
Low-Code Software Security

Miguel Pupo Correia

ISCTE-IUL Low-code Software Development
Summer School ‘2018

Motivation: bad software

• NASA Mars Climate Orbiter
– $165 million
– Crashed due to a units

conversion bug

• NASA Mars Pathfinder
– $265 million
– Stopped for several hours due

to a priority-inversion bug

2

Motivation: May 12, 2017

3

Motivation: 2017 in numbers

• Coin mining [cryptojacking] was the biggest growth area
• Ransomware infections are up 40 percent in 2017, driven

primarily by WannaCry
• 1 in 13 URLs analyzed at the gateway were found

to be malicious. In 2016 this number was 1 in 20
• 62 percent increase in overall botnet activity
• zero-day vulnerabilities recorded in 2017: 4262
• new discovered mobile malware variants grew 54%
• 24,000 malicious mobile applications blocked per day

4

Motivation: last week (!)

5https://www.facebook.com/seginfportugal/

https://www.facebook.com/seginfportugal/

Motivation: low code vs cloud

• Low code platforms have much in common with
cloud computing, so also similar security threats:
– Data breaches
– Data loss
– Account hijacking
– Insecure APIs
– Malicious insiders
– Shared technology issues
– …

6

Outline

Security concepts
Low-code software security problem

Users and basic protections
Web vulnerabilities and protections

Mobile vulnerabilities and protections
Low-code software development life cycle

Platform security
Wrap-up

7

SECURITY CONCEPTS

8

What is security?

• Confidentiality – absence of disclosure of data by
non-authorized parties

• Integrity – absence of invalid system or data
modifications by non-authorized parties

• Availability – readiness of the system to provide its
service

• “non-authorized” requires a security policy, explicit
or implicit

9

Why is security needed?

• Direct economic impact – security violation impacts
business operation (loss of systems or data)

• Indirect economic impact – loss of reputation
• Human / environment impact – may kill people, cause

pollution, etc.
• Compliance – legislation requires security, e.g.,

GDPR, NIS directive

• …life&death issues, for companies and even people

10

Vulnerabilities

• Vulnerability – a system (hw/sw) defect that may be
exploited by an attacker to subvert security policy

• They are defects but some developers don’t think so:
– “the team leaders conveniently assumed that security

vulnerabilities were not defects and could be deferred for
future enhancements or projects.”

• 0-day vulnerability – a vulnerability not
publicly known, only privately

11

Types of software vulnerabilities

• Design vulnerability
– inserted during the software design

• Coding vulnerability
– introduced during coding (often a bug with security

implications)

• Operational vulnerability
– caused by the software configuration or the environment

in which it is executed

12

Attacks

• Attack – action(s) done with the intent of activating a
vulnerability

13

vu
lne

rab
ilit

ies

pr
ot

ec
tio

ns
Source: OWASP top 10

Resources

• CWE – Common Weakness Enumeration
– A taxonomy of vulnerabilities - http://cwe.mitre.org/

• CVE – Common Vulnerabilities and Exposures
– A catalog of vulnerabilities - http://cve.mitre.org/
– Also as NVD – National Vulnerability Database

• CAPEC – Common Attack Pattern Enumeration and
Classification
– A taxonomy of attacks - https://capec.mitre.org/

14

Attack surface

• Attack surface – interfaces from which attacks come
– 1st question when speaking of an application security:

what’s the attack surface?
– not trivial to understand in large software

15

Attacks

• Can be interactive or autonomous (with malware)
• Can be technical vs. social engineering
• Can be directed or not

16

Risk

Objective is not to achieve 100% security
but to have an acceptable risk (why?)

Probability of successful attack =
Threat level x Vulnerability level

Risk = Probability of successful attack x Impact

17

LOW-CODE SOFTWARE
SECURITY PROBLEM

18

Application
server

Data store

Low-code software architecture

19

Internet/NetworkUsers

Developers
(“low code”)

Backend/Cloud

Architecture – not radically new

20

MS Windows
Mac OS X, Linux

Android
iOS,…

client – server

Application
server

Data store

Security – not radically new

21

Internet/NetworkUsers

Developers
(“low code”)

