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ABSTRACT Microservice architectures allow complex applications to be developed as a collection of
loosely coupled components. The heterogeneous architecture of these applications makes the process of
recovering from intrusions especially complex, error-prone, and time-consuming. Although there are several
recovery mechanisms for monolithic applications, applying such mechanisms in microservices would not
work due to the distribution of the components, the different technologies used by each service, and their
scale. Moreover, it can be difficult to trace the services affected by an intrusion and which actions to revert.
We propose µVerum, a framework for recovering microservices from intrusions that corrupt the application
state. Our approach allows recovery of large-scale microservice applications by logging user requests and
the operations that are propagated through several microservices. When a system administrator detects a
faulty request, µVerum can execute compensating operations in each of the affected microservices. We
implemented, evaluated, and made the code of µVerum available. Our experiments show that µVerum is
able to revert the effects in an intrusion in one second while the application is running.

INDEX TERMS Microservices, Cloud Computing, Intrusion Recovery

I. INTRODUCTION
The development of complex web applications has shifted
from the traditional monolithic architecture to a distributed
architecture that allows developers to organize in small teams,
each one responsible for one self-contained component (or
small set of components) of the application, and/or simply
to reuse existing components. Each component is called a
microservice [1]–[5] and communicates with other microser-
vices through network interfaces [6].

Microservice applications rely on network communication
and, as such, require isolation mechanisms, such as firewalls.
Despite the best protection efforts, malicious users may still
be able to bypass security, for example, by exploiting a
misconfiguration or a previously unknown bug [7], leading
to an intrusion. When such an attack occurs, it can corrupt
the state of microservices, i.e., modify data for the benefit of
the attacker. Moreover, its effects will tend to propagate to
other microservices. Using the built-in rollback mechanism
of database management systems is not an option because
these mechanisms aim to revert a database transaction that
did not complete successfuly. This is not the case of an in-
trusion in a microservices application in which the malicious

operation is an HTTP request that was completely executed,
meaning that any database transaction associated with it was
also completely executed and cannot be rollbacked. Another
approach would be to revert the state of the application to a
previous point in time prior to the attack (a checkpoint) and
continue execution from that point forward [8] . However,
this approach has some drawbacks: it requires consecutive and
consistent checkpoints of the state and synchronization across
multiple machines, which may be unfeasible in microservices;
the application must be offline during recovery; and any
legitimate operation after the attack is lost.

There is previous work on intrusion recovery for storage
and databases [9]–[15], for monolithic web applications [16]–
[18] and for other applications [10], [11], [19], [20]. Each of
these intrusion recovery systems was designed for recovering
intrusions on a specific kind of system (databases, web ap-
plications, etc.). It is not possible to use these systems with a
microservice application for these reasons:
• Each microservice may be written in a different pro-

gramming language and may use a different kind of
database (SQL, NoSQL). This heterogeneity may require
a different recovery scheme for each microservice;
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• As opposed to a monolithic application, in which a
user interaction generates a single HTTP request1, in
a microservice application, a user interaction generates
multiple HTTP requests across several microservices.
This correlation of HTTP requests and database state-
ments is necessary in order to coordinate recovery;

• Some of the existing works require the application to
be temporarily unavailable while recovery is carried
out [10], [11], [18], [19], [21]–[23]. In a microservice
application composed of hundreds of microservices, hav-
ing to shut down the entire application is complex, time-
consuming, and can result in significant monetary costs
for the organization.

We present µVerum, a novel framework for allowing mi-
croservice applications to recover from intrusions without
being shut down during recovery. µVerum recovers the af-
fected services by executing compensating operations [24]
that undo the effects of intrusions while preserving the valid
data recorded in the system. µVerum assumes a system ar-
chitecture with the components that can be found in typical
microservice applications, e.g., routers and a discovery ser-
vice [25]. Developers can setup µVerum progressively in a
subset of microservices and gradually extend it to the entire
application.

The malicious operations to revert can be identified by
the administrator of the application using the µVerum search
engine or an intrusion detection system (IDS) [26]–[32]. It is
possible to combine µVerum with an IDS to reduce recovery
time; however, we do not discuss intrusion detection in detail,
as it has been widely studied for decades and is mostly
orthogonal to intrusion recovery. We also do not consider the
general problem of protecting microservice applications of
intrusions, something that has been studied before [33], [34]
and that is also orthogonal to intrusion recovery.

We evaluated µVerum by performing experiments with
two open-source microservice applications: SockShop [35]
and Piggy Metrics [36]. Our experiments show that µVerum
affects the performance of the application by less than 14%
with asynchronous logging, which can be further reduced
by scaling the agents of the most accessed microservices.
µVerum has shown to be capable of recovering faulty requests
while maintaining the availability of the application.

This paper provides the following contributions: a novel
framework for the development of microservice applications
that allows practical intrusion recovery with consistency guar-
antees; a prototype of the recovery system µVerum 2; and an
experimental evaluation with real-world applications.

The paper is structured as follows: Section II explains the
microservices approach, Section III discusses the problem of
the dependency graph, Section IV presents the µVerum ap-
proach, Section V describes the experiments we performed,

1Although nowadays it is more prevalent to use the HTTPS protocol, in
this paper, for simplicity, we refer to the requests of the HTTP and HTTPS
protocols as HTTP requests.

2Source code available at: https://github.com/davidmatos/uVerum

Section VI compares µVerum with the state-of-the-art, finally,
Section VII concludes the paper.

II. MICROSERVICE APPLICATIONS
The microservice architecture allows software systems to be
developed as a set of small, independent, and self-contained
services. Each service can be deployed in a specific execu-
tion environment on a different physical infrastructure and
developed in its own programming language. Microservices
communicate using a RESTful (Representational State Trans-
fer) [6] or RPC-based API [1]. In this way, services can
be developed by independent teams that only share APIs
among them. This gives many benefits to the implementation
of complex business applications, as developers can adopt a
divide-and-conquer approach and add new features without
the need of redeploying the entire application.

A. MICROSERVICE API
A microservice API is provided by a server to clients or
consumers. It is assumed that the server and clients are
distributed and that the API is invoked through the network.
There are different types of interfaces; some rely on a formal
definition of the available functions enforcing the consumer
of the service to use the same technology as the server (tight
coupling), whereas others are more open, allowing different
technologies to be used (loose coupling). Some examples of
technologies used by microservices are Java RMI [37], .NET
Remoting [38], SOAP [39], REST [6] and gRPC [40]. An
API of a service can be synchronous if the consumer of the
service blocks until a response is returned, or asynchronous if
the consumer proceeds with computation without waiting for
a response from the provider.

