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Abstract theoretical contributions. They have shown that simple ob-
jects like registers and sticky bits [19] when combined with
Despite the large amount of Byzantine fault-tolerant al- access control lists (ACLs) are enough to implement con-
gorithms for message-passing systems designed througlsensus [15], that the optimal resilience for strong consensus
the years, only recently algorithms for the coordination of isn> 3t+ 1 in this model [1, 15]{(is an upper bound on the
processes subject to Byzantine failures using shared memnaumber of faulty processes andhe total number of pro-
ory have appeared. This paper presents a new computingcesses), and that sticky bits with ACLs are universal, i.e.,
model in which shared memory objects are protected bythey can be used to implement any shared memory object
fine-grained access policies, and a new shared memory ob{15], to state only some of those contributions.
ject, the policy-enforced augmented tuple space (PEATS). Despite the undeniable importance of these theoretical
We show the benefits of this model by providing simple andresults, on the practical side these works also show the lim-
efficient consensus algorithms. These algorithms are muchitations of combining simple objects like sticky bits with
simpler and use less memory bits than previous algorithmsACLs: the amount of objects required and the amount of
based on ACLs and sticky bits. We also prove that PEATSspperations requested in these objects is enormous, making
are universal (they can be used to implement any sharedthe developed algorithms impractical for real systems. The
memory object), and present an universal construction.  reason for this is that the algorithms fall in a combinatorial
problem. There are processes ankl shared memory ob-
jects for which we have to setup ACLs associating objects
1. Introduction with processes in such way that faulty processes cannot in-
validate the actions of correct processes.

Despite the large amount of Byzantine fault-tolerant al- 1€ Présent paper contributes to this area by modifying

gorithms for message-passing systems designed through thgﬂs_ modellin o aspgcts. Eirst, the paper proposes the use
years [4, 8,9, 10, 16], only recently algorithms for tuor- of fine-grained seCl_Jrlty policiesto cc_m_trol the access to
dination of processes subject to Byzantine failures using ~ Sharéd memory objects. These policies allow us to spec-

shared memoryhave appeared [1, 3, 15]. The motivation ify_whe.n an invocation to an opera_tion in a shared memory
for this line of research is the current availability of sev- CPiect is to be allowed or denied in terms of who invokes

eral solutions for the emulation of dependable shared rnem_the operation, what are the parameters of the invocation and

ory objects on message-passing distributed systems subjeé‘f’hat is the s'ta?te of'the object. We pall the objects protected

to Byzantine failures [7, 8, 9, 10, 16]. The fundamental PY these policiepolicy-enforced objects(PEOs).

question regarding this research is: what is the power of ~Second, the paper uses only one type of shared mem-

shared memory objects to coordinate processes that can falry object: anaugmented tuple spacg5, 21]. This ob-

in a Byzantine way, i.e., arbitrarily [15]? The question is ject, which is an extension of the tuple space introduced in

specially relevant since this kind of failures can be used LINDA [11], stores generic data structures called tuples. It

to model the behavior of malicious hackers and malware Provides operations for the inclusion, removal, reading and

[9, 8, 10]. In a nutshell, the objective is to mask these fail- conditional inclusion of tuples.

ures using shared memory objects. The paper shows thablicy-enforced augmented tuple
The first works in this area have made several importantspaces(PEATSSs) are an attractive solution for the coordi-



nation of Byzantine processes. The paper provides algo-or correct interaction [4]%.

rithms for consensus and an universal construction that are The shared memory objects used in this paper are as-
much simpler than previous ones based on sticky bits andsumed to be dependable (they do not fail) and to satisfy
ACLs [1, 15]. They are also more efficient in terms of num- the linearizability correctness condition [13]: although
ber of bits and objects needed to solve a certain problem.they are accessed concurrently, every operation executed on
This comparison of apparently simple objects like sticky them appears to take effect instantaneously at some point
bits with apparently complex objects like tuple spaces may between its invocation and reply, in such a way that they
seem unfair but in reality the implementation of lineariz- appear to have been accessed sequentially.

able versions of both (the case we consider here) involves In term of liveness, all operations provided by the shared
similar protocols with similar complexities. For instance, memory objects used in this paper satisfy one of the follow-
both can be implemented similarly using the above men-ing termination conditionsx(is a shared memory object):
tioned Byzantine fault-tolerant systems based on state ma-

chine replication [8, 9, 10]. ¢ lock-freedom: an operatiorx.op is lock-free if, when
invoked by a correct process at any point in an execu-
tion in which there are pending operations invoked by
correct processes, some operation (eithep or any

of the pending operations) will be completed;