Backend/Cloud

Web app security

Mobile app security

Cloud security

Platform security

Softw
are development se

c

Outline

• Security concepts
• Low-code software security problem
• Users and basic protections à what’s already there
• Web vulnerabilities and protections à up to you
• Mobile vulnerabilities and protections à up to you
• Low-code software development life cycle à up to

you
• Platform security à up to you / platform provider
• Wrap-up

22

USERS AND BASIC
PROTECTIONS

23

User Authentication

• Participants = {developers, users}
• Authentication – showing to the server (in this case)

that it’s me who is trying to access
– Binding of identity to a subject (a computer entity)

• Common approaches
– username / password
– 2-factor authentication: add SMS, smartcard, biometry,…
– Single sign-on: same authentication for accessing several

systems

24

Access Control

• Access control – restrict who can do what
– Participants have permissions; can do operations if they

have the corresponding permission
– Examples (for low code platform): permission to list

applications, deploy applications, full control

• Common approaches
– Access control lists – for each service/object there’s a list

of which subjects can do what
– Role-based access control – permissions assigned to roles,

roles assigned to subjects

25

Example creating roles

26

Create a role:

Assign permissions
to a role:

Source: OutSystems

Communication security

• Client-server protection using HTTPS (SSL/TLS)
– Authenticates server using public-key crypto (certificates)
– Protects confidentiality by encrypting communication
– Protects message integrity/authenticity by adding message

authentication codes

• REST API
– Leverages HTTPS security
– Major issue is user authentication – schemes seen before

can be used (username/password, etc.)

27

All set!

• Only authorized users
• They can only do what they are allowed to
• Communications are secured

28

Secure?

WEB VULNERABILITIES AND
PROTECTIONS

29

WWW 101

• Client-server model
• Original: static HTML pages sent over HTTP; stateless
• Today: higher layer protocols (HTTPS, REST); server-side and

client-side code; stateful

30

Internet/Network
Web clients

aka browsers

Application
server

Data store

31

Don’t trust input!

32

A1: Injection

username: root
password: root’ OR pass <> ‘root

Query: SELECT * FROM logintable
WHERE user = ‘root’ AND pass = ‘root’
OR pass <> ‘root’

metadata

• Main case: SQL Injection
• Example (PHP/MySQL):

$username = $HTTP_POST_VARS[‘username’];
$password = $HTTP_POST_VARS[‘passwd’];
$query = “SELECT * FROM logintable WHERE user = ‘” .

$username . “’ AND pass = ‘” . $password . “’”;
$result = mysql_query($query);
if(!$result) die_bad_login();

A1: Injection

• There are several forms (SQL, XML, LDAP, XPath,
XSLT, HTML, OS command injection,…)

• All have in common:
– Attacks come from inputs (don’t trust inputs)
– There is some server-side interpreter (e.g., DMBS, LDAP)
– Applications accepts metadata in inputs (e.g., ’)

• Protection:
– Use a safe API (parameterized statements) – best
– Accept only known-good inputs (whitelisting)
– Sanitize/encode inputs, e.g., with EncodeSQL()

34

A2: Broken Authentication and
Session Management

• Several issues:
– User credentials are unprotected, guessable, or modifiable
– Session IDs are exposed / fixable
– Authentication not invalidated with logout

• Example: session ID in the url (trivial to ride the session)
– http://example.com/sale/saleitems;jsessionid=

2P0OC2JSNDLPSKHCJUN2JV?dest=Hawaii

• Protection:
– follow checklist of best practices

35

A3: Cross Site Scripting (XSS)

• Allows attacker to run script in users’ browsers
• Stored XSS:

36

Internet/Network
Web clients

aka browsers

Application
server

Data store

1- store script
2- get and run script

storage

A3: Cross Site Scripting (XSS)

• Reflected XSS:

37

Web clients
aka browsers

Application
server

Data store

1- email with script

2- request with script

3- get and run script

reflection

A3: Cross Site Scripting (XSS)

• Protection:
– Input whitelisting
– Input sanitization with reliable libraries
– Output encoding with reliable libraries, e.g.,

EncodeJavascript(), EncodeHTML()

38

A4: Insecure Direct Object Reference

• Vulnerability: site exposes a reference to an internal
object and no proper access control
– Object ex.: file, directory, database record, key (URL, form parameter)
– The attacker can manipulate these references to access other objects

without authorization

• Ex.: direct reference to file in web page:
– <select name=“language”><option value=“fr”>Francais</option

– Embeds file fr.php but attacker may send otherfile

• Protection:
– Don’t expose refs (use session info), proper access control

39

A5 / A9: Security Misconfiguration,
Components with Known Vulnerabilities

• Several issues:
– Vulnerable/out of date software: OS, server, DBMS, libraries
– Unnecessary/dangerous features enabled/installed
– Default accounts
– Security settings not properly set

