4/23/2013

0

aad? .
EE!I

SECURITY|
ONTH

Desenvolvimento de Software

Seguro - As Is Can’t Be

TECNICO
LISBOA

Y

B Motivation

Bali = “We wouldn’t have to spend so much time, money, and effort on
network security if we didn’t have such bad software security”

= Viega & McGraw, Building Secure Software, Addison Wesley 2002

Sallwar

= “the current state of security in commercial software is rather
distasteful, marked by embarrassing public reports of vulnerabilities
and actual attacks (...) and continual exhortations to customers
to perform rudimentary checks and maintenance.”
= Jim Routh, Beautiful Security, O'Reilly, 2010

= “Software buyers are literally crash test dummies for an industry that
is remarkably insulated against liability”

= David Rice, Geekonomics: The Real Cost of
Insecure Software, Addison-Wesley, 2007

BE AWARE, BE SECURE

E 2010 in numbers

= Symantec Internet Security Threat Report, Vol 16, April

2011

286M+

--
o

Polymorphism and new delivery mechanisms such as Web-attack toolkits continued to drive up the number of malware
variants in common circulation. In 2010, Symantec encountered more than 286 million unigue variants of malware.

93%

A growing proliferation of Web-
attack toolkits drove a 93% increase
in the volume of Web-based attacks
in 2010 over the velume observed
in 2009. Shortened URLs appear to
be playing a role here too. During a
three-month cbservation period in
2010, 65% of the malicious URLs
abserved on social networks were
shortened URLs.

BE AWARE, BE SECURE.

260,000

This was the average number of
identities exposed in each of the
data breaches caused by hacking
throughout the year.

WA d

42%

In a sign that the mobile
space is starting to
garner more attention
from both security
researchers and
cybercriminals, there
was a sharp rise in the number of
reported new mobile operating
system vulnerabilities—up to 163
from 115 in 2009.

]

! enisa

E 2010 in numbers

6f253

Symantec recorded more
vulnerabilities in 2010 than
in any previous year since
starting this report.
Furthermore, the new
vendors affected by a
vulnerability rose to 1,914,
a 161% increase over the
prior year.

The 14 zero-day vulnerabilities in
2010 were found in widely used
applications such as Internet
Explorer, Adobe Reader, and Adobe
Flash Player. Industrial Control
System software was also exploited.
In a sign of its saphistication,
Stuxnet alone used four different
zero-days.

BE AWARE, BE SECURE.

! enisa

4/23/2013

Y

B The

problem is Software: Stuxnet

= Invaded Iranian nuclear enrichment facility; damaged many
centrifuges

Modified programmable logic controllers (PLCs) —software too!

= Some features:

BE AWARE, BE SECUF

Self-replicates through USB drives exploiting a vulnerability allowing
auto-execution

Spreads in a LAN through a vulnerability in the Win.Print Spooler
Spreads through SMB by exploiting a Windows RPC vulnerability
Exploits another 2 unpatched privilege escalation vulnerabilities

Contains a Windows and a PLC rootkit

i s Wit E

Egagi"-?}

The

next Stuxnet?

= CNN, Sept. 2007 — “Researchers who launched an experimental cyber

atta

ck caused a generator to self-destruct”
Financed by the Dep. Homeland Security

BE AWARE, BE SECUF

i s Wit E

4/23/2013

O
)
B The 7 Coolest Hacks Of 2011
= 1. Remotely starting a car via text message.
= 2. Powering down the power plant — literally.
= 4. Insulin pumps go rogue.
= 5. 'Warflying': Hacking in midair.
= 6. When laptop batteries turn against you.
BE AWARE, BE SECURE ,';nrsct___ E
O
) .)
& Onlyindustry’s fault?
= “We at Oracle have (...) determined that most developers we hire
have not been adequately trained in basic secure coding principles
(...)
= Inthe future, Oracle plans to give hiring preference to students who
have received such training and can demonstrate competence in
software security principles.”
= Mary Ann Davidson, Oracle’s Chief Security Officer

BE AWARE, BE SECURE

s Wit E

4/23/2013

Y

B Problem s in the software

The characteristics of current software:

= Complexity
= Attacks exploit bugs called vulnerabilities
= Estimated 5-50 bugs per Klines of code
= Windows Vista 50M

= Extensibility

= What software is in your laptop? OS + production sw + patches + 3rd
party DLLs + device drivers + plug-ins + ...

= Connectivity
= Internet (2.2 billion users) + control systems + PDAs + mobile phones + ...