2. Model and Definitions

2.1. System Model . . . b
e t-resilience [15]: an operationx.op is t-resilient if,

] ) when executed by a correct process, it eventually com-
The model of computation consists of an asynchronous pletes in any execution in which at least t correct

set ofn processes” = {py, P, ..., Pn} that communicate processes infinitely often have a pending invocation for
via a set ok shared memory objec® = {os,...,04} (e.g., some operation of;

registers, sticky bits, tuple spaces). Each of these processes

may be eithefaulty or correct. A correct process is con- e t-threshold [15]: an operatiorx.op is t-threshold if,
strained to obey its specification, while a faulty process, also when executed by a correct process, it eventually com-
called aByzantine process, can deviate arbitrarily from its pletes in any execution in which at least t correct

specification. We assume that a malicious process cannot  processes invokeop;
impersonate a correct process when invoking an operation _ ) ) _ _
on a shared memory object. This limitation is importantin ~ ® Wwait-freedom [12]: an operatiorx.op is wait-free if,

our model since we will use a reference monitor [2] to en- when e.xecuted by a correct process, it eyentually com-
force the access policy. This monitor must know the correct pletes in any execution (despite the failures of other
identity of the process invoking operations on the object in processes).

order to grant or deny access to the operation.
A configuration of a shared memory distributed system

with n processes communicating usikgshared memory invoke th i dinth
objects is & VECtOE = (G, .., Gn, M1,...,T) Whereq is the correct processes invoke thkameoperation, and in the sec-

state of the process andr; is the state of the object. A ond an operation completes onlyrif-t correct processes

step of a process is an action of this process that changeskeep invoking some operation on the object. Notice that

the system configuration (the state of a process and/or ob:"threShOId 'TF;]I'GSB'T_’ silience, bu;_n_ot wce-versa.h b
ject). Anexecutionof a distributed system is an infinite For any of these liveness conditions, we say that an ob-

sequenc&y,ag,Cy,ay, ... whereCy is an initial configura- ject satisfies the condition if all its operations satisfy the

tion and eacts; is the step that changes the system state COndition.
fromGC; toCi41.

Each shared memory object is accessed through a set of 2+ Augmented Tuple Space
operations made available through its interface. An object
operation is executed by a process when it makeésvarca- The tuple spacecoordination model, originally intro-
tion to that operation. An operation ends when the processduced in the INDA programming language [11], allows
receives aeply for the corresponding invocation. An op- distributed processes to interact through a shared memory
eration that has been invoked but not replied to is called aobject called a tuple space, where generic data structures
pending operation We assume that all processes (even the calledtuples are stored and retrieved.
faUIty ones) invoke an operation on a shared memary ObJeC[ 1This is just a simplification to improve the presentation of the algo-

On!y after .receiV“?‘g th_e reply f.0r its last operation on this (ihms. This assumption can be easily enforced by making the objects
object. This condition is sometimes calleéll formedness ignore invocations made by processes that have pending invocations.

The difference betweetithreshold and-resilience, is
the fact that in the first an operation completes only-ft




Each tuple is a sequence of typed fields. A tuple in which The augmented tuple space is a universal shared memory
all fields have their values defined is called emtry. A object, since it can solve wait-free consensus trivially in the
tuple that has one or more fields with undefined values iscrash fault model [5, 21] as well as in the Byzantine model
called atemplate (indicated by a bar, e.df). An undefined (as will show in this paper) for any number of processes.
value can be represented by the wildcard sym&dihean- All algorithms proposed in this paper are based on a sin-
ing “any value”) or by dormal field, denoted by a variable  gle linearizable wait-free augmented tuple space.
name preceded by the character ‘?’ (e.g), ?

Thetype of a tuple t is the sequence of types of each 3 Policy-Enforced Objects
field oft. An entryt and a templatematch, denotedn(t, ),
iff (i.) they have the same type afid) all defined field
values off are equal to the corresponding field values of
t. The variable in a formal field (e.gv,in ) is set to the

Previous works on objects shared by Byzantine pro-
cesses consider that the access to operations in these objects
value in the corresponding field of the entry matched to the |s_protecte_d by ACLs [1’.3’ 1.5]‘ In th".ﬂ model, e_ach oper-

ation provided by an object is associated to a list of pro-

template. cesses that have access to that operation. Only processes
There are three basic operations on a tuple space [11]: P ' yp

out(t), which outputs the entryin the tuple space (write); :E?st ri%\éiee?fec eji?(;: Zrllicr)l%ec:?trlg%f:nnchrig%ti?olrt -[2,\]| citt)lcer(t)k-]at
in(t), which removes a tuple that matchiesrom the tu- ca : : P

: ] L tects the objects from unauthorized access. The implemen-
ple space (destructive read); artif), which is similar to

Co tation of this monitor is not problematic since, in general, it
in(f) but does not remove the tuple from the space (non-. . .

