ Seguranca Informatica partilhou uma ligagao. see
Th-Q

Patch! Patch! Patch!

( e
THEHACKERNEWS.COM | POR THE HACKER NEWS \ A

Microsoft Releases Patch Updates for 53 Vulnerabilities In

Adobe Experience Adobe Connect Acrobat and
Manager Reader

Its Software f

THEHACKERNEWS.COM
Adobe Releases Security Patch Updates For 112

Vulnerabilities /

https://www.facebook.com/seginfportugal/



https://www.facebook.com/seginfportugal/

Motivation: low code vs cloud

* Low code platforms have much in common with
cloud computing, so also similar security threats:
— Data breaches
— Data loss
— Account hijacking ca
— Insecure APIs The Notorious Nine
— Malicious insiders

— Shared technology issues




Outline

Security concepts
Low-code software security problem
Users and basic protections
Web vulnerabilities and protections
Mobile vulnerabilities and protections
Low-code software development life cycle
Platform security

Wrap-up



SECURITY CONCEPTS



What is security?

Confidentiality — absence of disclosure of data by
non-authorized parties

Integrity — absence of invalid system or data
modifications by non-authorized parties

Availability — readiness of the system to provide its
service

“non-authorized” requires a security policy, explicit
or implicit



Why is security needed?

Direct economic impact — security violation impacts
business operation (loss of systems or data)

Indirect economic impact — loss of reputation

Human / environment impact — may kill people, cause
pollution, etc.

Compliance — legislation requires security, e.g.,
GDPR, NIS directive

...life&death issues, for companies and even people

10



Vulnerabilities

Vulnerability — a system (hw/sw) defect that may be
exploited by an attacker to subvert security policy

They are defects but some developers don’t think so:

— “the team leaders conveniently assumed that security
vulnerabilities were not defects and could be deferred for
future enhancements or projects.’

0-day vulnerability — a vulnerability not
publicly known, only privately

/£ ¥ Beautiful
> -3 Security

11



Types of software vulnerabilities

* Design vulnerability

— inserted during the software design

* Coding vulnerability
— introduced during coding (often a bug with security
implications)
* Operational vulnerability

— caused by the software configuration or the environment
in which it is executed

12



Attacks

* Attack — action(s) done with the intent of activating a

vulnerability
Threat Attack Secur¥’ Securi? Technical Business
Agents Vectors Weakr & Contr Impacts Impacts
g S
S 5
% == =® Attack Q}’b NESsS ® - v \‘Q,(J ol® = = Impact J
< O .
AS Q =0 Asset ©-
% Attack == ® Weakness® - ¢Control® = =" Impact
Attack «»® Weakness Impact

Weakness HcOﬂtro
Source: OWASP top 10

13




Resources

e CWE — Common Weakness Enumeration

— A taxonomy of vulnerabilities - http://cwe.mitre.org/

* CVE — Common Vulnerabilities and Exposures
— A catalog of vulnerabilities - http://cve.mitre.org/
— Also as NVD — National Vulnerability Database
 CAPEC — Common Attack Pattern Enumeration and
Classification

— A taxonomy of attacks - https://capec.mitre.org/

14



Attack surface

 Attack surface — interfaces from which attacks come

— |t question when speaking of an application security:
what’s the attack surface!?

— not trivial to understand in large software

Target application

15



Attacks

* Can be interactive or autonomous (with malware)
* Can be technical vs. social engineering
* Can be directed or not

16



Risk

Obijective is not to achieve 100% security

but to have an acceptable risk (why?)

Probability of successful attack =

Threat level x Vulnerability level

Risk = Probability of successful attack x Impact

17



LOW-CODE SOFTWARE
SECURITY PROBLEM



Low-code software architecture

Backend/Cloud

.
&

Data store

-

Internet/Network

Application

\_server -/

Developers

o 7
(“low code”) .