BE AWARE, BE SECURE ! enisa E

Y

& Outline

= The problem: Vulnerabilities

= Solution part 1 - Prevention

= Solution part 2 — Runtime protection
= Ataste of research

= Conclusions

BE AWARE, BE SECURE ! enisa E

4/23/2013

4/23/2013

0

[

SECURITY|
MONTH

[]

| 3
—3
[EUROPEAN]
(MONTH]

The problem: Vulnerabilities

Y

B The problem

= Vulnerability + Attack = Intrusion = Security Failure
= i.e., violation of confidentiality, integrity, availability

sl U TARGET SYSTEM |
vulnerability :
T 1

1

~ i

H * 1

H 1
—24 Intrusion error failure |

1

1

attack surface

BE AWARE, BE SECURE ! enisa E

)

The problem

= From the software point of view, the problem are its defects, i.e., its
vulnerabilities
= Design vulnerability: inserted during the software design
(e.g., lack of access control) -
= Coding vulnerability: a bug
(e.g., missing end of buffer verification)

= Operational vulnerability: caused by the ;
environment in which the software is [<
executed or its configuration (e.g., weak password) - ‘a‘*
-4

= “the team leaders conveniently assumed that security vulnerabilities
were not defects and could be deferred for future enhancements or
projects” - Jim Routh, op. cit.

BE AWARE, BE SECURE ! enisa -

Y

B Coding vulnerabilities

There are many classes; we are going to see the top 3:
= Buffer overflows — traditionally most important (OSs, binary apps)
= SQL injection

= Cross site scripting

BE AWARE, BE SECURE ! enisa -

4/23/2013

o

& BO —Stack Smashing

= Stack smashing is the “classical” stack overflow attack
= Vulnerable code (inserts untrusted data in buffer without checking
the limits): ~\

address of buf
void test(char *s) { //s is untrusted address of s
char buf[10]; //gcc stores extra space
strcpy(buf, s); //doesn’t check buffer’s [limit
} buf >
overflow saved ebp Y,
BE AWARE, BE SECURE ret address';,;';sq__ E
W 3 th * » e —progree—,

o

B BO — Stack Smash. w/code injection

= Attacker executes arbitrary code in the victim’s machine:

address of buf

address of s

q

function returns to
the address of the
malicious code

overflow | |

s Wit E

4/23/2013

o

E BO - Arcinjection / return-to-libc

Attacker forces jump to code somewhere else:

address of buf

address of s libc (e.g., system)

or other interesting

code in the process
address space

anything, except
maybe for
parameters for
the function

i called

overflow | || 1

BE,_H-BE‘_'?F emmj -
3

B SQL Injection

= Totally different target: web applications

A

v

= HTTP / HTTPS / ...
Client Server DataBase
(browser) HTML
HTML, multimedia Server side scripting — PHP, ASP,...
JavaScript

BE AWARE, BE SECURE

s Wit -

4/23/2013

Y

B SQL Injection — basic

= The attack:
= User provides inputs to the server
= Inputs are inserted in queries to the DB
= Client input with SQL metacharacters inserted in SQL queries
= Example — vulnerable PHP code in the server:
Sorder_id = SHTTP_POST_VARS [‘order_id’];
Squery = “SELECT * FROM orders WHERE id=" . Sorder _id;
Sresult = mysql_query(Squery);
= Good input: 123
= SELECT * FROM orders WHERE id=123
= Attack input: 1 OR 1=1
= SELECT * FROM orders WHERE id=1 OR 1=1

BE AWARE, BE SECURE ! enisa -

Y

B Cross Site Scripting (XSS)

= Also for webapps but the victim is the client/user
= Attack consists in running a malicious script in the browser of the
victim (e.g. JavaScript)
Example:
= User does not trust email scripts but trusts the vulnerable site

v _
email @\f (L Attacker
Victim: /_,é,ﬁvi
“click here”

vulnerable web application
> reflects a script send by the victim

i

—t
browser S evil script
runs evil reflected
script
BEAWARE. B i message posted is a script that:pops.up V-'V

4/23/2013

10

O
gt Qe e
& Other vulnerabilities
= Race conditions
= Input validation — command injection,
format string vulnerabilities
= Web - session management,
direct reference to objects,
cross site request forgery, ...
= Configuration, authentication
= Malicious host — software piracy and
tampering, fraud in online applications
= Besides many variants of those we just saw...
BE AWARE, BE SECURE g.msa

