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Abstract—Android has become the most widely used mobile
operating system (OS) in recent years. There is much research
on methods for detecting malicious Android applications. Dy-
namic analysis methods detect such applications by evaluating
their behaviour during execution. However, such mechanisms
may be ineffective as malware is often able to disable anti-
malware software. This paper presents the design of T2DROID,
a dynamic analyser for Android that uses traces of Android API
function calls and kernel syscalls, and that is protected from
malware by leveraging the ARM TrustZone security extension.
In our experimental evaluation T2DROID achieved accuracy and
precision of 0.98 and 0.99, respectively, with a kNN classifier.

I. INTRODUCTION

Android has become the most widely used mobile operating

system (OS), with a smartphone market share of more than

85% in Q3 2016 [1]. However, the existence of several

Android application marketplaces [2] makes it feasible for

attackers to distribute malicious applications, e.g., in the form

of repackaged applications [3]. Researchers have shown that

Android devices are vulnerable to a large number of attacks,

e.g., applications and libraries that misuse their privileges

[4], [5], run root exploits that steal private information [6],

take advantage of unprotected interfaces [7], [8], do confused

deputy attacks [9], and do collusion attacks [10].

There is much research on methods for detecting mali-

cious Android applications. These methods can be roughly

categorized in two approaches: static and dynamic analysis.

Static analysis methods detect if an application is malicious

by inspecting its code or metadata, without executing the

application [11], [12]. This approach is often used by ap-

plication marketplaces to evaluate applications before starting

to distribute them. However, malicious applications may use

obfuscation techniques to make static analysis hard.

Dynamic analysis methods, on the contrary, detect malicious

applications by evaluating their behaviour during execution

[13]–[20]. Most mechanisms of this kind involve extending

the mobile OS kernel or the middleware (Dalvik or ART), so

their security is based on the assumption that these components

are not compromised. However, such mechanisms may be

ineffective as malware is often able to disable anti-malware

software [21], as in the recent case of HijackRAT [22],

sometimes due to vulnerabilities that allow this [23]. An

alternative approach is to run the protection mechanism in an

hypervisor or a thin virtual machine (VM) isolated from the

fat VM that runs the OS and the applications, as in Droidscope

[24]. However, current mobile devices do not use this kind of

virtualization, which would have a considerable overhead.

TrustZone is a hardware security extension incorporated in

recent ARM processors [25]. It partitions the system virtually

in two parts: the normal world that runs the mobile OS (e.g.,

Android) and its applications; and the secure world that runs

trusted applications or security services on top of a small

trusted OS. The memory space, peripherals, and interrupts

assigned to the secure world are isolated from the mobile OS

and its applications. On the contrary, the secure world can

access the resources of the normal world.

This paper presents the design of the Trustzone-based

Trace analyser for anDroid applications – T2DROID. This

mechanism does dynamic (runtime) analysis of applications to

detect malware on Android-based mobile devices. T2DROID

uses traces of Android API function calls and kernel system

calls (syscalls) performed by an application to detect whether

it is malicious or not. This combination of the two types

of calls allows observing operations with a clear semantics

(e.g., sending an SMS message), while not letting malware

escape this detection by running native code and doing syscalls

instead of calling API functions. It uses a machine learning

classifier to do the detection, which allows it to be configured

without a human to manually develop detection rules, and to

be reconfigured easily when new malicious applications are

discovered. T2DROID is protected from malware by leverag-

ing the TrustZone extension. The detection itself is performed

inside the secure world. The capture of the API function

calls and syscalls has to be done by software components

running in the Android kernel, in the normal world, but there

is a component protected in the secure world that verifies the

integrity of these normal world components and of the mobile

OS kernel.

T2Droid does not aim to substitute static analysis mech-

anisms that should be used to test an application before it

starts being distributed in an application marketplace [26]. It

is a complementary mechanism that provides a second layer

of protection at runtime, similarly to anti-virus software. This

second layer of defense is important, as many applications

distributed in marketplaces are malicious [5], [27]. However,

unlike anti-virus software, T2DROID is protected from mal-

ware by leveraging the TrustZone extension.



We envisage three main use cases for T2DROID. The first

two consider personal mobile devices, typically smartphones.

