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Blockchain Replication: 
The Whys and The Hows
Replicating Smart Contracts for Dependability



• Multi-cloud storage: client-side library that accesses clouds using 
a BFT quorum protocol
– Benefit 1: dependability even if f clouds fail
– Benefit 2: enhance the dependability provided by individual clouds

Motivation: Cloud storage replication – DepSky

Client 
DepSky lib.

Clouds

few clouds as clouds are trustworthy



• Client accesses nodes that run a BFT consensus protocol (PoW, 
PoS, classical SMR, …)
– Benefit: a dependable system out of untrusted nodes

Replication in a Blockchain

Client

Nodes

many nodes as nodes are not trustworthy
in permissionless blockchains



• Client accesses different blockchains
• Contracts replicated in several blockchains instead of just one

– Benefit 1: dependability even if f blockchains fail
– Benefit 2: enhance dependability provided by individual blockchains 
– Benefit 3: allow using low(er) quality blockchains: Blockchain-of-Blockchains

Today: smart contract replication
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• The problem
• Preliminaries
• V1: Register Contract Replication 
• V2: Generalized Contract Replication 
• Key takeaways

Outline 
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The problem



• Bitcoin, Ethereum,…

Permissionless Blockchains
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consensustransactions blocks

2 types:
- Native currency transfer
- Function call in contract

Sequence of transactions that 
defines the state of all the accounts 
and all the contracts



• “If a majority of CPU power is controlled by honest nodes, the 
honest chain will grow the fastest and outpace any competing 
chains.” (Nakamoto’s Bitcoin whitepaper)

• What if a majority of CPU power is controlled by malicious 
nodes? 

Proof of Work (PoW)
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• Attacker creates new blocks at depths (“positions”) already considered stable 
and manages to prune the original chain:

Chain reorganization / 51% attack
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Attack blocks: may contain double spends

Byzantine failure: state of the system is modified!



• Not if the blockchain system is “huge”, e.g., Bitcoin
– ~14K nodes and more than 2x1020 hashes per second

• Possible with smaller blockchains:
– Bitcoin Gold (Bitcoin hard fork 2017)
• May 2018: ~18M USD double-spent; 76 nodes

– Ethereum Classic (Ethereum hard fork 2016)
• Jan. 2019: 15 reorganizations, ~1M USD double-spent; 532 nodes

• Proof-of-Stake: 
– Same problem in smaller blockchains, i.e., if the stakes are not high enough

Are these attacks possible?
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Preliminaries



• Client accesses different blockchains
• Contracts replicated in several blockchains instead of just 1

Today: Blockchain / contract replication

12 |

Client

Blockchains

few blockchains as blockchains are trustworthy

Ethereum, Polygon, 
Klaytn, Arbitrum, 
Optimism, Avalanche, 
Ethermint, Binance
Smart Chain, 
Ethereum Classic, …



• Blockchains are distributed machines, not individual servers

• Blockchains can’t be modified (only contracts can be added)

• Contracts can’t communicate with contracts in other blockchains

• Contracts can’t sign data

• Operations on contracts have weak finality

• Native cryptocurrencies have different prices

• Minor: interoperability, as Blockchains and contracts are heterogeneous
– Solved considering single VM (e.g., EVM) and a client-side library

– I’m not considering smart contract diversity / N-version programming

Challenges for contract replication protocols
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• System-wide:
– n – number of blockchains used for replication: B1, B2,…Bn

– f – maximum number of faulty blockchains (out of n)

• Blockchain-specific:
– a – min. num. nodes to access for operation to be correct

(a=1 if client trusts or runs the node)
– d – min. depth for block to be final

– f vs d trade-off: higher f à lower d and the opposite

Parameters 
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a nodes accessed in each blockchain, 
waiting for depth to be >= d



• Blockchains: no more than f blockchains can be faulty

• Clients: always correct; follow the protocol and private keys are not disclosed

• Clients and nodes communicate through authenticated reliable channels

• Operation requests are authentic and non-repudiable (signed)

• Cryptographic schemes are trusted

• Contract starts created in all blockchains and in the same state

Assumptions
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V1: Register Contract 
Replication 



• Constraints on the data stored in the contract:

• Data is self-verifiable

• Just reads and writes over individual registers
– SC is as a multi-writer, multi-reader multi-register
– Consensus number 1

Simplifications of v1
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• Contract that stores document data (for many docs)
– Not the full documents (expensive)

• SC stores the following data for each document: 
– Doc ID 
– Doc authenticator (hash)
– Other document metadata

– Signer ID 
– Short Signature of doc-data
– Version of the document 

Contract
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doc-data

sign-data



• BFT quorum protocol
• Quorum – set of subsets of blockchains, e.g., all sets of n-f blockchains

• Clients communicate with quorums of blockchains

• Basic primitive:
– Q-RPC(op, valid()) – invokes operation op in replicas of the contract until
• there are replies (rep) from a nodes, with depth at least d for each blockchain

• that satisfy the predicate valid(rep)
• for n-f blockchains 

– Can be optimized for: 
• speed (send request to all blockchains) or cost (send request first to cheapest n-f 