Architecture — not radically new

~ MS Windows
- Mac OS X, Linux
QQ\O\, wo\nok

oL CQouds
OO DQ 7

o : L
i Android - &? ﬂ i m 5%;.(\%’
\

105, ...

client — server

20



Security — not radically new

Internet/Network

Backend/Cloud

-

Application

.

Data store

21



Outline

= Seedfrity-concepts
+Low-codesoftwaresecurity problem

Users and basic protections = what’s already there
Web vulnerabilities and protections = up to you
Mobile vulnerabilities and protections = up to you

Low-code software development life cycle = up to
you

Platform security = up to you / platform provider
Wrap-up

22



USERS AND BASIC
PROTECTIONS



User Authentication

* Participants = {developers, users}

* Authentication — showing to the server (in this case)

that it's me who is trying to access
— Binding of identity to a subject (a computer entity)

* Common approaches

— username / password
— 2-factor authentication: add SMS, smartcard, biometry,...

— Single sign-on: same authentication for accessing several
systems

24



Access Control

e Access control — restrict who can do what

— Participants have permissions; can do operations if they
have the corresponding permission

— Examples (for low code platform): permission to list
applications, deploy applications, full control

* Common approaches

— Access control lists — for each service/object there’s a list
of which subjects can do what

— Role-based access control — permissions assigned to roles,
roles assigned to subjects

25



Example creating roles

Create a role: © outsystems

Processes Interface Logic

= T T T
) Dashboard_GetWorkload

) Resource_Create

9 Text_CIeanEr\ters . . .
Trme Assign permissions
J

&) Customers

Common » Menu <>

-

\’ Emails (7] t I .
D HTTPRequestHandler 0 a ro e ]
&) RichWidgets
@ Text
& Users NetworkHome Web Screen ¥
et Name NetworkHome -
I References = Descrioti —
4 3 Roles pe::l:.rlp ion .
3 AddRole vone e ,
HTTP Security SSL with client certificates v
B e Integrated Authentication v
- R o [s Frequent Destination No v
Cy Paste Ctrl+V Title -
£ Exceptions I Cache in Minutes
N - Advanced 3
Style Sheet 1
JavaScript
Roles
Anonymous
Registered

CanClassifylssue
CanDeleteProject
Client
FillsTimeshest

Manager
CrganizationManager
PSAdmin

NEREOREEO

26

Source: OutSystems



Communication security

* Client-server protection using HTTPS (SSL/TLYS)

— Authenticates server using public-key crypto (certificates)
— Protects confidentiality by encrypting communication

— Protects message integrity/authenticity by adding message
authentication codes

 REST API
— Leverages HTTPS security

— Major issue is user authentication — schemes seen before
can be used (username/password, etc.)

27



All set!

* Only authorized users
* They can only do what they are allowed to

e Communications are secured

Secure?

28



WEB VULNERABILITIES AND
PROTECTIONS



WWW |01

g

Data store

Web clients

aka browsers Internet/Network

Application

\ server

* Client-server model
* Original: static HTML pages sent over HT TP; stateless

* Today: higher layer protocols (HTTPS, REST); server-side and
client-side code; stateful



OWASP

The Open Web Application Security Project

OWASP Top 10 - 2013

The Ten Most Critical Web Application Security Risks

release

31



Don’t trust input!

EMERGENCY TELEPHONE

32



Al:Injection

Username

* Main case: SQL Injection ]

Password

. Example GHAMSQY: )

$username = $HTTP POST VARS[ usernamse

------
......
-,_
L

$query = “SELECT g FROM Iogmtable WHERE user =

(354

username 2 AND pass = assword .*“"’;
$ P $P metadata

$result = mysqgl query($query); //

if(!$result) die_bad_login(); [ e oot oo

password: root’ OR pass <> ‘root

Query: SELECT * FROM logintable
WHERE user = ‘root’ AND pass = ‘root’
OR pass <> ‘root’




Al:Injection

* There are several forms (SQL, XML, LDAP, XPath,
XSLT, HTML, OS command injection,...)