The first is to run T2DROID automatically whenever an

application is downloaded from a marketplace and installed.

The first time the application is executed, T2DROID would be

executed during a configurable amount of time or number of

API calls in order to check if the application is trustworthy.

The second is to run T2DROID when requested by the backend

of the mobile application, i.e., of the part of the application that

runs in the cloud or company servers. The objective would be

for the backend to assess if the application in the mobile device

has been compromised. The third would be to run T2DROID

in devices targeted specifically at testing the trustworthiness of

applications. T2DROID would run when the application started

to run, but would be executed for a larger period of time in

order to check the application for a longer period.

We did an experimental evaluation of T2DROID. The first

objective was to understand what was the classifier with best

performance among a set of those available. The one that

performed best was kNN. The second was to understand

what was the performance of that classifier. We obtained

accuracy of 0.98, precision of 0.99, and recall of 0.99 with

our experimental dataset and the combination of the two kinds

of calls. Finally we measured times for trace transfer, feature

vector preparation, and classification of 2.5s and for integrity

checks made by T2DROID of 1.3s.

The main contributions of the paper are: (1) the design

of T2DROID, a dynamic analysis system for Android that

leverages the ARM TrustZone extension to securely detect ma-

licious applications; (2) a machine learning detection scheme

based on tracing both Android API function calls and kernel

syscalls; (3) an implementation of T2DROID for Android on

the NXP Semiconductors i.MX53 Quick Start Board (QSB);

(4) an experimental evaluation of T2DROID, considering both

detection and performance.

II. ANDROID AND ARM TRUSTZONE

This section provides background information on the main

technologies underlying T2DROID: Android and TrustZone.

A. Android

Android is an OS for mobile devices, originally created by

Google. Android was not developed from scratch, but based

on the Linux OS and the Java virtual machine (JVM). Android

comprises three layers. The first, the kernel layer, is essentially

a modified Linux kernel. It provides basic OS services such as

memory management, process scheduling, device drivers, file

system support, and network access. The second, the middle-

ware layer (or runtime), was originally a modified JVM called

Dalvik, but was substituted by ART (Android RunTime) in

Android 5.0 Lollipop. Dalvik did just-in-time compilation, i.e.,

compiled applications during their execution. ART does ahead-

of-time compilation, i.e., compiles applications when they are

installed. The middleware provides also a set of libraries and

an application framework. This framework provides services

to manage the life cycle of applications, to install them, and

to maintains information about the applications loaded. The

third layer is the application layer. This layer includes core

(i.e., installed by default) applications such as browser, phone

dialler, and contact manager. Moreover, it allows downloading

applications from marketplaces. Each Android application runs

in its own process, with its own virtual machine (VM). They

are typically written in Java, although they may also include

and run native code, with the assistance of the Java Native

Interface (JNI). The applications are distributed in files in

the Android Application Package format (APK). An APK file

is essentially an archive containing a bytecodes file (.dex), a

manifest file, media files, etc.

B. ARM TrustZone

ARM is a company that creates CPU designs. It does not

produce CPUs, but licenses the designs to companies that

produce them. Starting with ARMv6, these designs include

the TrustZone extension. This extension is part of the CPU

itself, not an external chip.

The TrustZone technology provides two trust domains, or

worlds. The normal world usually runs a common OS –

Android in our case – and its applications. The secure world

is supposed to run a smaller kernel in which trust can be

placed, and security services – most of T2DROID in our case.

The context switch between the two worlds is controlled by

a higher privilege mode, the monitor mode. Software in the

normal world can force a switch to the secure world by calling

the secure monitor call (SMC) instruction.

The secure world provides code and data integrity and

confidentiality because untrusted code running in the normal

world cannot access the resources of the secure world. The

memory spaces of the two worlds are isolated. Each world

has access to its own memory management unit (MMU) to

maintain separated page translation tables. Cache memories

are TrustZone-aware, i.e., cache lines are tagged as secure

and non-secure so access to secure cached content from the

normal world is always denied. Certain hardware peripherals

and memory can be assigned exclusively to the secure world.

III. T2DROID ARCHITECTURE AND DESIGN

This section presents T2DROID’s architecture and design.