Protocol
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• Write doc-data
– (1) Q-RPC read version of the doc-data stored; valid() checks the signature
• Replicas return the highest version, using Signer ID to break ties
– (2) new-version = max{versions}+1  or  0 if none
– (3) Q-RPC write doc-data with version new-version

– The protocol ensures n-f blockchains 
store the latest version
• For f=1 and n=2f+1=3 à n-f=2 blockchains

Protocol – write
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Bc1

Bc2

Bc4

Bc3

Client

(1) Q-RPC read

(3) Q-RPC write



• Read doc-data
– Q-RPC read version of the doc-data stored; valid() checks the signature
– return doc-data corresponding to max{versions}

• The protocol ensures that 
• candidate doc-data values come from n-f blockchains, 
• which must intersect with the n-f in which it 

was written, 
• so the version returned must be the most recent

• NB: the “value of the register” is that returned by read

Protocol – read
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Bc1

Bc2

Bc3

Client

Q-RPC read

Bc4



• Consistency = Regular
– a read concurrent with two or more writes returns any of the values being 

written or the previous value
– n >= 2f+1

• Is there concurrency? Yes: operations in parallel in n blockchains
– They can get in different orders to different blockchains

Modification for atomic consistency:

Consistency 
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• Data structure:
– Table (map) indexed by Doc ID (doc-id) and containing the data above

• Methods:
– Implement the SC functionality & the BFT quorum protocol
– registerDoc(doc-data, sign-data, version) – write protocol
– getDoc(doc-id) returns doc-data, sign-data – read protocol
– deleteDoc(doc-id) – write protocol

Replicated register contract
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V2: Generalized 
Contract Replication



• Token – blockchain-based abstraction that can be owned 
– Represents some asset: collectible, identity, resource,…
– Created and managed in contracts; structure usually standard:
• ERC20 – fungible tokens
• ERC721 – non-fungible tokens (NFCs)

• All have functions like:
– Balance of the contract 
– Transfer token

Token contracts
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• Data is not self-verifiable 
– e.g., token balance is just a number

• Operations on multiple variables and not idempotent
– consensus number > 1

• Replicating payments in cryptocurrencies

• Dealing with faulty clients

Replicating tokens – challenges for v2
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• Example – variable is an integer (from ERC20):
• balances[_to] += _value;

• Solution: modify protocol to not require 
self-verifiable data

• Read/write protocols & Q-RPC similar with: 
– n >= 3f+1 and the result is the most voted
– Quorum intersections must have at least 2f+1

blockchains, so that a majority is correct

Data not self-verifiable
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• Example from ERC20:
– Moves _value tokens from caller’s account to account _to; returns a Boolean (success yes/no)

function transfer(address _to, uint256 _value) … {
…
balances[msg.sender] -= _value;
balances[_to] += _value;
… 
return true;

}

function transfer(address _to, uint256 _value) public returns  
(bool success) {

require(balances[msg.sender] >= _value);
balances[msg.sender] -= _value;
balances[_to] += _value;

Operations on multiple variables: problem
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operation over 2 variables



• Accept that replicas (updated with Q-RPC) will converge later

• CCRDTs – Computation Conflict-free Replicated Data Types
– Data types that allow operations over updates (e.g., integer inc./dec.) +
– Replicas converge to the same result when all operations are applied

• We model the contract state as a CCRDT

Ops on multiple variables: solution
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• Contract state modeled as a single multi-register
– There is a single version number used for reads/writes
– All write/update operations are stored on a queue
– All operations are executed when received

• Data type = multi-register composed of registers of:
– Numeric types with a single operation: addition

– Addition is commutative => two sequences of the same additions over the same initial value give the 
same result, independently of the order

– Numeric or non-numeric types with single operation: assignation

Ops on multiple variables: CCRDT
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• Clients access n-f replicas => (temporary) inconsistencies:

• Owner periodically sends missing operations to the replicas
– QueueCleanUp protocol: gets queued ops from replicas and updates

– It must be the owner: only him can give away tokens without paying

Ops on multiple variables: inconsistencies
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Replica Op1 Op2 Op3 Op4 …

SC1 W1 W2 R1

SC2 R1 W2 W3

SC3 W1 W3



• Owner
– Substitute it by a Decentralized Autonomous Organization (DAO)
– i.e., a contract in which actions are decided cooperatively, e.g., by voting

• Other clients (e.g., buyers):
– Owner or DAO uses queues returned obtained by the QueueCleanUp

protocol to detect faulty clients 
• e.g., that write different values in different replicas
– Q-RPC to function BlockClients to add faulty clients to a blacklist

Dealing with faulty clients
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Key takeaways



• A first shot at replicating contracts in different Blockchains 
– To increase dependability and/or allow using smaller Blockchains

• Challenges
– Many: limited server-side code, not possible to modify blockchains, contracts 

can’t communicate or sign, …
• Key technical contributions
– Fitting Byzantine quorum protocols in the constraints of Blockchain / SCs
– Combination of Byzantine quorum protocols with CCRDTs

Key takeaways
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