• Protections:
– Configure properly (hardening)
– Check for software updates automatically
– Run vulnerability scanners

40

A6: Sensitive Data Exposure

• Several issues:
– Sensitive data not encrypted, encrypted with unsafe

algorithms (e.g., home-made, DES), or weak keys
– Hard-coding keys and storing keys in unprotected stores

• Protections:
– Use strong algorithms and keys, considering the threats
– Store keys securely

41

A7: Missing Function Level Access Control

• Users access private or privileged functionality
– e.g., pages are not protected, just inaccessible from the

normal web tree (security by obscurity)
– Attack: forced browsing

• Protection:
– Proper access control
– No “hidden” pages as form of protection

42

A8: Cross-Site Request Forgery (CSRF)

43

Web clients
aka browsers

Application
server

Data store

1- link with operation

in email or webpage

0- ongoing session

2- attacker’s operation

A8: Cross-Site Request Forgery (CSRF)

• Protection:
– Insert large nonce as a hidden field in the form; do not

accept operation if nonce doesn’t come

– Critical actions: re-authenticate

44

A10: Unvalidated Redirects and Forwards

• Used to trick victims into malicious websites
– Example: site has a page called redirect.jsp which takes a

single parameter named url
– Attacker crafts a good-looking URL that redirects users:

http://www.nicepage.com/redirect.jsp?url=evil.com

• Prevention:
– Avoid redirects/forwards; avoid using inputs in them;

validate inputs
– Use functions that replace domain in the URL with your

domain: ReplaceURLDomain()

45

MOBILE VULNERABILITIES
AND PROTECTIONS

46

Mobile

• Devices:
– smartphones, tablets

• Operating systems:
– Android, iOS,...

• Applications:
– typically webapps but

client is an app, not a
browser

47

An
dro

id

iOS

Sa
le

s (
th

ou
sa

nd
s)

Source: Wikipedia

Architecture

48

Apps
(phone, contacts, browser,... built in and loaded from store)

Application framework / services
(windows, notifications, resources, location,...)

Runtime
(Android: ART/Dalvik ~JVM)

Libraries / core services
(graph, media, web, SQL, cripto,...)

Kernel
(Android: based on Linux; iOS based on Darwin/BSD)

Hardware
(usual + RF transceiver, SIM card, NFC, GPS, sensors,...)

Application
server

Data store

Low-code software security

49

Internet/Network
Users

Developers
(“low code”)

Backend/Cloud

= w
eb se

cu
rit

y è
done!

Focus: complex
environment

Security problems

• Users download many apps from marketplaces, some
of which are malicious
– Google Play Store, Apple App Store, Aptoide, etc., etc.
– Apps claim permissions, users typically grant them
– Bad apps may do attacks by themselves (e.g., steal data) or

tamper with behavior of legitimate apps

• Personal/critical data stored in devices
• Unsecure network access (e.g., open wifi)

50

OWASP Top Ten Mobile Risks

• There’s a 2016 edition, but
more a classification than a
top 10

• Not showing all, but those
farther away from the web
top 10

51

2012 2014

M1: Insecure Data Storage M1: Weak Server Side Controls

M2: Weak Server Side Controls M2: Insecure Data Storage

M3: Insufficient Transport Layer
Protection

M3: Insufficient Transport Layer
Protection

M4: Client Side Injection M4: Unintended Data Leakage

M5: Poor Authorization and
Authentication

M5: Poor Authorization and
Authentication

M6: Improper Session Handling M6: Broken Cryptography

M7: Security Decisions Via
Untrusted Inputs

M7: Client Side Injection

M8: Side Channel Data Leakage M8: Security Decisions Via Untrusted
Inputs

M9: Broken Cryptography M9: Improper Session Handling

M10: Sensitive Information
Disclosure

M10: Lack of Binary Protections

M2: Insecure Data Storage

• Developers assume that users or malware can’t
access stored data, so they don’t protect it
– Storage places: SQLite databases, SD card, cloud synced,

log files, property list / XML / manifest files
– Relevant data: usernames, passwords, cookies, personal

information, app data

• Protection:
– Encrypt stored data (use proper libraries)
– Enforce access control, e.g., not MODE_WORLD_READABLE

in Android

52

M3: Insecure Authentication

• Weak authentication allows adversary to do
arbitrary operations in the app or backend
– Weak authentication is prevalent due to mobile devices’

input form factor (promotes PINs/short passwords)
– Users often offline, so offline authentication may be

allowed and it’s insecure (hard: malicious host threat)