A. Threat Model and Assumptions

T2DROID runs in an ARM processor with TrustZone. In the

normal world, the mobile OS and the applications it executes

are not trusted, i.e., they may be malicious or compromised by

malware or hackers. In contrast, we assume that the software

running in the secure world, including the T2DROID software,

is trustworthy. The secure world is the Trusted Computing

Base (TCB) [28] of our system, the size of the software

executed there has to be as small as possible, so it does not

include a network stack or a mobile OS. The size of the API

to the secure world is also as small as possible to reduce the

attack surface, and all its inputs are validated, so we assume

attacks against the secure world cannot be successful. Malware

or attackers might be interested in disabling T2DROID, as they



do to anti-virus and other anti-malware software, but (1) we

assume they cannot compromise the part of T2DROID that

runs in the secure world and (2) we use code in the secure

world to verify the integrity of the components that run in the

normal world. We assume the existence of a collision-resistant

hash function (e.g., SHA-256).

B. Architecture

The architecture of T2DROID is shown in Fig. 1. The

normal world runs Android and applications. It also includes

a part of T2DROID, the two tracer modules, which obtain

information about the behaviour of the application being

checked. The API calls tracer and syscalls tracer are in

charge of monitoring Android API calls and kernel syscalls,

respectively. These components are tightly integrated with the

Android environment, so we place them in the normal world.

It would be possible to place them in the secure world, but

there are two drawbacks: the implementation would be much

more complex; the performance overhead would be high as

there would be at least an order of magnitude more context

switches between the two worlds.

The TrustZone driver (TZ Driver) is a kernel level driver,

which enables the tracer module to communicate with the

secure world. It allocates a shared memory zone that is used

for the tracer module to pass trace files to the detector module

in the secure world. It is also used by an application or another

module to order T2DROID to inspect an application. For

example, in the first use case mentioned in the introduction,

the order may come from a modified application installer, the

Android component that installs new applications.

The secure world runs a small trusted OS that provides basic

functions for software running in that world (processes, file

access, etc.) and modules of T2DROID. The integrity checker

module is comprised of two modules. The tracer checker

verifies the integrity of the tracer module, whereas the kernel

checker checks the integrity of the Android kernel running in

the normal world. The detector module receives trace data of

an application from the tracer module and performs detection

using a machine learning classifier.

Next we explain each component of the architecture.

C. Tracers

T2DROID analyses the behavior of an application by ob-

serving the calls it makes. Tracers extract sequences of API

calls and syscalls. Next we present these two components,

starting with the API calls tracer, then the syscalls tracer.

1) API calls tracer: Android applications rely heavily on

middleware-layer libraries, i.e., they frequently call their APIs.

Access to these APIs is protected using Android’s permission

framework, but users are compelled to give the permissions

requested, otherwise they cannot use them. The sequence of

API calls performed by an application reveals to some extent

its behavior. Malicious applications often make calls that have

legitimate uses, but that may be associated with malicious

behavior. Examples include sending SMS messages, mak-

ing phone calls, or accessing the user’s contacts. Therefore,

Fig. 1. Architecture of a mobile device running T2DROID (grey boxes).

analysing Android API function calls is a way of detecting

malicious behavior.

Dynamic analysis requires applications to be instrumented

with inspection code. There are two main instrumentation

approaches. Static instrumentation involves modifying the

application’s APK file before the application is installed or

executed. With dynamic instrumentation, the code is injected

into the application process memory by an external process

while the application is being launched. This approach does

not require modifications to the APK file that might cause

reliability issues and would be easier to detect by malware.

For these reasons, the API calls tracer module relies on

dynamic instrumentation. It runs custom code before and after

an Android API function is called. Since every application in

Android runs in its own VM, the injected code has access

to the VM and is executed inside the VM to hook and call

selected Java API methods of the target application. The

number of API calls available in Android is large, so it is

convenient to limit tracing to a subset of these calls considering

if they are used by malware.

The tracer is configured with the number of API calls to

collect or the time to collect them. When this threshold is

reached, the tracer sends the traces to the T2DROID detector

module in the secure world.

2) Syscalls tracer: Android applications may contain native

code, so malicious applications may use such code to avoid

calling Android API functions and perform malicious opera-

tions in a way that is unobservable by the API calls tracer.

