
inesc-id.pt

Miguel Pupo Correia

IFIP WG 10.4 83rd meeting – Melbourne
January 2023

Blockchain Replication:
The Whys and The Hows
Replicating Smart Contracts for Dependability

• Multi-cloud storage: client-side library that accesses clouds using
a BFT quorum protocol
– Benefit 1: dependability even if f clouds fail
– Benefit 2: enhance the dependability provided by individual clouds

Motivation: Cloud storage replication – DepSky

Client
DepSky lib.

Clouds

few clouds as clouds are trustworthy

• Client accesses nodes that run a BFT consensus protocol (PoW,
PoS, classical SMR, …)
– Benefit: a dependable system out of untrusted nodes

Replication in a Blockchain

Client

Nodes

many nodes as nodes are not trustworthy
in permissionless blockchains

• Client accesses different blockchains
• Contracts replicated in several blockchains instead of just one

– Benefit 1: dependability even if f blockchains fail
– Benefit 2: enhance dependability provided by individual blockchains
– Benefit 3: allow using low(er) quality blockchains: Blockchain-of-Blockchains

Today: smart contract replication

4 |

Client

Blockchains

few blockchains as blockchains are trustworthy

• The problem
• Preliminaries
• V1: Register Contract Replication
• V2: Generalized Contract Replication
• Key takeaways

Outline

5

The problem

• Bitcoin, Ethereum,…

Permissionless Blockchains

7 |

consensustransactions blocks

2 types:
- Native currency transfer
- Function call in contract

Sequence of transactions that
defines the state of all the accounts
and all the contracts

• “If a majority of CPU power is controlled by honest nodes, the
honest chain will grow the fastest and outpace any competing
chains.” (Nakamoto’s Bitcoin whitepaper)

• What if a majority of CPU power is controlled by malicious
nodes?

Proof of Work (PoW)

8 |

• Attacker creates new blocks at depths (“positions”) already considered stable
and manages to prune the original chain:

Chain reorganization / 51% attack

9 |

Block of
transactions

Block of
transactions

Block of
transactions

Block of
transactions

Block of
transactions

Block of
transactions

Block of
transactions

Block of
transactions

Block of
transactions

fork

prune the original
blockchain

Attack blocks: may contain double spends

Byzantine failure: state of the system is modified!

• Not if the blockchain system is “huge”, e.g., Bitcoin
– ~14K nodes and more than 2x1020 hashes per second

• Possible with smaller blockchains:
– Bitcoin Gold (Bitcoin hard fork 2017)
• May 2018: ~18M USD double-spent; 76 nodes

– Ethereum Classic (Ethereum hard fork 2016)
• Jan. 2019: 15 reorganizations, ~1M USD double-spent; 532 nodes

• Proof-of-Stake:
– Same problem in smaller blockchains, i.e., if the stakes are not high enough

Are these attacks possible?

10 |

Preliminaries

• Client accesses different blockchains
• Contracts replicated in several blockchains instead of just 1

Today: Blockchain / contract replication

12 |

Client

Blockchains

few blockchains as blockchains are trustworthy

Ethereum, Polygon,
Klaytn, Arbitrum,
Optimism, Avalanche,
Ethermint, Binance
Smart Chain,
Ethereum Classic, …

• Blockchains are distributed machines, not individual servers

• Blockchains can’t be modified (only contracts can be added)

• Contracts can’t communicate with contracts in other blockchains

• Contracts can’t sign data

• Operations on contracts have weak finality

• Native cryptocurrencies have different prices

• Minor: interoperability, as Blockchains and contracts are heterogeneous
– Solved considering single VM (e.g., EVM) and a client-side library

– I’m not considering smart contract diversity / N-version programming

Challenges for contract replication protocols

13 |

• System-wide:
– n – number of blockchains used for replication: B1, B2,…Bn

– f – maximum number of faulty blockchains (out of n)

• Blockchain-specific:
– a – min. num. nodes to access for operation to be correct

(a=1 if client trusts or runs the node)
– d – min. depth for block to be final

– f vs d trade-off: higher f à lower d and the opposite

Parameters

14 |

a nodes accessed in each blockchain,
waiting for depth to be >= d

• Blockchains: no more than f blockchains can be faulty

• Clients: always correct; follow the protocol and private keys are not disclosed

• Clients and nodes communicate through authenticated reliable channels

• Operation requests are authentic and non-repudiable (signed)

• Cryptographic schemes are trusted

• Contract starts created in all blockchains and in the same state

Assumptions

15 |

V1: Register Contract
Replication

• Constraints on the data stored in the contract:

• Data is self-verifiable

• Just reads and writes over individual registers
– SC is as a multi-writer, multi-reader multi-register
– Consensus number 1

Simplifications of v1

17 |

• Contract that stores document data (for many docs)
– Not the full documents (expensive)

• SC stores the following data for each document:
– Doc ID
– Doc authenticator (hash)
– Other document metadata

– Signer ID
– Short Signature of doc-data
– Version of the document

Contract

18 |

doc-data

sign-data

• BFT quorum protocol
• Quorum – set of subsets of blockchains, e.g., all sets of n-f blockchains

• Clients communicate with quorums of blockchains

• Basic primitive:
– Q-RPC(op, valid()) – invokes operation op in replicas of the contract until
• there are replies (rep) from a nodes, with depth at least d for each blockchain