B. ARCHITECTURE
The architecture of a microservices application can differ.
Some applications use routers to guide traffic to the corre-
sponding services [25], [36], others use a central message bus
where requests are published by clients and then consumed
by the corresponding servers [41], and some use a hybrid
approach [35]. To deal with these alternatives, in most of the
paper, we consider what we believe is the most commonly
adopted architecture – orchestration – and in Section IV-H
we discuss the changes necessary for the main alternative –
choreography.

The microservices orchestration architecture we consider
is inspired by Netflix’s architecture [25], [42] (Figure 1).
We have chosen it given the contribution it has had in the
development of systems to support microservice applications,
such as Zuul [43], Eureka [44] and Ribbon [25].

Next, we present the main components of the architecture:
HTTP server, router, discovery service, and microservices.

The HTTP server is the only component of the application
that must be publicly available to users. Typically, it is de-
ployed in the DMZ (demilitarized zone, the perimeter network
that is located between an organization’s internal network and
the external network) of the network and serves different types
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FIGURE 1: Common architecture of a microservices applica-
tion and flow of processing a request.

of users of the application (web browser, mobile devices,
and other applications). This server is stateless, allowing it to
be replicated, while having a load balancer coordinating the
distribution of requests. It is also possible to deploy cache
systems that optimize traffic alongside HTTP servers. For
simplicity, we assume that there is only one HTTP server
that serves clients and interacts with the APIs provided by the
microservices.

The router forwards requests to the corresponding services,
translating HTTP requests to the server into service requests.
The router can be replicated to cope with traffic. Routers
are useful for modifying or verifying requests on the fly
using filters. This allows developers to incorporate metadata
in requests or to perform integrity checks and encrypt data.

The discovery service is responsible for keeping a record of
the microservices addresses in the network. They translate a
service name into an address when the router does not know it.
They may also provide fault detection alerts so that the router
knows that the service is not available. The use of discovery
services is encouraged [1], [45].

The microservices themselves are self-contained. They pro-
vide APIs for consumers and communicate over the network.
The consumers of the microservices can either be the routers
that are forwarding requests from the HTTP server or other
microservices. We will assume that services are reachable by
any service.

C. FLOW OF A REQUEST
A user request passes through the different components of
the application before a response is returned to the user. In
Figure 1, when a request reaches the application, it is handled
by an HTTP server with a public IP. This server will redirect
the request to a router, which in turn will generate a service
request. It may first consult with the discovery service to
translate the address of the service to an IP address. Once
a microservice receives a request, it can then generate other
requests.

More specifically, the flow goes this way:
(1) a user issues a request using a web or mobile application

and that request reaches the HTTP server; (2) if the HTTP
request corresponds to a service, then the server will forward
it to the router; (3) (optional) if the router does not know
the IP address of the corresponding microservice, it will
first query the discovery service, otherwise it will contact
the microservice directly; (4) the request reaches a front-end
microservice responsible for dealing with application level
requests; (5) the front-end microservice may contact other
back-end microservice or return a response to the router; (6)
the router forwards this response to the HTTP server; (7) the
HTTP server sends an HTTP response to the client that issued
the initial request.

III. THE DEPENDENCY GRAPH
The dependency graph is a tree graph, i.e., an undirected graph
in which any two nodes are connected by a single edge, that
describes the execution of a user’s request in the microservice
application. This graph is similar to a stacktrace [46] or stack-
traceback [47] which are tools that detail the stack frames
that are active during the execution of a program. These
tools are commonly used to debug faulty code, since they
allow developers to navigate through the execution flow of
erroneous code and to reason about what caused the program
to crash.
µVerum traces the user’s request from the moment it

reaches the application (from the HTTP servers in the form
of an HTTP request) through every microservice it invokes
until it leaves the application (in the HTTP servers in the form
of an HTTP response).

The elements of the dependency graph are:

• root: the user’s request, i.e., the HTTP request that comes
from outside of the application and reaches the HTTP
servers;

• nodes: microservice operations that are directly or indi-
rectly executed by the user’s request. The same microser-
vice operation can be present in several nodes, e.g., if a
user’s request aims to delete two files the same deleteFile
operation can be executed twice, this will result in two
nodes with the deleteOperation;

• edges: describe the invocation of an operation. For ex-
ample, the edge (x, y) means that the microservice oper-
ations x executed the microservice operation y.

A. BUILDING THE DEPENDENCY GRAPH

To build the dependency graph, it is necessary to collect
information about the user’s requests and the microservice op-
erations they executed. For each executed operation, µVerum
collects the microservice operation that executed it, creating a
pair (operation x, operation y). The values x and y are unique
IDs that unmistakably identify every executed operation in the
application. These pairs are stored as is, in a log (µVerum log),
since there is no need to calculate a graph for every user’s
request since the graph is only used for recovery.
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µVerum generates the dependency graph for a request when
the administrator selects that request to be reverted, e.g.,
because the request was malicious. µVerum does this by
selecting the malicious HTTP request in the log, the only
pair that has the first member empty and the second one has
the ID of the malicious HTTP request (null, malicious HTTP
request). Then it collects every pair in the log with the same
request ID in the first member, in other words, every request
that was issued by the malicious HTTP request (every pair
(malicious HTTP request, *)). Then, for every collected pair,
this process is repeated recursively until there are no more
microservice operations that match (operation, *).

B. RECOVERY WITH THE DEPENDENCY GRAPH
The dependency graph guides the recovery process. When
the administrator selects an HTTP request to recover from,
µVerum calculates the dependency graph of that request and,
starting from the root of the graph, it executes the compensat-
ing operations in each affected microservice. By following the
dependency graph, it is ensured that every affected microser-
vice is recovered from the undesired HTTP request.

The recovery process takes time and is done while the
application is available to its users, so users may experience
some inconsistencies. Furthermore, while recovery is being
performed, it is not desirable to allow users to modify or
access the data that is being recovered. For example, if an
attacker manages to modify the price of an item in an e-
commerce application, we do not want any user to be able to
purchase that item at the wrong price. To avoid this, µVerum
allows developers to limit access to certain operations while
the application is recovered. This is done in the form of in-
variants, and their usage is explained in detail in Section IV-G

IV. THE µVerum APPROACH
The µVerum approach requires the coordination of several
components and their integration with the application code,
following a set of guidelines. As long as the application
follows the µVerum guidelines then it will be possible to trace
the effects of intrusions and later recover from their effects.