* All have in common:
— Attacks come from inputs (don’t trust inputs)
— There is some server-side interpreter (e.g., DMBS, LDAP)
— Applications accepts metadata in inputs (e.g., )

* Protection:
— Use a safe API (parameterized statements) — best
— Accept only known-good inputs (whitelisting)
— Sanitize/encode inputs, e.g., with EncodeSQL() @ outsystems

34



A2: Broken Authentication and
Session Management

* Several issues:
— User credentials are unprotected, guessable, or modifiable
— Session IDs are exposed / fixable
— Authentication not invalidated with logout

* Example: session ID in the url (trivial to ride the session)

— http://example.com/sale/saleitems;jsessionid=
2POOC2)SNDLPSKHCJUNZ2JV?dest=Hawaii

 Protection:

— follow checklist of best practices

35



A3: Cross Site Scripting (XSS)

* Allows attacker to run script in users’ browsers
* Stored XA&S:

storage

Web clients
aka browsers

&

Data store

Internet/Network

Application

k server /




A3: Cross Site Scripting (XSS)

e Reflected XSS:

Web clients
aka browsers

3-get and ryn script

Application

k server

&

Data store

J

37



A3: Cross Site Scripting (XSS)

* Protection:
— Input whitelisting
— Input sanitization with reliable libraries

— Output encoding with reliable libraries, e.g.,
Encodejavascript(), EncodeHTML() @ outsystems

38



A4: Insecure Direct Object Reference

* Vulnerability: site exposes a reference to an internal
object and no proper access control

— Obiject ex.: file, directory, database record, key (URL, form parameter)

— The attacker can manipulate these references to access other objects
without authorization

* Ex.:direct reference to file in web page:
— <select name="language’><option value="“fr”’>Francais</option

— Embeds file fr.php but attacker may send
* Protection:

— Don’t expose refs (use session info), proper access control

39



A5 / A9: Security Misconfiguration,
Components with Known Vulnerabilities

e Several issues:
— Vulnerable/out of date software: OS, server, DBMS, libraries
— Unnecessary/dangerous features enabled/installed
— Default accounts

— Security settings not properly set

* Protections:
— Configure properly (hardening)
— Check for software updates automatically

— Run vulnerability scanners

40



A6: Sensitive Data Exposure

 Several issues:

— Sensitive data not encrypted, encrypted with unsafe
algorithms (e.g., home-made, DES), or weak keys

— Hard-coding keys and storing keys in unprotected stores
* Protections:

— Use strong algorithms and keys, considering the threats

— Store keys securely

& General

DEVE]
Protection
Regulation

41



A7: Missing Function Level Access Control

* Users access private or privileged functionality

— e.g., pages are not protected, just inaccessible from the
normal web tree (security by obscurity)

— Attack: forced browsing

* Protection:
— Proper access control

— No “hidden” pages as form of protection

42



A8: Cross-Site Request Forgery (CSRF)

Web clients
aka browsers

Data store

Application

\_server -/

43



A8: Cross-Site Request Forgery (CSRF)

 Protection:

— Insert large nonce as a hidden field in the form; do not

accept operation if nonce doesn’t come @ outsystems

— Critical actions: re-authenticate

44



Al0Q: Unvalidated Redirects and Forwards

e Used to trick victims into malicious websites

— Example: site has a page called which takes a
single parameter named url

— Attacker crafts a good-looking URL that redirects users:
evil.com
* Prevention:

— Avoid redirects/forwards; avoid using inputs in them;
validate inputs

— Use functions that replace domain in the URL with your
domain: ReplaceURLDomain() @ outsystems

45



MOBILEVULNERABILITIES
AND PROTECTIONS



Mobile

e Devices:

— smartphones, tablets
* Operating systemes:
— Android, iOS,...
* Applications:

— typically webapps but
client is an app, not a
browser

Source: Wikipedia

47




Architecture

Apps

(phone, contacts, browser,... built in and loaded from store)

Application framework / services

(windows, notifications, resources, location,...)

Runtime
(Android: ART/Dalvik ~JVM)

Libraries / core services
(graph, media, web, SQL, cripto,...)