However, such code has to call Android, so we observe its

behavior by tracing syscalls.

Android contains a modified version of the Linux kernel.

Syscalls are the fundamental API that allows applications to

call the OS kernel, usually not called directly but through

a library like glibc. The Android kernel provides a set of a

few hundred syscalls. Examples are syscalls to perform file

operations (open, read, write, close), process operations

(fork, exec), and network operations (socket, connet,



bind, listen, accept). Therefore, capturing and analyz-

ing the syscalls performed by an application may provide

information about accesses to the file system and network,

communication with other processes, etc.

The syscalls tracer intercepts and logs syscalls being made

by a running application using the ptrace syscall. T2DROID

uses the number of calls to each syscall to analyse the

behaviour of the application. Similarly to the API calls tracer,

the syscalls tracer is configured with the number of syscalls

to collect, or the period to collect them.

D. Feature Selection

Unlike the previous and the next, this section does not

present a component of the T2DROID architecture, but ex-

plains an important aspect of the detector.

Features are measurable characteristics of a certain phe-

nomenon and play a crucial role in machine learning. In our

case, the features correspond to function calls and characterize

the behavior of an application (the phenomenon). T2DROID

aims to classify applications in two classes – malicious or not

– based on a machine learning classifier. This classifier uses

a vector of features to assign an application to one of the two

classes. The selection of which features to use is important for

the detection mechanism to give good results. Redundant or

irrelevant features may present problems such as misleading

the learning algorithm, or increasing model complexity and

run time.

T2DROID uses a vector composed of two types of features:

those related to calls to the Android APIs and those related to

syscalls. There is one feature per API function and per syscall.

The features of the first set (Android APIs) are binary, i.e.,

they take value 1 if the application made that call, otherwise

they take value 0. The features of the second set (syscalls)

take a value that is an integer equal or greater than zero,

corresponding to the number of times the syscall was issued by

the application. We make this distinction because we assume

the number of calls made to one among the large number of

API calls is not very relevant, whereas the number of calls

made to the lower number of syscalls is. Our experimental

results seem to substantiate this assumption (Section VI).

Among thousands of Android APIs, we identified the sen-

sitive/suspicious API calls as those that are often invoked by

malicious applications. We analyzed a large set of malware and

benign applications and generated a list of distinct API calls,

then extracted those frequently used by malware. This reduced

our features to 121 APIs, which is of the same order of magni-

tude as the number of syscalls. Our features for Android APIs

are these calls in the format: full-class-name;method.

Some examples are in Fig. 2. For the syscalls we considered

as features all the syscalls, instead. The name of the feature

is the name of the syscall (e.g., open, read).

E. Detector

This section presents the detector module of the T2DROID

architecture (Fig. 1), which is essentially a machine learning

classifier and the core of T2DROID. It runs in the secure world.

android.telephony.TelephonyManager;getPhoneType

android.telephony.TelephonyManager;getNetworkOperator

android.app.SharedPreferencesImpl;getInt

java.io.FileOutputStream;FileOutputStream

android.app.SharedPreferencesImpl;getBoolean

java.security.MessageDigest;update

java.io.File;mkdir

Fig. 2. Examples of API call features extracted from a trace.

There are three important phases of the life cycle of the

classifier to consider. The first is the selection and training of

the classifier, which we have done and report in this paper.

The second is the use of the classifier at runtime, which we

validated experimentally. The third is the re-training of the

classifier during the life cycle of T2DROID, which we only

briefly explain as it is a repetition of part of the first phase.

The first phase is the selection and training of the classifier.

This phase is not done inside the device. We first picked a

balanced dataset of malicious and benign applications (Section

V). Then, we analysed all these applications with VirusTotal,

an online malware scanning tool, in order to confirm that

they were indeed malicious/benign. Next, we extracted feature

vectors from all the applications. These vectors were then

provided to a set of machine learning classifiers available in

the Weka tool [29], e.g., kNN and SVM, and their detection

effectiveness was compared using different metrics. The best

classifier was then implemented in the detector module and

trained with the same dataset (details in Section V).

The second phase is the use of the classifier at runtime to

analyse traces. The tracers provide the detector with traces

that it transforms into a vector of features. Then the classifier

classifies this vector as characterizing a malicious or benign

application. Experimental results are in Section VI.