A. SYSTEM MODEL
µVerum recovers from intrusions that affect applications com-
posed of a set of microservices (Figure 1). These appli-
cations are available to users with limited privileges, and
maintained by system administrators with higher privileges.
Users interact with web servers that redirect their requests to
a subset of microservices. User requests are encoded as HTTP
requests, which in turn generate microservice requests. More
rigorously, we make the following assumptions:
• S1: the API is RESTful;
• S2: user requests reach the application’s microservices

from web servers;
• S3: users cannot access the microservices directly, as

they are not publicly available;
• S4: only microservice requests intercepted by µVerum

agents are recovered;

• S5: the HTTP PATCH method [48] is available to use for
the recovery process of µVerum (this method is rarely
used and its use allows a normalized way to fix a previous
request);

• S6: the microservices can be written in different pro-
gramming languages and use different types of data
repositories.

B. THREAT MODEL
We define an intrusion as a malicious request that leads an
application to a faulty state. When this happens, there are
two challenges in terms of recovery: first, it is necessary to
detect the trail of the faulty operation, that is, the subset of
microservices that were affected by the malicious request and
need to be corrected; and second, it is necessary to define
which compensating actions should be executed to lead the
system back to the valid state. At the end of the recovery, the
state of the application should be the same as if the malicious
request had never occurred.

Intrusions can occur when a malicious user exploits a
vulnerability in the application front-end (top of Figure 1),
e.g., a SQL injection vulnerability [49] or an authentication
flaw [7], [50]. Accidental operations that corrupt the state of
the application are also taken under the term “intrusion”, as
their effects can also be fixed using µVerum. More specifi-
cally, an intrusion is the effect of an HTTP request that reaches
the application which, in turn, generates several microservice
operations causing unwanted changes to the state of the appli-
cation. We assume that there is no other way for the attacker
to cause an intrusion.

The threat model is as follows:
• T1: intrusions come from outside the application net-

work and enter the application through the HTTP
servers;

• T2: intrusions cause state modifications to the microser-
vices’ data stores;

• T3: neither the application nor µVerum’s microservices
are compromised or disabled, that is, they are part of the
Trusted Computing Base (TCB) [51].

With T1 we assume that an attacker does not have access
to the network in which the microservices are running. This is
a reasonable assumption given that most attacks against web
applications come through the front-end [7], [50], [52]. In
relation to T2, we focus only on recovering from intrusions
that illegally modified the state of the application. Intrusions
that do not modify the state of the application are not covered
in this work, as there is nothing to recover from them. T3
clarifies that our problem is the recovery of the state of the
application, not protecting services from attacks that modify
their code or configuration.

C. COMPENSATING OPERATIONS
Compensating operations are used to revert the intermediate
state of an incomplete/failed transaction. This approach was
arguably introduced with the Sagas pattern [53]. A saga is a
set of operations that can be interleaved with other operations.
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Each operation should be reversible by a compensating action.
This ensures that either every operation in the saga is executed
or that the compensating actions are performed to revert
the incomplete process. This pattern was recently adapted
for microservice applications [54]. µVerum implements this
pattern to perform recovery. To do so, µVerum requires that
every operation that should be reversible has a compensating
operation that reverts its state. The compensating operations
can be implemented by the developers of the application,
since they know what actions need to be performed to recover
a microservices operations. This gives the benefit of imple-
menting a more sophisticated compensating operation that,
for example, besides reverting the state from the attacker’s
actions, it also notifies the user that the state of the application
was reverted intentionally. It also reduces the overall imple-
mentation overhead because compensating operations are also
used in the implementation of microservices such as Sagas.

D. SYSTEM ARCHITECTURE
In this section, we describe the architecture of a microservices
application extended with the µVerum components (Figure 2).
In the figure, some microservices (those in red/darker) are
wrapped by a µVerum agent that intercepts the requests so
they can be logged. µVerum requires two databases to keep,
respectively, operation logs (µVerum Log Database) and con-
figuration values (µVerum Config Data).

1) µVerum admin

Admin is a microservice that runs alongside the other mi-
croservices of the application and controls the recovery pro-
cess (“µ”, gray in the figure). It is the only component of
µVerum that is accessed by the administrator. When it is
necessary to recover microservices, this component fetches
the logs and contacts the agents to execute the recovery oper-
ations. It is also through µVerum admin that the administrator
configures the agents.

2) µVerum routers

The routers (dark blue in the figure) add metadata to every
request to allow correlation and ordering of requests. These
metadata consist of a unique serial ID. This request tainting
technique of adding metadata to trace the data flow has been
explored in previous works [55]–[57]. With this serial ID, it is
possible to order the HTTP requests that reach the application
(from the HTTP servers) and retrieve every microservice
operation that was executed as a result of that HTTP request.

3) µVerum log

The log is a distributed database in which user requests
and microservice operations are logged. This approach of
collecting every log entry of several microservices in the same
log database is a recommended practice for microservice
applications, as it allows the administrator to view and analyze
the application history as a whole rather than as a collection
of parts [1], [58]. Another advantage of using a single log for
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µVerum approach.

every microservice is that it facilitates the task of correlating
every operation that was issued by a user’s request.

4) µVerum agents
Agents are proxies that intercept requests that reach the mi-
croservices. The agents log every HTTP request that reaches
a microservice, regardless of whether the service is state-
less or not. This information allows µVerum to generate the
dependency graph. This process does not interfere with the
microservice operation, since the agent only intercepts the
requests to log them and does not perform any modifications
to them. The agents can be configured to work synchronously,
by forwarding requests only after they are logged, or asyn-
chronously, by forwarding the requests immediately and log-
ging them in background.

In addition to requests that reach microservices, µVerum
agents also collect the corresponding status codes and re-
sponse timestamps. Status codes (e.g., 404 Not Found) are
used to discard failed operations from the log. Timestamps
will be used to order and correlate the execution of requests.
During recovery, µVerum executes concurrent requests in par-
allel to reduce the overall recovery time. Concurrent requests
occur when their execution overlaps. More formally, two
operations o1 and o2 with timestamps start_tso1 , end_tso1 ,
start_tso2 and end_tso2 are concurrent if:
start_tso2 ≤ end_tso1 ∧ start_tso1 < end_tso2 .

E. SETTING UP A µVerum APPLICATION
To use µVerum in a microservice application, developers have
to follow a set of guidelines.