• Protection:
– Assume offline authentication can be bypassed, so re-

authenticate with the backend when online
– Do local integrity checks to detect unauthorized changes

53

M7: Client Side Injection

• Code injection in the mobile app (instead of in the backend),
typically in apps using browser libraries
– Variants of XSS and local SQL injection (in SQLite)
– New: abusing phone dialer + SMS, abusing in-app payments

• Protection:
– Parameterized queries; disable JavaScript; etc.

54

M10: Lack of Binary Protections

• Lack of protections against reverse engineering
– Allow stealing confidential data, fraud, piracy, intellectual

property theft
– Several attack tools available: ClutchMod (cracker for iOS),

dex2jar (Android), IDA Pro, Hopper (disassembler), gdb
– Malicious host problem: not entirely solvable

• Protection:
– Detect jailbreak and debuggers; use checksums; etc.

55

56

Secure?

LOW-CODE SOFTWARE
DEVELOPMENT LIFE CYCLE

57

Security Development Lifecycle

• The term is generic, but the best known SDLC is
Microsoft’s – for normal software development:

• What shall we do for low code development?

58

Low-Code Security Development Lifecycle

• Provide software security training for low code
developers
– “at least one security training class each year” MS SDL 5.2

59

Low-Code Security Development Lifecycle

60

• Define the security requirements; some sources:
– Specific project business requirements, misuse cases
– Legislation (e.g., GDPR, NIS directive)
– Standards (e.g., ISO/IEC 27034 Application security,

IEEE 1012-2012 Software Verification and Validation)
– Microsoft SDL 5.2 (for this and all the next ones)

Low-Code Security Development Lifecycle

61

• Best practices
– e.g., CSD “Avoiding the top 10 software security design

flaws”, OWASP Top 10s, low code platform vendor docs

• Threat modeling
– Non-trivial but very useful if application is complex

• Security design principles
– Keep design simple, least privilege, defense in depth,…

Low-Code Security Development Lifecycle

62

• Best practices, e.g., OWASP Top 10s, low code
platform specific

• Static analysis tools – low code platform specific
– may be integrated with IDE

• Enable dynamic low code platform specific
protections if available

Low-Code Security Development Lifecycle

63

• Dynamic / fuzz testing
• Vulnerability scanners
• Tests based on the threat model (if available)
• Best practices, e.g., OWASP Testing Guide v4 or low

code platform specific

Low-Code Security Development Lifecycle

64

• Final security review
– e.g., peer or external code review

• Plan for when vulnerabilities are discovered (not if…)
– patches, reports

• Plan for rollback to previous version
• Issue platform security recommendations
– e.g., recommend Mobile Device Management (MDM)

Low-Code Security Development Lifecycle

65

• Collect information about security events, issue
reports and patches

• Possibly run a Computer Security Incident Response
Team (CSIRT) 24x7

PLATFORM SECURITY

66

Application
server

Data store

Low-code software architecture

67

Internet/NetworkUsers

Developers
(“low code”)

Backend/Cloud

Platform security

Running the platform

• on premises versus at provider/cloud
– if at provider/cloud:

68

Platform protection – examples

• Virtual private networks / virtual LANs / firewalls
– for communication security, traffic segregation, and filtering

• Anti-malware / IDS / IPS
– for malware / attack detection and reaction

• Vulnerability management of the platform software
– awareness of critical vulnerabilities, install updates

• Security Information and Event Management system
– integrated security management (monitoring and control)

69

Platform protection – cloud example

70Source: OutSystems Sentry datasheet

WRAP-UP

71

Conclusions

• Low code platform security is a new problem, but
previous solutions mostly apply
– Web security, mobile security, cloud security,…

• Focus on secure code implementation is important
• but developers must have a broad view of the

secure software development life cycle
• Learn the best practices, employ the best tools

72

References

• Miguel P. Correia and Paulo J. Sousa,
Segurança no Software, 2ª ed., FCA, 2017

• OWASP documentation cited
• Microsoft SDL documentation cited
• OutSystems online security documentation
• Salesforce Security Guide and other Force.com docs

73

Thank you

Miguel Pupo Correia
http://www.gsd.inesc-id.pt/~mpc/