0

" e
EE!I

SECURITY|
MONTH

Solution part 1 - Prevention

4/23/2013

11

e

Solution 1 — Sec. development lifecycle

Consider current laws (Sarbanes-Oxley Act,
Health Insurance Portability and Accountability
Act (HIPAA)), standards like ISO 17799, others like
,eqife‘;':ms the Web Application Security Standards, etc.
Software
|
|
A
. Operation
= Waterfall model

BE AWARE, BE SECURE ;! enisa -

€.
=S : ;

B Solution 1 —Sec. development lifecycle
Translate generic requirements into specific
software requirements. Can be done using misuse

cases (using common vulnerability lists, resources
requirements
used by the sw,...)
|
requirements
|
Now considered part of design |j »
)
Translate requirements into mechanisms; avoid _'_\

introducing design vulnerabilities by following the

X Lo n . A Operation
design principles, doing risk analysis

BE AWARE, BE SECURE ;! enisa -

4/23/2013

12

B Solution 1 —Sec. development lifecycle

Avoid introducing coding
requirements vulnerabilities using

.. fware secure coding practices
" requirements

T, Coding

Security testing

A
L Test
(attack injection,
i i .,
static analysis,...) F————— .
Collect information about security —J

events, issue reports and patches

BE AWARE, BE SECURE X en.u:m -
WWW.enisa. europa. eu/cybersecmaonth oo =

B Solution 1 —Sec. development lifecycle

Microsoft has been doing an excellent job disseminating its
Security Development Lifecycle

= Documentation and tools

= http://www.microsoft.com/security/sdl/

s X . . EEEE—
m ——— : .

.. .4

Establish Security Establish Design Use Approved

Dynamic Incident
Requirements Requirements Tools

Analysis Respanse Plan

Core Security

Create Quality Analyze Attack Deprecate Unsafe
Training

Fuzz Final Security
Gates / Bug Bars Surface Functions

Testing Review

Threat Sta Artack Surface Release
Maodeling Review Archive

BE AWARE, BE SECURE

4/23/2013

13

Y

B Solution 2 — Risk analysis

= For software security, the idea is mainly to find and rank design vulnerabilities

= Several approaches, one is Threat Modeling; steps:

= Information gathering: from developers, documentation, code profiling

= Application decomposition, in attack targets (data flow diagrams, UML)

= |dentify vulnerabilities: by analyzing each component and interaction using a
vulnerability taxonomy (e.g., STRIDE)

= Rank vulnerabilities: to prioritize which to correct first (e.g., with DREAD)

BE AWARE, BE SECURE

STRIDE taxonomy
v'Spoofing identity
v'Tampering with data
v'Repudiation
v'Information disclosure
v'Denial of service
v'Elevation of privilege

DREAD

v'Damage potential
v'Reproducibility
v'Exploitability

v Affected users
v'Discoverability

)

Solution 3 — Secure coding

= Buffer overflows

= Simply check if there is enough space in the destination buffer

= SQL injection

= Sanitize the inputs (it’s easier to say than do)

= Cross Site Scripting

= Sanitize the inputs, encode the outputs (but it’s also easier...)

= but errare humanum est, code can be huge...

OUR, GOAL T3 TD LWRITE
BUGFREE SOFTWARE.
T'LL PAY A TEN-DOLLAR
BONUS FOR EVERY BUG
YOU FIND AMD FIR,

5 s E-mads SEOTTADAMSSAOL COU

puo0}

\rl‘:?k \
W b

S

=

3 B 1988 United Fastas Syndicsts. Ing [KVE}

1 HOPE
THLS
DRIVES
THE RIGHT
BEHAVIOR,.

\

T'™M GONNA
WRITE ME A
NEL) MINIVAN
THLS AFTER-
NOON!

BE AWARE, BE SECURE

4/23/2013

14

& Solution 4 — Static code analysis

= Vulnerabilities are in the source code so a solution is... to look for
them

= Butit’s like finding a needle in the haystack
= Code analyzers do it automatically

= “read” the (source) code and check
if certain rules are satisfied
(e.g., is memory free’'d twice?)

Congratulatiens,y
it anly tock you

= Commercial tools are available 65299 seconds

= HP-Fortify, Coverity, Ounce Labs,
Veracode

= Many open, free,...