First, microservices have to interact with each other exclu-
sively through HTTP using REST APIs. Operations that use
different protocols may exist, but are not traced by µVerum
and, as a result, cannot be undone.

Second, the developers are responsible for implementing
the PATCH method for each operation that may have to be
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undone. This is an important aspect of the µVerum approach.
Given the heterogeneous architecture of microservice appli-
cations, only developers can be fully aware of what needs to
be done locally in the microservice to undo an operation and
they should leverage existing local recovery mechanisms.

Third, external operations must be handled differently.
Examples include cloud storage services, social networks,
banking, serverless computing services, and accountability
systems. These operations may require a specific recovery
approach that uses compensating operations made available
by the external service provider.

Fourth, the application shall have an architecture similar to
the one presented in Figure 1, that is, there are routing and
discovery servers that are used to redirect operations through
the µVerum agents and append the required metadata (unique
IDs) to the executed operations.

Fifth, if some operations need to be executed atomically or
in a specific order then it is the responsibility of the developer
to return that information when the PATCH method of an
operation is executed. In this way µVerum knows how to
process these operations without violating the consistency
requirements of the application.

F. INTRUSION RECOVERY WITH µVerum
µVerum logs user requests and microservice operations dur-
ing normal execution. This information is later used to per-
form recovery. In this section, we describe how µVerum logs
requests and operations and how the recovery process works.

1) Normal execution
During normal execution, µVerum routers and µVerum agents
log user requests and microservice operations. Requests are
intercepted and logged without interfering with the applica-
tion. For each logged operation, µVerum records the follow-
ing information:
• request_id: a unique serial ID assigned when the

request reaches the application;
• start_ts: a timestamp of the moment the operation

was logged;
• end_ts: a timestamp of the moment the response of the

operation was logged;
• service: the address (IP or hostname) of the service;
• sender: the address of the issuer of the request
• method: the HTTP method of the request;
• operation: the payload of the HTTP request.

2) Recovery
Recovery is done when the administrator of the application
detects faulty requests and wants to undo their effects on
the affected microservices. When the administrator selects
faulty requests from the log, µVerum presents him with a
list of operations that were executed by the microservices and
will be reverted. This will allow the administrator to preview
what will be recovered. Once the administrator confirms
the recovery, µVerum executes compensating operations, one
per operation, that will revert the effects of the attack. The

compensating operations are invoked by µVerum using the
PATCH verb. All microservices should be running when the
administrator issues the recovery operation, but that may not
be the case, as a set of the microservices that need to be
recovered may be offline. In this case, µVerum schedules the
recovery actions to be executed as soon as possible.

Algorithm 1 describes the procedure to identify and undo
microservice operations given a faulty HTTP request. It takes
as input req (line 1), the log entry with the malicious HTTP
request that the administrator identified. First, it initializes an
empty list to store the undo operations that failed (line 2). This
will happen if some microservices happen to be offline during
the recovery process and µVerum needs to postpone the undo
operation. Then it collects every microservice operation that
was caused by req (line 4). With these operations, it is
possible to build the dependency graph (line 5) that illustrates
how a user request relates to the executed operations inside
the microservice application. This graph is created using the
service and sender fields of each log entry. Every two op-
erations that have a service equal to a sender are connected
in the graph. Then this graph is presented to the administrator
(line 6) for confirmation (line 7) to undo every operation in
the graph. If confirmed, the recovery process starts at the root
node of the graph (lines 8 and 9).

The undo function is recursive (lines 11 to 31). It takes as
input a node from the graph.Then, it gets the service address
from the log entry (line 12) and probes for invariants (line 13).
Invariants can be of two forms: ORDER (lines 14 to 16) or
ATOMIC (lines 17 to 19). These special cases will be treated
by the appropriate functions presented in algorithms 2 and 3.
If there are no invariants, the algorithm proceeds to execute
the PATCH function of this service (line 21). This PATCH
function was previously implemented by the developers of
the application, and it will undo the effects of the execution
of the operation from the state of the microservice. If it
failed to execute the PATCH method then it will be stored
in the pending list to be re-executed later. Then, the algorithm
fetches the next nodes in the graph, children, and for each
one of them it recursively invokes the undo function (lines 27
to 29). Finally, the list of services that failed to be executed
is presented to the administrator (line 30) and the function
terminates. This pending list will be used by a background
task that runs periodically to complete the recovery operation.
In fact, the first time µVerum connects to a service, it will
execute all pending operations before forwarding any new
requests.

G. RECOVERY CONSISTENCY

To avoid creating an inconsistent state after recovery, the
developer may force µVerum to respect the order of opera-
tions. This enforcement is defined by the developers in the
PATCH methods by invariants, i.e., conditions that µVerum
ensure that are not broken during recovery. The two kinds of
invariants that will be respected by µVerum during recovery
are ordering and atomicity, defined as follows:
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Algorithm 1 Recovery without order or atomicity require-
ments.
1: INPUT req // malicious HTTP request
2: pending ← ⊥
3: request_id ← req.request_id
4: log_entries ← get_log_entries(request_id)
5: graph ← trace_graph(log_entries)
6: print(graph)
7: if admin_confirms_recovery() then
8: root ← graph.get_root()
9: UNDO(root)

10: end if

11: function UNDO(node)
12: service ← node.service
13: (invariant,nodes)← invariant(service.operation,PATCH )
14: if invariant == ORDER then
15: UNDO_ORDERED(0, nodes,PREPARE)
16: end if
17: if invariant == ATOMIC then
18: UNDO_ATOMIC(nodes)
19: end if
20: if invariant == NULL then
21: result ← execute(service, service.operation,PATCH )
22: if result.STATUS ̸= SUCCESS then
23: pending ← pending ∪ node
24: end if
25: end if
26: children ← node.children
27: for child ∈ children do
28: UNDO(child)
29: end for
30: print(pending)
31: end function

• Ordering invariant: any operation o that takes as a pre-
decessor another operation o′ is always executed after o′

was completely and successfully executed.
• Atomicity invariant 1: if an atomic operation o in a set of

operations Sa was completed and executed successfully,
then any other operation in Sa was also completely and
successfully executed.

• Atomicity invariant 2: if an atomic operation o in a set
of operations Sa fails to be executed, then every other
operation in Sa is not executed or rolled back.

1) Ordering invariants
Ordering invariants are applied to operations that require a
specific order to be executed. For example, an operation called
transfer, which debits a user account balance and credits
another user account, should execute these two steps in this
exact order: first the debit, then the credit. In this way, if
the account being debited does not have enough funds, then
the transfer should be canceled. Switching between these two
steps can result in money being “created” for a moment.
The PATCH method of such an operation should return such
ordering requirements. This way, when µVerum is recovering
the PATCH of transfer it knows that it should invoke debit
before credit.