The third phase consists on re-training the classifier. As

malware evolves, we expect the features selected and the

training done to become inadequate and the performance of

T2DROID to decrease with time. Therefore, the classifier has

to be re-trained periodically. Similarly to the training phase,

re-training is not done in the device. Re-training involves

selecting again the features to be used and repeating the

training phase. The existing instances of the T2DROID service

running in mobile devices will have to be updated securely

using a scheme similar to those used by anti-virus software,

e.g., using the cloud [30]. If necessary, the classifier may also

be changed, but this is more complicated than updating the

classifier configuration as it involves changing its code.

F. Integrity Checker

This section presents the integrity checker module of Fig. 1.

The components of T2DROID that run in the normal world,

tracers, are vulnerable to malware that infects this environ-

ment. Moreover, the behavior of these components may be

compromised if the mobile OS is infected. Therefore, it is

important to check the integrity of the tracers and the Android

kernel, i.e., if they were modified. For this purpose, T2DROID

includes two integrity checker modules in the secure world.



The tracer checker verifies the integrity of the code of

the tracer modules using a hash function (not the data, that

changes). The checker stores a hash of each of the modules

running in the normal world when they are in a clean state.

Then, at runtime, it calculates a hash of every module and

compares it with the hashes that are stored. If they match the

check is successful, otherwise it fails. This check is possible

because the secure world can access the resources of the

normal world, as previously mentioned.

The kernel checker does something similar but for the

kernel. It calculates a hash of the kernel code memory pages

and compares it against a hash calculated when the system

was first executed. To calculate a hash value, the start address

and length of the target memory pages are required. The kernel

integrity checker finds the virtual address of the kernel code in

the System.map file and translates this address to the secure

world address space before evaluating the hash value.

The two checker modules are executed whenever T2DROID

is requested to analyse an application, before the extraction

of the traces begins. However, there is the risk of malware

waiting for the trace extraction to begin, then modify the

tracers or the kernel. A solution for this is to check again

the integrity when the extraction of the traces ends, but this

still leaves the system vulnerable to a race [31] in which the

malware modifies the victim component twice. Such attacks

are not entirely avoidable, but can be made extremely difficult

by repeating the checks.

IV. T2DROID IMPLEMENTATION

We implemented a prototype of T2DROID on an i.MX53

QSB development board. The board is equipped with a Cortex-

A8 single core 1 GHz processor with TrustZone and 1 GB

DDR memory. Unlike most commercial TrustZone-enabled

smartphones, the i.MX platform places no restrictions on the

use of the secure world.

A. Secure World Runtime Environment

Genode is a framework for building special-purpose OSs

[32]. It provides a collection of small building blocks (e.g., ker-

nels, device drivers, and protocol stacks). Since requirements

vary, Genode can reduce system complexity for each security-

sensitive scenario. Due to its ability to generate a small TCB,

Genode is an appealing foundation for an OS designated to

run on the secure world. Genode version 15.11 introduced

a TrustZone virtual machine monitor (VMM) demo for our

board. It executes a custom kernel (base-hw) in the secure

world, while a guest OS runs in the normal world. We used

this demo as a starting point to implement our prototype. For

context switching between the two worlds, Genode provides a

VM session interface in Genode’s core that enables the VMM

to save the CPU state (registers and stack), initiates a switch

to the normal world using the SMC instruction, and restores

the state after it returns.

In the normal world, we run Android for the i.MX53 series

from Adeneo/Witekio [33]. We use the Linux/Android kernel

modified by Genode Labs for this board. The Linux/Android

kernel is modified to prevent the normal world from directly

accessing resources such as hardware and memory that are set

as secure within the central security unit (CSU) initialization.

We run the TZ Driver driver in the kernel to allow code in the

normal world to issue an hypercall to exit the normal world

and trap into the secure world, using the SMC instruction.

B. T2DROID Components

We start by explaining the implementation of the compo-

nents that run in the normal world – the tracer modules – then

explain those that run in the secure world.