• that satisfy the predicate valid(rep)
• for n-f blockchains

– Can be optimized for:
• speed (send request to all blockchains) or cost (send request first to cheapest n-f

Protocol

19 |

• Write doc-data
– (1) Q-RPC read version of the doc-data stored; valid() checks the signature
• Replicas return the highest version, using Signer ID to break ties
– (2) new-version = max{versions}+1 or 0 if none
– (3) Q-RPC write doc-data with version new-version

– The protocol ensures n-f blockchains
store the latest version
• For f=1 and n=2f+1=3 à n-f=2 blockchains

Protocol – write

20 |

Bc1

Bc2

Bc4

Bc3

Client

(1) Q-RPC read

(3) Q-RPC write

• Read doc-data
– Q-RPC read version of the doc-data stored; valid() checks the signature
– return doc-data corresponding to max{versions}

• The protocol ensures that
• candidate doc-data values come from n-f blockchains,
• which must intersect with the n-f in which it

was written,
• so the version returned must be the most recent

• NB: the “value of the register” is that returned by read

Protocol – read

21 |

Bc1

Bc2

Bc3

Client

Q-RPC read

Bc4

• Consistency = Regular
– a read concurrent with two or more writes returns any of the values being

written or the previous value
– n >= 2f+1

• Is there concurrency? Yes: operations in parallel in n blockchains
– They can get in different orders to different blockchains

Modification for atomic consistency:

Consistency

22 |

• Data structure:
– Table (map) indexed by Doc ID (doc-id) and containing the data above

• Methods:
– Implement the SC functionality & the BFT quorum protocol
– registerDoc(doc-data, sign-data, version) – write protocol
– getDoc(doc-id) returns doc-data, sign-data – read protocol
– deleteDoc(doc-id) – write protocol

Replicated register contract

23 |

V2: Generalized
Contract Replication

• Token – blockchain-based abstraction that can be owned
– Represents some asset: collectible, identity, resource,…
– Created and managed in contracts; structure usually standard:
• ERC20 – fungible tokens
• ERC721 – non-fungible tokens (NFCs)

• All have functions like:
– Balance of the contract
– Transfer token

Token contracts

25 |

• Data is not self-verifiable
– e.g., token balance is just a number

• Operations on multiple variables and not idempotent
– consensus number > 1

• Replicating payments in cryptocurrencies

• Dealing with faulty clients

Replicating tokens – challenges for v2

26 |

• Example – variable is an integer (from ERC20):
• balances[_to] += _value;

• Solution: modify protocol to not require
self-verifiable data

• Read/write protocols & Q-RPC similar with:
– n >= 3f+1 and the result is the most voted
– Quorum intersections must have at least 2f+1

blockchains, so that a majority is correct

Data not self-verifiable

27 |

Bc1

Bc2

Bc3

Client

Q-RPC read

Bc4

vo
te

• Example from ERC20:
– Moves _value tokens from caller’s account to account _to; returns a Boolean (success yes/no)

function transfer(address _to, uint256 _value) … {
…
balances[msg.sender] -= _value;
balances[_to] += _value;
…
return true;

}

function transfer(address _to, uint256 _value) public returns
(bool success) {

require(balances[msg.sender] >= _value);
balances[msg.sender] -= _value;
balances[_to] += _value;

Operations on multiple variables: problem

28 |

operation over 2 variables

• Accept that replicas (updated with Q-RPC) will converge later

• CCRDTs – Computation Conflict-free Replicated Data Types
– Data types that allow operations over updates (e.g., integer inc./dec.) +
– Replicas converge to the same result when all operations are applied

• We model the contract state as a CCRDT

Ops on multiple variables: solution

29 |

• Contract state modeled as a single multi-register
– There is a single version number used for reads/writes
– All write/update operations are stored on a queue
– All operations are executed when received

• Data type = multi-register composed of registers of:
– Numeric types with a single operation: addition

– Addition is commutative => two sequences of the same additions over the same initial value give the
same result, independently of the order

– Numeric or non-numeric types with single operation: assignation

Ops on multiple variables: CCRDT

30 |

• Clients access n-f replicas => (temporary) inconsistencies:

• Owner periodically sends missing operations to the replicas
– QueueCleanUp protocol: gets queued ops from replicas and updates

– It must be the owner: only him can give away tokens without paying

Ops on multiple variables: inconsistencies

31 |

Replica Op1 Op2 Op3 Op4 …

SC1 W1 W2 R1

SC2 R1 W2 W3

SC3 W1 W3

• Owner
– Substitute it by a Decentralized Autonomous Organization (DAO)
– i.e., a contract in which actions are decided cooperatively, e.g., by voting

• Other clients (e.g., buyers):
– Owner or DAO uses queues returned obtained by the QueueCleanUp

protocol to detect faulty clients
• e.g., that write different values in different replicas
– Q-RPC to function BlockClients to add faulty clients to a blacklist

Dealing with faulty clients

38 |

Key takeaways

• A first shot at replicating contracts in different Blockchains
– To increase dependability and/or allow using smaller Blockchains

• Challenges
– Many: limited server-side code, not possible to modify blockchains, contracts

can’t communicate or sign, …
• Key technical contributions
– Fitting Byzantine quorum protocols in the constraints of Blockchain / SCs
– Combination of Byzantine quorum protocols with CCRDTs

Key takeaways

40 |

inesc-id.pt

https://www.gsd.inesc-id.pt/~mpc/

Thank you