Ordering invariants are expressed as an ordered list,
ORDER, of microservice operations. This list will be used
by µVerum during a pre-recovery process, during which
µVerum probes every microservice operation for any invari-
ants. Once µVerum consulted every operation in the graph,
it will order the operations that need to be executed based
on the ORDER lists it collected. Following the previous

example, the PATCH method of the transfer operation should
return ORDER ← {debit, credit}. With this list, µVerum
will investigate the PATCH methods of the debit and credit
operations before starting recovery. If either of these two op-
erations have other ordering dependencies, then µVerum will
take such dependencies and join them in the list of operations
to be executed in recovery. After examining every operation,
µVerum can finally proceed to the execution of compensating
operations. The invariant for this example would be expressed
as follows:

order:{ debit(amount), credit(amount) }

Algorithm 2 Recovery with ordering requirements.
1: function UNDO_ORDERED(index, queue, phase)
2: service ← queue[index ].service

3: if phase == PREPARE then
4: result ← execute(service,PATCH ,PREPARE)
5: if result.STATUS ̸= SUCCESS then
6: abort()
7: end if
8: children ← queue[index ].children
9: for child ∈ children do

10: index← child.index
11: queue ← UNDO_ORDERED(index, queue,PREPARE)

12: end for
13: end if

14: if phase == COMMIT then
15: block_services(queue)
16: for node ∈ queue do
17: service ← node.service
18: result ← execute(service.operation,PATCH )
19: if result.STATUS ̸= SUCCESS then
20: rollback(queue)
21: abort()
22: end if
23: end for
24: resume_services(queue)
25: end if
26: end function

Algorithm 2 describes the undo_ordered function and how
it performs recovery, preserving the execution order of the
requests. This function takes as input: an index value pointing
to the current node in the list, index, an ordered list with
the services that need to be recovered by the correct order,
ordered_queue, and a flag indicating in which phase the
algorithm is, phase. First, the algorithm extracts from the list
the current service that should be executed (line 2). Then, the
algorithm follows one of two branches. In the prepare branch
(lines 3 to 13), µVerum will execute the services in the queue
until it reaches the end of the graph. Each service will be
executed (line 4) with the parameter phase set to PREPARE.
This is just to fill the queue with every invariant from the
services. If any of the services fail to execute in the prepare
phase (lines 5 to 7) then the recovery is aborted. This happens
because if µVerum cannot determine the order in which the
services will be executed, then it cannot guarantee that the
invariants are not violated. If the operation preparation is
successful, then it will fetch the next nodes from the graph
(line 8). For each of the next nodes in the graph, the function
undo_ordered will be invoked recursively (lines 9 to 12) until
it reaches the end of the graph, then it will perform the
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recursive invocation with the variable phase set to COMMIT.
In commit (lines 14 to 25), the services are executed in

the given order. This is done by isolating the services from
the user’s request (line 15). This does not mean that the
requests are discarded, instead they are stored in a list to be
executed after the recovery finishes. The algorithm proceeds
by iterating through the queue (line 16) and each of the
services is executed synchronously (lines 17 and 18), that is,
each service starts execution after the previous one has ended.
If any execution fails, then a rollback is issued (line 20) and
the recovery process is aborted (line 21). At the end of the
function (line 24) the blocked services are resumed.

Algorithm 2 follows essentially a 2-phase commit pattern.
This algorithm might be trivially modified to follow a 3-phase
commit pattern to improve its resilience to certain (unlikely)
fault scenarios at the cost of higher time complexity in normal
execution.

2) Atomicity invariants
When a developer enforces the atomicity of an operation, it
specifies a list of operations that have atomicity requirements,
i.e., either all of them are executed or none of them is. During
recovery µVerum ensures that every service in the atomicity
list executed the recovery operation. If any of the operations
fails to run, then recovery must be aborted. For example, an
operation that updates the access key of a user requires two
operations to be executed: a revocation of the current access
key and the generation of the new one. In this example, there
is no intermediate state in which the application generated a
new key without revoking the previous one. The invariant of
this example would be given by the microservice that triggers
both operations, and it would be described as follows:
atomic:{ revoke_key(user), grant_new_key(user) }

Algorithm 3 describes how µVerum recovers services that
have an atomic invariant. Function undo_atomic (lines 1 to 8)
iterates through the bag with the services. After blocking them
from user requests (line 2), it will asynchronously execute
the PATCH method of each service (line 6). When a service
finishes executing the PATCH method (lines 9 to 17), it is
removed from the bag (line 10). When the bag is empty
(line 11), µVerum resumes the services that were blocked at
the beginning of recovery (line 12). When a service fails to
execute the PATCH method (line 14), a rollback is executed
to revert the partially recovered services (line 15).

H. µVerum FOR THE CHOREOGRAPHY PATTERN
Now we discuss the changes for applications that use the
choreography pattern, in which microservices interact with
each other through a message bus that allows publishing and
subscription to operations.

In relation to logging, the µVerum agent provides the means
of intercepting and logging operations. For the alternative
architecture, this agent can be coupled with the message bus
in such a way that any operation that is invoked is logged.

For recovery, µVerum performs compensating operations
that undo the effects of the intrusion. For the alternative

Algorithm 3 Recovery with atomic requirements.
1: function UNDO_ATOMIC(atomic_bag)
2: block_services(atomic_bag)
3: for node ∈ atomic_bag do
4: service ← node.service
5: callback ← UPON_SERVICE_RESULT
6: execute_async(service.operation,PATCH , callback)
7: end for
8: end function

9: function UPON_SERVICE_RESULT(service, result)
10: atomic_bag ← atomic_bag ∼ service
11: if atomic_bag == ⊥ then
12: resume_services()
13: end if
14: if result.STATUS ̸= SUCCESS then
15: rollback()
16: end if
17: end function

architecture, the compensating operations are published in the
message bus. The main challenge with this approach is to en-
sure consistency for operations that have ordering or atomicity
requirements. µVerum admin cannot directly coordinate the
recovery process, instead it needs the message bus to act as an
intermediate in the process. This can be accomplished using
message topics that are specific to recovery and are subscribed
to by all services. More specifically, the algorithm works as
follows:

1) µVerum admin publishes a message with a topic name
composed of the name of each of the affected services
concatenated with the tag RECOVERY;

2) each affected service reads the RECOVERY message
and publishes another message that has one of the fol-
lowing types: (a) RECOVERED, meaning that the patch
was successfully executed and recovery is completed;
or (b) ORDERING or ATOMICITY, containing the list
of operations that need to be executed;

3) for each of the services in the list, µVerum admin
publishes a message with a topic equal to the name of
the patch method’s name. After a microservice executes
the patch method, it publishes RECOVERED so that the
µVerum admin can proceed to the next microservice.