For implementing the API calls tracer module we used

the Xposed framework, which allows modifying the behavior

of Android applications without modifying their code and

the APK file [34]. There are alternative frameworks, Cydia

Substrate and Frida, but Xposed seemed to be the most stable,

with a support community and frequent updates. All appli-

cation processes in Android have as parent a process called

Zygote, i.e., every application is created as a fork of that pro-

cess. Zygote is the first process started by init.rc after the

device boots. This process is launched by the app_process

executable (/system/bin/app_process), which loads all

necessary classes and resources. Xposed takes advantage of

this mechanism and replaces the app process file with a

modified one. Whenever a new VM is created, this extended

app process adds an additional jar file (XposedBridge.jar)

to the classpath. Xposed allows adding hooks to Android

API functions and extending them with our own custom code

written as a module that is loaded by the extended app process

when the target application process is launched. Our API Calls

tracer is a module of this kind that records the invocation of

Android API function calls in a log data structure. The log

is later processed and analyzed by the detector module in the

secure world.

The syscalls tracer was implemented based on strace, a

debugging tool for Linux and related OSs. The strace tool

can be used to trace the syscalls made by a process. It can be

considered to be a user space interface to the ptrace syscall.

The T2DROID syscalls tracer module records the name of

each system call, the arguments passed to the system calls

and their return values. After the application to be analyzed

has been started, a syscalls tracer instance is launched and

attached to the VM running the application. The above-

mentioned data is logged to a data structure to be processed

and analyzed by the detector module in the secure world.

The detector is the main component of T2DROID executed

in the secure world. It receives the traces from the two tracer

modules and runs the detection algorithm. It was implemented

based on the Java code of the algorithm in the Weka tool.

The implementation of the integrity checker in the secure

world follows what was explained in Section III-F. This mod-

ule needs access to the normal world memory. The TrustZone

configuration within Genode partitions the RAM between the

secure world and the normal world, so a program called

tz vmm in the secure world is able to request the normal

worlds RAM via an IOMEM session. The memory is mapped



as uncached to the secure worlds address space, thus the

normal world memory can be accessed by the integrity checker

module in the secure world. We also configured the Android

files system partitions to be accessed by the secure world, so

the integrity checker module can access the files related to the

tracer modules in the normal world to verify their integrity.

V. SELECTION AND TRAINING OF THE CLASSIFIER

This section explains how the detection algorithm was

selected and trained. For this purpose, we collected 80 Android

malware samples up to 3 years-old (2014-16) from the Conta-

gio mobile repository [35]. These samples belonged to 21 dif-

ferent malware families, e.g., FakeInstaller, DroidKungFu, and

Opfake. For benign applications, we downloaded from Google

Play Store 10 recent applications selected randomly from 8

different categories. Then, we verified these applications with

VirusTotal to ensure that no anti-virus product recognizes it as

malware. This gave us a balanced dataset of 160 applications,

half malicious, half benign.

To extract the features, we obtained execution traces by

executing all these applications. For this purpose, we used

Android Monkey [36] to generate different kinds of events

for the application. Monkey is a program running on Android

provided by the Android SDK, which automatically feeds an

application with pseudo-random streams of user events such as

clicks, key presses and touches, as well as a number of system-

level events. We executed and traced each of the applications

using Monkey to generate 500 events with a delay of 1 second

between each pair of events, leading to more than 8 minutes of

execution, which is enough to extract reasonably long traces

(100-200 KB for syscalls and 1-3KB for API calls). This time

is a tradeoff between how long we monitor the application (the

lower the time the better) and how much of its behavior we

observe (the larger the time the better). Due to the complexity

of using Monkey and executing these experiments on the

board, we executed the applications in the Android emulator

[37], set to emulate an ARM CPU.

For each application, we then extracted the features. For

the API calls, we extracted 121 values 1 (call issued) or 0

(not issued). For the syscalls, we extracted the number of calls

made to each. We assigned a class to each feature vector, M for

malware and B for benign application. We created three feature

vector sets: (1) API calls only (only features extracted from

API calls traces); (2) syscalls only (only features extracted

from syscall traces); and (3) all features extracted (both API

calls traces and syscall traces). The purpose of having variants

with these three sets is to allow compare the results and

understand if there is a benefit in using more than one of

the traces.

The feature vector sets were then inserted in Weka. Weka

allows training different machine learning classifiers with a set

of feature vectors and obtaining metrics of their performance.