Kernel

(Android: based on Linux; iOS based on Darwin/BSD)

Hardware

(usual + RF transceiver, SIM card, NFC, GPS, sensors,...)

48



Low-code software security

Focus: complex Backend/Cloud
environment

Internet/Network
Users

server

o /4
low code”) 2o



Security problems

* Users download many apps from , Ssome
of which are malicious

— Google Play Store, Apple App Store, Aptoide, etc., etc.
— Apps claim permissions, users typically grant them

— Bad apps may do attacks by themselves (e.g., steal data) or
tamper with behavior of legitimate apps

 Personal/critical data stored in devices

* Unsecure network access (e.g., open wifi)

50



OWASP Top Ten Mobile Risks

M1: Weak Server Side Controls

M2: Insecure Data Storage

M4: Unintended Data Leakage

Mé: Broken Cryptography
M7: Client Side Injection

M8: Security Decisions Via Unfrusted
INnputs

M9: Improper Session Handling

M10: Lack of Binary Protections

There’s a 2016 edition, but
more a classification than a

top 10

Not showing all, but those
farther away from the web
top 10

51



M2: Insecure Data Storage

* Developers assume that users or malware can’t
access stored data, so they don’t protect it

— Storage places: SQLite databases, SD card, cloud synced,
log files, property list / XML / manifest files

— Relevant data: usernames, passwords, cookies, personal
information, app data
* Protection:
— Encrypt stored data (use proper libraries)

— Enforce access control, e.g., n ot MODE_WORLD_READABLE
in Android

52



M3: Insecure Authentication

* Weak authentication allows adversary to do
arbitrary operations in the app or backend

— Weak authentication is prevalent due to mobile devices’
input form factor (promotes PINs/short passwords)

— Users often offline, so may be
allowed and it’s insecure (hard: malicious host threat)

 Protection:

— Assume offline authentication can be bypassed, so re-
authenticate with the backend when online

— Do local integrity checks to detect unauthorized changes

53



M7: Client Side Injection

* Code injection in the mobile app (instead of in the backend),
typically in apps using browser libraries

— Variants of XSS and local SQL injection (in SQLite)
— New: abusing phone dialer + SMS, abusing in-app payments

 Protection:

— Parameterized queries; disable JavaScript; etc.

54



MI0: Lack of Binary Protections

* Lack of protections against reverse engineering

— Allow stealing confidential data, fraud, piracy, intellectual
property theft

— Several attack tools available: ClutchMod (cracker for iOS),
dex2jar (Android), IDA Pro, Hopper (disassembler), gdb

— Malicious host problem: not entirely solvable

 Protection:

— Detect jailbreak and debuggers; use checksums; etc.

55






LOW-CODE SOFTWARE
DEVELOPMENT LIFE CYCLE



Security Development Lifecycle

The term is generic, but the best known SDLC is
Microsoft’s — for normal software development:

iy ity Mty i ity Wity Wiy

- Core training - Analyze - Specify toals - Dynamic/Fuzz - Response plan - Response
security and modellng - Enforce banned testing - Final security execution
privacy risk - Attack surface functions - Verify threat review

- Define quality analysis - Static analysis models/attack - Release archive
gates surface

* What shall we do for low code development!

58




Low-Code Security Development Lifecycle

i i i iy sy Wiy

* Provide software security training for low code
developers

— “at least one security training class each year” MS SDL 5.2

59



Low-Code Security Development Lifecycle

A il

i il Mty

* Define the security requirements; some sources:
— Specific project business requirements, misuse cases
— Legislation (e.g., GDPR, NIS directive)

— Standards (e.g., ISO/IEC 27034 Application security,
IEEE 1012-2012 Software Verification and Validation)

— Microsoft SDL 5.2 (for this and all the next ones)

60



Low-Code Security Development Lifecycle

* Best practices

— e.g., CSD “Avoiding the top |0 software security design
flaws”, OWASP Top |0s, low code platform vendor docs

* Threat modeling

— Non-trivial but very useful if application is complex
* Security design principles

— Keep design simple, least privilege, defense in depth,...