For this to work, each microservice must be implemented
so that it prioritizes RECOVERY operations above any other
operation. Every microservice is also required to publish RE-
COVERED messages once recovery is complete. In this way,
µVerum is able to coordinate the recovery process through the
message bus.

V. EXPERIMENTAL EVALUATION
With our experiments, we want to answer these questions: (A)
Is the µVerum approach capable of recovering from intrusions
in real-world applications? (B) What is the cost, in terms
of performance, of using the µVerum agents to log every
operation? (C) How long does it take to assess damage and
undo unintended actions?

We performed the experiments using Google Compute
Engine [59], which allowed us to deploy each microservice
on a single and isolated virtual machine. This way we are able
to recreate an environment similar to a real-world deployment.
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We choose the n1-standard-2 flavor for every virtual machine,
which provides 2 CPU cores with 7.5GB of memory. Table 1
summarises the setup used in the different experiments.

TABLE 1: Experimental Setup

Experiment Application Workload
(requests)

Generated
by

Network Setup

Validity SockShop 10,000 SockShop 15 * (2 vCPU /
7.5GB RAM)

Overhead SockShop 10,000 SockShop 15 * (2 vCPU /
7.5GB RAM)

Overhead PiggyMetrics 10,000 JMeter 12 * (2 vCPU /
7.5GB RAM)

MTTR SockShop 10,000 SockShop 15 * (2 vCPU /
7.5GB RAM)

A. µVerum IMPLEMENTATION
µVerum was implemented in Java, since most of the compo-
nents were also written in Java or provide a Java API. µVerum
admin is a Spring Boot [60] microservice. The µVerum
agent is a Java program that uses Little Shoot Proxy [61]
to intercept requests. The log is a MongoDB [62] database.
The router is a Zuul [43] instance with a special filter that
appends the metadata to the requests. The discovery service
is a non-modified Zookeeper [63] instance. We chose Zuul
and Zookeeper because they are widely used in the industry,
especially for microservice applications.

We evaluated µVerum experimentally with two microser-
vice applications: SockShop [35] and PiggyMetrics [36]. We
chose these applications for our use case for the following
reasons: they are open-source, so they can be used by anyone
who wants to extend µVerum; they follow a system archi-
tecture similar to the one presented in Section IV-D; they
differ in terms of architecture, PiggyMetrics uses an orches-
tration approach, while SockShop has an hybrid architecture
with some components working in orchestration and other
components working in choreography. These characteristics
allow us to evaluate how µVerum works in different types of
applications. Both applications have a significant size: Sock-
Shop is made up of 9 microservices and 6 datastores, while
PiggyMetrics has 6 microservices with 4 databases. SockShop
was developed using Java, Go, and NodeJS. PiggyMetrics was
developed with SpringBoot.

In our implementation, the compensating operations ranged
from 6 to 30 lines of code. We consider this length of code to
be short enough for the developers of the application to write
it in a single cycle (sprint) of software development.

B. VALIDITY OF µVerum RECOVERY
µVerum successfully recovers an application if it manages to
undo malicious operations from the state of the microservice
database as if they had never occurred. To evaluate this
aspect, we compare a recovered database with one that was
never attacked. Specifically, we wrote a script that allows us
to execute a diff-like operation between two databases: one
that has the state of the application after it was recovered
by µVerum (database C) and another (database A) that has

the state after the application received the exact same op-
erations except the ones that are malicious (thus, that were
undone in the case of database C). The script compares all
the deterministic values of each database, meaning that non-
deterministic values generated by the database itself, such
as automatic identifiers and timestamps, are not compared.
We are not interested in comparing non-deterministic values
since they are outside of the control of the application, which
cannot be logged and recovered by µVerum, which only logs
application-level requests.

To create both databases, we executed a workload (work-
load A) with 10,000 requests using the SockShop load test
in database A. Then we created workload B by adding to
workload A an extra percentage of malicious requests. These
malicious requests are similar to the ones in workload A
but they are tagged as malicious to be reverted by µVerum.
These malicious requests modify the state of the application
by executing update operations in the database. The affected
microservices have invariants to ensure that data integrity is
maintained. More specifically, there are one ordering invariant
and one atomic invariant. Finally, we recovered database B to
produce database C and used our script to compare it with
database A.

We repeated these experiments ten times to recreate dif-
ferent states that allowed us to verify the validity of µVerum
recovery. We started by having two identical workloads of
10,000 valid operations. Then, in each experiment, we added
10% malicious requests. In all experiments µVerum was able
to achieve a state C equivalent to A. This was expected
given that the PATCH methods that we implemented were
tested beforehand, and we validated that they were capable
of reverting any executed operation.

C. PERFORMANCE OVERHEAD
To evaluate the performance overhead of logging operations
with the µVerum agents, we performed a series of experiments
in which we measure the number of requests per second
with and without having µVerum logging the operations. To
do so, we use the SockShop loadtest scripts configured to
issue 10,000 requests simulating 5 concurrent users. First, we
tested with SockShop, then we repeated the same workloads
with µVerum logging the requests. We performed the tests
using both the log methods of µVerum (asynchronous and
synchronous).

Figure 3 shows the performance in requests per second
of SockShop, with and without µVerum. The overhead of
µVerum is around 3.7% for asynchronous logging and 6.4%
for synchronous logging. Some endpoints (details.html) re-
veal lower overheads. This happens because these endpoints
are not being logged, and the caching mechanisms of the
applications allow the resource to be presented to the user
without executing microservice operations.