BE AWARE, BE SECURE
iropa.eu/cybersecm

v by £ 4

& Solution 4 — Static code analysis

= Code analyzers work essentially in two phases
= Generate an Abstract Syntax Tree — AST (like a compiler)
= Search for vulnerabilities in the AST; several ways:
= Syntactic analysis — check if “dangerous” functions are called (e.g., gets
almost always vulnerable)
= Taint checking — follow the data flow and check if input reaches dangerous
functions (e.g., strcpy)

= Control-flow analysis — follow the control flow paths and do several checks
(e.g., if there are double frees)

BE AWARE, BE SECURE E en.isa -

4/23/2013

15

Y

B Solution 5 — Attack injection/fuzzing

Look for vulnerabilities without delving into the complexity of the
software, i.e., looking at it as a black box

N, TARGET SYSTEM
| vulnerability :
\ :
: * '
H 1
— intrusion error failure |
R | l
N\ IRRECLELLEE '
e |
\j Generate various | @
| | attacks Look for errors /
| @ failures
|

Find the correspondent
vulnerability for that
particular attack

BE AWARE, BE SECURE

O
B Solution 5 — Attack injection/fuzzing

= Fuzzers

Late 80s/early 90s Miller/Fredrikse/So were studding the integrity of Unix
command line utilities

During a thunderstorm one was attempting to use the utilities over a
dial-up connection but the utilities were crashing
= Data was being modified in the line due to noise

Thus they developed an utility called fuzz to generate random input and
test the robustness of software

= Currently used to find vulnerabilities in software
= Very successfully...

BE AWARE, BE SECURE ,"en.u:sa -

4/23/2013

16

Egagi"-'f)

BE AWAR

Solution 5 — Attack injection/fuzzing

= Recursive fuzzing
= Iterating though all possible combinations of characters from an alphabet
= Ex.: URL followed by 8 hexadecimal digits; try all possible combinations of
the 8 digits
= Replacive fuzzing
= |terating though a set of predefined values, called fuzz vectors
= Ex.: look for XSS vulnerabilities by providing the following inputs:
= >'"><script>alert("XSS")</script>&
= ' 1"eXSS>=&{()}
= Attack injection (AJECT project)

= Pick a state for the target and an input to inject; put the target in that
state; inject; monitor; repeat

E, BE SECURE ! enisa E

0

[

SECURITY|

MONTH

[]

| 3
—3
[EUROPEAN]
(MONTH]

Solution part 2 — Runtime

protection

4/23/2013

17

Y

B Solution 6 — Runtime protections

= Canaries / Stack cookies ,‘
= Like canaries in coal mines
= Compiler introduces canaries and checks
void test(char *s) {
push canary;
char buf[10];

strepy(buf, s); address of buf
-)) address of s
if (canary is changed) {log; exit;};
}
buf
canary
saved ebp
BE AWARE, BE SECURE overflow L ret a'(}ams

Y

B Solution 6 — Runtime protections

= Address space layout randomization
= Theidea is to randomize the addresses where code and data are mapped in
runtime
= The memory layout tends to be the same for every execution

= Does not prevent exploitation but usually makes it unreliable — what address shall
be written over the return address?

BE AWARE, BE SECURE ,"en.u:sn -

4/23/2013

18

{‘?’
& Solution 7 — Language security
= Java’s (later .NET) challenge: running mobile (not trusted) code in a machine
= Solution/part 1: run code in a sandbox
= Sandbox imposes a security policy to the code: it can only access the
resources permitted by the sandbox
= Sandbox administrator defines the policy
= Policy depends on the code’s origin (URL) and/or signature
= Solution/part 2: secure the language conventions
= Type safety — data always manipulated following its type
= Memory safety — memory accesses restricted to object’s memory space
= Control flow safety — jumps made only to valid places
‘_d:) = These invariants are enforced in 3 moments: compile time, load time, run
é time
Java

BE AWARE, BE SECURE ! enisa -

Y

¥ Solution 8 — Trusted computing

= Trusted Computing Group — an industry consortium defining open
specifications for “trusted computing”

= Main achievement is the Trusted Platform Module (TPM) — a chip now found
on the mainboard of many PCs

= Two basic functions:
= Storage of cryptographic keys — for keeping them secure
= Storage of integrity measurements — to help detect software modifications

RUSTED
COMPUTING GROUP*

BE AWARE, BE SECURE ! enisa -

4/23/2013

19

Q)
E Solution 8 — Trusted computing

= What’sinside?