For each feature set, we conducted experiments using six

widely used machine learning classifiers: Bayes Net, Naive

Bayes, SMO (SVM), Ibk (kNN), J48, and Random Forest. In

each experiment, we used 10-fold cross validation to evaluate

the classifiers without having a training and a testing dataset.

Our sets of applications (both malicious and benign) were

divided into 10 different sets/groups. In each of the 10 rounds,

one set of malware and benign applications was used as the

testing datasets and the remaining 9 as the training datasets.

For each classifier and feature set, we measured five com-

mon performance metrics. Consider that TP (True Positives)

is the number of malware samples correctly identified as

such, FN (False Negatives) is the number of malware samples

classified as benign applications, TN (True Negatives) is the

number of benign applications correctly identified, and FP

(False Positives) is the number of benign applications iden-

tified as malware. We consider the following metrics:

Accuracy = (TP + TN)/(TP + TN + FP + FN)
True Positive Rate (TPR) = Recall = TP/(TP + FN)

False Positive Rate (FRP) = FP/(FP + TN)
Precision = TP/(TP + FP )

Fmeasure = 2× Recall × Precision/(Recall + Precision)

The two most interesting metrics are precision (Precis.),

which measures the confidence we can have when T2DROID

says an application is malicious it is indeed so, and accuracy

(Accur.), which measures the correctness of the mechanism in

terms of the rate between correct results and the total.

The results of this evaluation are shown in Table I. Com-

paring the precision and accuracy it is possible to conclude

the following. First, the best classifier with API calls only is

SMO, which is an implementation of support vector machines

(SVM). Second, with syscalls only the best classifier is Ran-

dom Forest, and the results are slightly worse than with API

calls. Third, the best performance was obtained with both API

calls and syscalls with the Ibk algorithm, an implementation of

the k-nearest neighbors (kNN) algorithm, with an accuracy of

0.98 and a precision of 0.99, although the accuracy was always

0.85 or greater and the precision 0.87 or greater independently

of the classifier used. This lead us to the conclusion that the

detector should use the two types of traces and use Ibk/kNN

as classification algorithm. Therefore, this was the algorithm

implemented in T2DROID.

VI. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of

T2DROID in terms of detection and performance.

A. Detection

Our experimental evaluation of the detection performance of

T2DROID was presented in the previous section, together with

the study for the selection of the classifier. The experimental

results for the selected algorithm (Ibk/kNN) are shown in bold

in Table I, showing that it had excellent performance in all

metrics, with all equal to 0.98 or 0.99, except FPR that was

0.02 (but in this case values close to 0 are better).

Receiver operating characteristics (ROC) curves are a well-

known tool to visualize the performance of classifiers. There-

fore, we plotted the ROC curve for the T2DROID detector in

Fig. 3. Moreover, we plotted two curves for detectors with the

same algorithm but with API call features only and systcall



TABLE I
EVALUATION OF 6 CLASSIFIERS WITH 160 APPLICATIONS AND 3 FEATURE VECTOR SETS.

API calls only syscalls only API calls and syscalls

Accur. TPR FPR Precis. Fm. Accur. TPR FPR Precis. Fm. Accur. TPR FPR Precis. Recall Fm.

BayesNet 0.84 0.84 0.16 0.86 0.84 0.91 0.91 0.09 0.91 0.91 0.95 0.96 0.05 0.96 0.96 0.96

NaiveBayes 0.78 0.78 0.22 0.78 0.78 0.76 0.77 0.24 0.78 0.77 0.85 0.86 0.15 0.89 0.86 0.85

SMO (SVM) 0.98 0.99 0.02 0.99 0.99 0.86 0.87 0.13 0.87 0.87 0.97 0.97 0.03 0.97 0.97 0.97

Ibk (kNN) 0.94 0.94 0.06 0.95 0.94 0.91 0.91 0.09 0.93 0.91 0.98 0.99 0.02 0.99 0.99 0.99

J48 0.92 0.93 0.08 0.94 0.93 0.92 0.93 0.07 0.93 0.93 0.86 0.87 0.13 0.87 0.87 0.87

RandomForest 0.97 0.97 0.03 0.97 0.97 0.94 0.94 0.06 0.95 0.94 0.94 0.94 0.06 0.94 0.94 0.94
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Fig. 3. ROC curve for the detector in T2DROID (Both) and the detector with
only one of the types of traces (the other two lines).