In addition to SockShop, we also evaluated the performance
overhead of using µVerum to log every user request in Piggy
Metrics. Since Piggy Metrics does not have a load test tool,
we created a test case with Apache JMeter [64]. JMeter
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FIGURE 3: Performance overhead of µVerum with in differ-
ent URLs of SockShop. The results refer to the application
without µVerum (orange bar), the application with µVerum
intercepting the requests asynchronously (blue bar) and with
µVerum intercepting the requests synchronously (green bar).

allows us to create a workload in which a set of URLs
are randomly invoked. In our test case, JMeter executed the
11 URLs available by the Piggy Metrics application until it
reached 10,000 executions. Then we calculated the average
operations per second of each of the URLs. The results, shown
in Figure 4, show that there is a performance penalty for using
µVerum to log every user operation that varies from 1.8% to
13.3% for asynchronous logging and from 11.2% to 31.1%
for synchronous logging. The overhead of using µVerum
in PiggyMetrics is higher, compared to using µVerum in
SockShop, because we used a different load test tool. In Piggy
Metrics, since we did not have an embedded load testing
tool, we used JMeter, which allowed us to create a heavier
workload than the one used in SockShop. Read operations
that do not need to be logged (issued using the GET method)
present lower overheads than the ones that modify the state
of the microservice (PUT and POST methods). The overall
results can be reduced by improving the computing capacities
of the virtual machines that host the microservices.

Table 2 presents a comparison of various recovery mech-
anisms for different recovery systems, including a cloud file
system, databases, web applications, and µVerum. The table
shows that the overhead of recovery mechanisms can vary
widely across the different target systems. In the table the
performance overhead values were calculated either by mea-
suring the extra time it takes to execute operations (latency
- L) or reduction in the number of operations executed by
second (throughput - T). µVerum offers both synchronous and
asynchronous recovery mechanisms, with overheads ranging
from 1.8% to 31.1%. In comparison, the other recovery
mechanisms for web applications have overheads ranging
from 3.99% to 30.35%. For file systems and databases, the
overheads are relatively lower, ranging from 6% to 26%.
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FIGURE 4: Performance overhead of µVerum in Piggy Met-
rics. The results refer to the application without µVerum
(orange bar), the application with µVerum intercepting the
requests asynchronously (blue bar) and with µVerum inter-
cepting the requests synchronously (green bar).

TABLE 2: Performance overhead of the different recovery
approaches. The overhead is in percentage range and it refers
to the decreased performance in terms of Throughput (T) or
additional latency (L) for each request.

System Target system Overhead
RockFS [65] Cloud FSs 11% - 26% (L)
Amman et al. [66] DBs -
NoSQL Undo [9] NoSQL DBs 6%-8% / 20%30% (T)
Akkus et al. [18] Web apps 3.99% / 4.12% (T)
Warp [67] Web apps 24% - 27% (T)
Aire [12] Web apps 18,5% - 30,35% (T)
Shuttle [16] Web apps 13% - 16% (T)
Sanare [68] Web apps 12% - 17% (T)
Rectify [17] Web apps 14% - 18% (T)
MIRES [69] BaaS 15% - 23% (L)

µVerum Microservices async: 1.8% - 13.3%
sync: 11.2% - 31.1% (T)

D. MEAN TIME TO RECOVER
Mean Time to Recover (MTTR) is the time that it takes since
the moment the system administrator starts recovery until
every PATCH method is successfully executed. To evaluate
the MTTR we executed recovery in SockShop and reverted a
set of intrusions that ranged from 10 to 100. We repeated this
process 10 times. We performed these experiments with the
two recovery methods of µVerum: with atomic invariants and
with order invariants.

Figure 5 presents the results for the MTTR with atomic
invariants. The time to recover increases linearly, varying
from 5 seconds (for 10 intrusions) to around 50 seconds (for
100 intrusions). Undoing a single intrusion would take 0.5
seconds.

Figure 6 presents the MTTR from 10 to 100 intrusions
using order invariants. The MTTR varies linearly from 11 sec-
onds (for 10 intrusions) to 107 seconds (for 100 intrusions).
We implemented a PATCH method that required 5 operations
to be performed in a specific order.
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FIGURE 5: Total time to recover with atomic invariants
changing the number of intrusions to undo.
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FIGURE 6: Total time to recover with order invariants chang-
ing the number of intrusions to undo.

The PATCH method that we implemented executes 6 mi-
croservices requests that affected 5 services. The MTTR
varies depending on two factors: the scale of the application
and the complexity of the PATCH method.

In Figure 7 we show the time it takes for a user request to
be processed before, during, and after recovery. We repeated
these tests by varying the number of intrusions from 1 to
10. During these experiments, we also performed the same
load test described in Section V-C to simulate a real-world
application with several concurrent users. The peaks in the
graph correspond to when the administrator initiates a recov-
ery process. Users experience a delay in the application for
a while, but once recovery finishes, the application resumes
normal operation. The latency ranged from around 30 ms
during normal operation to a couple of seconds (from 1 to 5)
during recovery. It is a significant downgrade in performance
but we consider that this is an acceptable cost given the benefit
of reverting an intrusion of the application without sacrificing
the availability. This is the worst case, as the performance
impact of recovery can be eased with request execution throt-
tling. However, this makes the recovery process take longer to
complete.

Note that the throughputs and times presented in this
evaluation are necessarily valid only for the microservice

FIGURE 7: Latency of the application before, during and
after recovery with atomic invariants, changing the number
of intrusions.

applications that we tested. More complex applications, or
applications with different characteristics, might provide dif-
ferent results.

Table 3 presents a comparison of the MTTR µVerum with
other recovery mechanisms for different recovery systems.
The table shows that the recovery time varies in the different
recovery systems, which is expected given the heterogeneity
of the different target systems. In the table there are two
columns for the MTTR: batch and unit. The batch refers to
the MTTR a set of operations, while the unit refers to the
MTTR of a single operation. The batch size varies because
each author uses a different size in their own experiments. For
comparison purposes we added the unit column to somehow
compare the different systems.The MTTR in the different
systems varies widely, from 16ms (Aire [12]) to 700s in
NoSQL Undo [9].

TABLE 3: MTTR of the different recovery approaches.
System Target system MTTR Batch MTTR

(batch) size (unit)
RockFS [65] Cloud FSs 40s 100 (files) 2s
Amman et al. [66] DBs - - -
NoSQL Undo [9] NoSQL DBs 150s - 200s 10,000 (ops) 1s / 700s
Akkus et al. [18] Web apps - - -
Warp [67] Web apps 3,538s 2,093 1.69s
Aire [12] Web apps 84.06s 5,444 16ms
Shuttle [16] Web apps 544s - 1,717s 1,000,000 0.5ms - 1.7ms
Sanare [68] Web apps 90 - 340s 10 - 60 1.8s - 6s
Rectify [17] Web apps 960s 1,000 12s
MIRES [69] BaaS 55s 1,000 1s

µVerum Microservices atomic: 5s - 50s
ordering: 11s - 107s 10 - 100 atomic: 0.5s

ordering: 1s

VI. RELATED WORK
The problem of intrusion recovery based on the use of logging
operations was explored for databases and is covered in text-
books in the area, e.g., [13]. This work follows a more recent
line of work on recovering databases [14], [15], operating sys-
tems [10], web applications [16]–[18] and other services [11]
by assuming an architecture in which the components of the
application are distributed and were implemented in distinct
programming environments.