Component classes Subcomponents

Functional units Random number generator
Hash unit
HMAC calculator
RSA key generator
RSA encryption/decryption/signing

Non-volatile memory Endorsement key
Storage root key
Owner authorization secret key

Volatile memory RSA key pairs
Platform configuration registers
Key handles
Authorization session handles

BE AWARE, BE SECURE

& Solution 8 — Trusted computing

= TPM has at least 16 Platform Configuration Registers (PCR)
= A PCR stores (typically) a measurement of a software block, i.e., its
cryptographic hash
= During system boot, the it" module to run stores the hash of the (i+1)® module in
PCR,,
= Example: BIOS stores hash(boot loader) in PCR; boot loader stores
hash(hypervisor) in PCR,

= Avector of PCR values gives a trusted measurement of the software
configuration

= Can’t the 1%t module provide a false hash of the 2nd?

= We assume we can trust the 1stmodule, thus called the Static Root of Trust
for Measurement (SRTM)

= Can’t a PCR be overwritten at any time?

= No, there is no write operation, only extend
= PCR, < H(PCR, || h) (the 1%t time, PCR=0)

BE AWARE, BE SECURE

4/23/2013

20

Q)
E Solution 8 — Trusted computing

= Remote attestation: computer gives to challenger a measurement of the
software configuration, i.e., a vector of PCR values

= Challenger has the Endorsement Key Certificate, signed by the TPM vendor (means
it’s a real TPM!)

2- Request TPM Computer being
vector of PCRs attested (with

signed with EK TPM)

3- PCR vector

1-R t
eques (signed with EK)

attestation

4- Verify signature and
if PCR values match a
trusted configuration

BE AWARE, BE SECURE ,"en.u:sa -

E Solution 8 — Trusted computing

= Other usages for the TPM:
= Store cryptographic keys
= Inside the TPM or outside of it but encrypted by it
= Bind release of cryptographic key to a certain software configuration

= Used in Microsoft’s BitLocker Drive Encryption (but optional and typically
disabled)

= Assign unique id to a blob of data
= Using a TPM counter and its signature

BE AWARE, BE SECURE ,"en.u:sa -

4/23/2013

21

0

[

SECURITY|
ONTH

[]

| 3
—3
[EUROPEAN]

A taste of research

{"."’
& Static analysis with code correction
= Preliminary
= AWAP: static analysis of PHP code + automatic correction
= When a vulnerability is found, a “patch” is inserted
= Also, a detailed report is created for the programmer to learn with the
mistake
= Example of vulnerable code:
= $a=$_GET[user’];
= Sb=$_GET['pass’];
= Squery = “SELECT * FROM users WHERE u ='$a’ AND p =’Sb"”’;
= $r=mysql_query($query);
= Corrected code:
= $a=mysql_real_escape_string($_GET['user’]);
= $b=mysql_real_escape_string($_GET['pass’]);
BE AWARE, BE SECURE enrsa

4/23/2013

22

Y

B Intrusion tolerance with replication

= Basicidea
= Accept the inevitability of vulnerabilities and successful attacks

= Replicate in several and guarantee that it works as long as no more than f are
suffer intrusions

= Example instantiation: a storage cloud-of-clouds

BE AWARE, BE SECURE

Y

B Intrusion tolerance with replication

= Benefits:

= Can tolerate data corruption, e.g., due to malicious insiders, successful
attacks, accidental faults (e.g., due to bugs)

= Can tolerate datacenter and cloud outages
= No vendor lock-in
= Confidentiality (data is encrypted)
= Costs
= §cost doubles
= Reads become faster
= Writes become slower

= (experiments with 437000+ reads/writes between Sep. 10th and Oct. 7th
2010, clients scattered through the world, from Brazil to Japan)

BE AWARE, BE SECURE ,"en.u:sn -

4/23/2013

23

4/23/2013

0

aad? .
EE!I

SECURITY|
MONTH

Conclusions

'
B Conclusions
= Software security is important + interesting + difficult
= New vulnerabilities every day
= New types of vulnerabilities every year
= New solutions every...
= Requires
= Knowing current vulnerabilities
= Know the new ones that appear (especially new types)
= Know the solutions and use them
= Run tools, run tools, run tools
= Much research going on
= THIS SOFTWARE IS PROVIDED “AS IS” is not acceptable
BE AWARE, BE SE _';nrsa__ E

24

G

& Thank you. Questions?

= To probe further:

= Miguel Pupo Correia
http://homepages.gsd.inesc-id.pt/~mpc/
http://www.seguranca-informatica.net/

BE AWARE, BE SECURE
www.enisa.europa.eu/cybersecmanth

4/23/2013

25