61



Low-Code Security Development Lifecycle

* Best practices, e.g., OWASP Top 10s, low code
platform specific

 Static analysis tools — low code platform specific
— may be integrated with IDE @ outsystems

* Enable dynamic low code platform specific
protections if available

62



Low-Code Security Development Lifecycle

W A S > 2 it

* Dynamic / fuzz testing

i i

* Vulnerability scanners
* Tests based on the threat model (if available)

* Best practices, e.g., OWASP Testing Guide v4 or low
code platform specific

63



Low-Code Security Development Lifecycle

* Final security review

— e.g., peer or external code review

* Plan for when vulnerabilities are discovered (not if...)

— patches, reports
* Plan for rollback to previous version

* |ssue platform security recommendations

— e.g., recommend Mobile Device Management (MDM)

64



Low-Code Security Development Lifecycle

* Collect information about security events, issue
reports and patches

* Possibly run a Computer Security Incident Response
Team (CSIRT) 24x7

65



PLATFORM SECURITY



Low-code software architecture

Internet/Netwark

(
|
|
1>
|

Backend/Cloud N

o
E;

Data store

Application

\ server /

—~



Running the platform

* on premises versus at provider/cloud

— if at provider/cloud:

IT'S THEIR
RESPONSIBILITY
FIRST.

Cloud Secur i{Y ExPla'meCI

68



Platform protection — examples

Virtual private networks / virtual LANs / firewalls

— for communication security, traffic segregation, and filtering

Anti-malware / IDS / IPS

— for malware / attack detection and reaction

Vulnerability management of the platform software

— awareness of critical vulnerabilities, install updates

Security Information and Event Management system

— integrated security management (monitoring and control)

69



Platform protection — cloud example

OutSystems Sentry

Anti-virus
Anti-malware

AN s
Cc1

888 (),
24x7 File Integrity
CSIRT Monitoring

IDS/IPS

aAWsS
a8 Customer VPC

[@ ==
=
=

Log Log

Monitoring Management Retention

QV_V/S’ OutS VPC
f utSystems \
OutSystems

Management Environment

/ N A T T T e \
. Development + 1 QA/Test | | Production Environment |
. Environment 1 ' Environment 1 !
1 ! Y e e e e —mm =y fmmmmm——————q

! L [ ! Availability Zone A : ! Availability Zone A ! |
: : : : | | — | . ProductionDB !
1 [ ! | | | < [ !
1 ! ! | : 1 | - 1 :
= o o = s Y
: L b :L______‘J_A__‘_—_____J: :L,!,,,,,J i
| | | | I | N feccccacaccacacacaaaa, |
| 1 1 1 —_— I
I - | : - :
: - | 1 Load-balanced /t — !
: -ll | | Front-end g - I
: : : : : e E Standby Replica DB :
1 Lo N |

\Cmmmmmmmmmmeet e (o) Rttt
Lo]
K VPN D
VPN

Source: OutSystems Sentry datasheet

70




WRAP-UP



Conclusions

Low code platform security is a new problem, but
previous solutions mostly apply

— Web security, mobile security, cloud security,...
Focus on secure code implementation is important

but developers must have a broad view of the
secure software development life cycle

Learn the best practices, employ the best tools

72



References

-
Seguranca

Miguel P. Correia and Paulo |. Sousa, Seguranga
Software

Seguranga no Software, 2° ed., FCA, 2017

OWASP documentation cited

Microsoft SDL documentation cited

OutSystems online security documentation

Salesforce Security Guide and other Force.com docs

73



Thank you

Miguel Pupo Correia
http://www.gsd.inesc-id.pt/~mpc/

‘ TECNICO . .
LISBOA nescid
FCT Fundagio para a Ciéncia e a Tecnologia Od B bos
MINISTERIO DA CIENCIA, TECNOLOGIA E ENSINO SUPERIOR 2