Undo for Operators implements the “three R’s” model
(Rewind, Repair, Replay. It logs every message in a log
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tems [10], web applications [16]–[18] and other services [11]
by assuming an architecture in which the components of the
application are distributed and were implemented in distinct
programming environments.

Undo for Operators implements the “three R’s” model
(Rewind, Repair, Replay. It logs every message in a log
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FIGURE 6: Total time to recover with order invariants chang-
ing the number of intrusions to undo.
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tling. However, this makes the recovery process take longer to
complete.

0 10 20 30 40
Time

0

1

2

3

4

5

6

La
ten

cy
 (s

)

1 intrusion
2 intrusions
3 intrusions
4 intrusions
5 intrusions
6 intrusions
7 intrusions
8 intrusions
9 intrusions
10 intrusions

FIGURE 7: Latency of the application before, during and
after recovery with atomic invariants, changing the number
of intrusions.

Note that the throughputs and times presented in this
evaluation are necessarily valid only for the microservice
applications that we tested. More complex applications, or
applications with different characteristics, might provide dif-
ferent results.

Table 3 presents a comparison of the MTTR µVerum with
other recovery mechanisms for different recovery systems.
The table shows that the recovery time varies in the different
recovery systems, which is expected given the heterogeneity
of the different target systems. In the table there are two
columns for the MTTR: batch and unit. The batch refers to
the MTTR a set of operations, while the unit refers to the
MTTR of a single operation. The batch size varies because
each author uses a different size in their own experiments. For
comparison purposes we added the unit column to somehow
compare the different systems.The MTTR in the different
systems varies widely, from 16ms (Aire [12]) to 700s in
NoSQL Undo [9].

TABLE 3: MTTR of the different recovery approaches.
System Target system MTTR Batch MTTR

(batch) size (unit)
RockFS [65] Cloud FSs 40s 100 (files) 2s
Amman et al. [66] DBs - - -
NoSQL Undo [9] NoSQL DBs 150s - 200s 10,000 (ops) 1s / 700s
Akkus et al. [18] Web apps - - -
Warp [67] Web apps 3,538s 2,093 1.69s
Aire [12] Web apps 84.06s 5,444 16ms
Shuttle [16] Web apps 544s - 1,717s 1,000,000 0.5ms - 1.7ms
Sanare [68] Web apps 90 - 340s 10 - 60 1.8s - 6s
Rectify [17] Web apps 960s 1,000 12s
MIRES [69] BaaS 55s 1,000 1s

µVerum Microservices atomic: 5s - 50s
ordering: 11s - 107s 10 - 100 atomic: 0.5s

ordering: 1s

VI. RELATED WORK
The problem of intrusion recovery based on the use of logging
operations was explored for databases and is covered in text-
books in the area, e.g., [13]. This work follows a more recent
line of work on recovering databases [14], [15], operating sys-
tems [10], web applications [16]–[18] and other services [11]
by assuming an architecture in which the components of the
application are distributed and were implemented in distinct
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programming environments.
Undo for Operators implements the “three R’s” model

(Rewind, Repair, Replay. It logs every message in a log
(Timeline Log) with the help of a proxy (Undo Proxy) and
provides a control panel (Undo Manager) that is controlled
using an interface (Control UI) by the system administrator.
The µVerum approach is inspired in some of the components
of Undo for Operators, more specifically, the use of logs to
record user requests, the implementation of a Control UI that
allows the administrator to monitor and perform recovery, and
the use of proxies to intercept operations.

Warp [67] is a recovery system for web applications. It
works by rolling back a part of the database to a point in
time prior to the intrusion and then applying compensation
operations to correct the state of the database. Warp uses a
browser web browser extension to re-execute HTTP requests.
The µVerum approach differs from Warp in the sense that
it does not roll back the application to recover, and µVerum
agents are used for HTTP requests instead of a browser.

Bezoar [21] is a recovery system that logs file system
operations triggered by a virtual machine that supports the ap-
plication. It requires a virtual machine to host the application
to work. In this system model, in which the microservices are
deployed in distinct environments, the system administrator
may not have control of the virtual machine and therefore is
not able to use Bezoar.

The problem of intrusion recovery for web applications
deployed in PaaS was explored in Shuttle [16]. Like µVerum,
Shuttle requires the developers of the application to imple-
ment some functionalities to be able to recover the appli-
cation. Shuttle was designed for monolithic applications; it
cannot be used for microservice applications. Another work
that explores intrusion recovery for web applications, thus
with the same limitation, is Rectify [17]. Rectify does not
require software modifications to the application, since ma-
chine learning algorithms are used to find the database effects
of HTTP requests.

Aire [12] is an intrusion recovery system for applications
composed of interconnected web services. Aire works by
propagating repair actions across services to address the un-
availability of some services and ensuring consistency when
not all repair actions have been propagated yet. Like µVerum,
Aire logs operations during normal execution of the applica-
tion, and once the administrator marks a request as malicious,
it undoes its effects in the state of the application. However,
Aire employs a selective reexecution approach to recover
from the intrusion, while µVerum executes compensating op-
erations. Additionally, Aire assumes a system model in which
some web services may be compromised by an adversary who
will try to sabotage the recovery process.

Table 4 compares the µVerum approach with other intru-
sion recovery systems.

VII. CONCLUSION
We propose µVerum, an intrusion recovery approach for
microservice applications in both choreography and orches-

tration architectures. The design, implementation, and eval-
uation of our proposal show that it is possible and practical
to recover from intrusions in microservices, as demonstrated
with experiments using two distinct applications. The ef-
fort to implement the necessary compensating operations for
µVerum is equivalent to implementing the required compen-
sating operations used in sagas transactions. Our results show
that it is possible to have the application available to users
during recovery, at the expense of only a momentary degra-
dation of performance. To maintain data consistency during
and after recovery, we presented two algorithms that allow
developers to define invariants for microservice operations
that have ordering and atomic requirements. This makes it
feasible to have recovery capabilities as soon as possible, and
start delivering value to customers through fast and reliable
intrusion recovery.
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