TABLE II
TIME FOR TRACE TRANSFER, FEATURE VECTOR PREPARATION, AND

CLASSIFICATION.

Num.

events

syscall

traces (B)

API call

traces (B)

Trace

transf. (s)

Feat. vect.

prep. (s)

Classif.

(s)

Total

(s)

100 13.2K 488 0.000012 0.082 2.14 2.22

200 69.3K 1.3K 0.000036 0.17 2.21 2.38

500 157.2K 2.1K 0.000053 0.26 2.21 2.47

1000 252.9K 2.6K 0.000065 0.34 2.23 2.57

1500 531.8K 4.4K 0.00011 0.62 2.22 2.84

features only. The ROC curve is obtained by plotting the TPR

versus the FPR with various threshold settings. The figure

confirms that Ibk/kNN is indeed a good classifier when both

types of features are used, as the curve rises fast to values

close to 1, then stays there. Moreover, the figure shows that

the results with both types of features are better than the results

with API calls only, which are better than syscalls only.

B. Performance Overhead

As mentioned above, we did not measure the time of the

whole analysis as the time to extract the traces is configurable.

However, we measured the total time required for the tracer

modules to send trace data (both API calls traces and syscalls

traces) to the detector module. This time includes the perfor-

mance delay introduced by the context switching, and copying

TABLE III
TIME TO DO INTEGRITY VERIFICATION.

File name Size (KBytes) Time (ms)

XposedBridge.jar 115 71.62

app_process 22 13.54

API calls tracer module 2909 2511.21

syscalls tracer module 1126 829.55

Android kernel 8324 932.66

Total 12496 4358.58

and sending of data between the two worlds using the shared

buffer. In addition, we measured the time for the detector

module to prepare a feature vector from the trace data and

classify the examined application as malicious or benign (with

the kNN classifier). For this, we used Monkey to generate

different kinds of events and run the examined application.

We repeated this experiment for different numbers of events.

The results are in Table II. For each number of events, the

total time to complete the above operations is shown in the

last column of the table. We emphasize the row for 500 events

as this was the case considered in the detection experiments.

We also evaluated the performance overhead incurred by the

integrity verification of the components of T2DROID executed

in the normal world. The integrity checker modules verify

the integrity of the tracer modules and the Android kernel by

calculating their SHA-256 hash and comparing them against

their known-good values. The times for these operations are

shown in Table III. The table shows both the size and the time

to check the integrity of the modules. For the API calls tracer,

we show separately the values for two modules provided by the

Xposed framework but that are also important for the integrity

of the system: XposedBridge.jar and app_process. The

last line shows the total. It is possible to observe that the time

needed to check the integrity is slightly above 1s in our board.

VII. RELATED WORK

As mentioned in the introduction, there is research on

both static analysis [11], [12] and dynamic analysis [13]–

[19] mechanisms for Android and mobile devices. In this

paper we use dynamic analysis. Some work on dynamic

analysis modifies Android (kernel or middleware) to control

the information flow in real-time, e.g., in order to prevent the

flow and exposure of privacy-sensitive data [13]–[15], [20].

This is an interesting approach but requires human knowledge

about the ways malware violates security properties, whereas

in the paper we are interested in using machine learning to ex-

tract such knowledge automatically. It also requires modifying

Android, which is something we want to avoid.

Another trend on dynamic analysis is detecting malware

evaluating calls [16], [38], [39]. An issue is the semantic

gap between syscalls and high level behavior like sending an

SMS message. An alternative that greatly reduces this gap is

to trace Android API calls, which is the approach followed

in some recent work [17]–[19]. T2DROID follows this trend

but evaluates both syscalls and Android API calls. Moreover,



T2DROID is a system, whereas existing work proposed only

detection approaches based on machine leaning.

As mentioned before, in terms of security these dynamic

analysis mechanisms have the limitation of running in the

same environment as Android, exposed to some attacks [21]–

[23]. In this work we leverage ARM TrustZone to protect our

mechanism. TrustZone has been adopted to secure a number

of services, none similar to T2Droid [40]–[42].
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