: . . . is assumed that the shared memory objects are implemented
destructive read). Th& andrd operations are blocking,

i.e., if there is no tuple in the space that matches the speci—.USIng replicated servers [8, 9, 10, 16], which have process-

fied template, the invoking process will wait until a match- NG POWET. L .
ing tuple becomes available In this paper, we also assume this kind of implementa-

A common extension to this model, which we adopt in tion b_ut extgnd the notion of protection to more powerful

. : . : . . security polices than access control based on ACLs. We
this paper, is the inclusion of non-blocking variants of these definepolicy-enforced objects(PEOS), which are objects
read operations, callédp andrdp respectively. These oper- whosepaccgss is overneJd by a fine- ,rained securitJ olic
ations work in the same way as their blocking versions but Later, we argue tr?at the use %f theseg olicies make yc?ssib)llé
return even if there is no matching tuple for the specified ' 9 P P

template in the space (signaling the operation’s result with the |mplement_at|on of S'mple. and efficient algorlthms that
a boolean value). Notice that according to the definitions solve several important distributed problems, for instance,

. . -~ consensus.
above, the tuple space works just like an associative mem- . . .
A reference monitor permits the execution of an opera-

ory: tuples are accessed through their contents, not through. . L . _
their address. This programming model allows expressiveqlon on a P.EO if the co_rrespondlng mvoc_at_lon satisfies the
access policy of the object. Tlaecess policyis composed

interactions to be described with few lines of code [11]. by a set of rules. Each rule is composed by an invocation
In Herlihy's hierarchy of shared memory objects [12], y . : P y an
.pattern and a logical expression. An execution is allowed

the tuple space object has consensus number 2 [21], i.e., i . - .
can be used to solve consensus between at most two pro__predmateexecuteop) set toirue) only if its associated log-

Cesze. I s paper we want 0 present aigortms oo™, ©01ES20 8 alsfed by e ocaton pater, Fol
consensus and build universal constructions for any numbe gthep P : LS, any )
oes not fitin any rule is always denied [20]. A logical value

of processes, so we need universal shared memory object alseis returned by the operation whenever the access is de-
(consensus numbe) [4, 12]. Therefore, we use aaug- nied y P

mented tuple spacg5, 21] which provides an extreondi- . . .
ple spacq | P The reference monitor has access to three pieces of in-

tional atomic swap operation. This operation, denoted by formation in order to evaluate if an invocatiowoke b.o
caq{,t) for a templatd and an entry, works like an atomic : €p,0p)
to a protected objectcan be executed:

(indivisible) execution of the instruction:

if —rdp(t) then out(t) ¢ the invoker process identifigg,

The meaning of this instruction is “if the reading bf * the operation op and its arguments;
fails,. insert the (_anFryin the §pace2”. This operation retprns e the current state of
true if the tuple is inserted in the space diatseotherwise.

2Notice thatcasis similar to the register compare&swap operation [4] An example Isa pO“Cy-enforced numeric atomic register

but in some sense does the opposite, because compare&swap modifies threin which o_nly vglues greater than the current Valuelcan be
register if its value i:qual to the value compared. written and in which only process@s, p, andps can write.



The access policy for that PEO is represented in Figure 1.about a single decision value. A consensus object is a
We use the symbol ‘- ' taken from therRPLOG program- shared memory object that encapsulates a consensus algo-
ming language to state that the predicate in the left handrithm. Next, we present algorithms to implement two kinds
side is true if the condition in the right hand side is true. of consensus objects:

The executepredicate (left hand side) indicates if the oper-

ation is to be executed, and the predidat®ke(right hand e Weak Consensug15]: A weak consensus obje&t
size) indicates if the operation was invoked. is a shared memory object with a single operation
X.proposév), with v € ¥, satisfying the properties:
Object State (Agreemeny in any executionx.propose returns the
Rread: €xecutéread()) :- invoke p, read()) same value, called theonsensus valugto every cor-
Rurite: €xecutéwrite(v)) - invoke p, write(v)) A rect process that invokes iv4lidity ) in any finite exe-
p e {p1, P2, P3}AV>T cution in which all participating processes are correct,
if the consensus value is then some process invoked
Figure 1. An example of access policy for an X.proposév).

atomic register.
e Strong Consensug15]: A strong consensus objext
is defined by a stronger Validity condition than weak

In the access pOllcy in Figure 1, we |n|t|a”y define the el- consensus Objects:S'(rong Va||d|ty) if the consen-
ements of the ObjeCt’S state that can be used in the rules. In sus value isv' then some correct process invoked

this case, the register state is specified by its current value,  x proposév).

denoted. Then, one or more access rules are defined. The

first rule Reead) says that all register readings are allowed.  goth gbjects have also to satisfy one of the termination
The second ruleRyite) States that arite(v) operation in- conditions given in Section 2.1.

voked by a procesp, can only be executed (f.) p is one

of the processes in the sgp1, p2, ps} and(ii.) the value

v being written is greater than the current value of the reg-
isterr. Notice that conditior(i.) is nothing more than a

4.1. Weak Consensus Object

straightforward implementation of an ACL in our model. In a weak consensus object, the consensus value can be
The algorithms presented in the paper are based on @nY of the proposed values. With this validity condition it
policy-enforced augmented tuple spacebject (PEATS).  is perfectly legal that a value proposed by a faulty process

The implementation of this kind of object (or another PEO becomes the consensus value.

in general) on distributed message-passing systems could be : :

based on interceptors [14], that would grant or deny accesglgorithm 1 Weak Byzantine consensus (procegs

to the operations according to the access policy of the ob-Shared variables:

ject. A straightforward implementation would be to repli- 1: ts=0 {PEATS objec}

cate the PEATS in a set of servers. There would be oneprocedure x.proposgv)

interceptor in each replica, which would be in charge of en- 2: if ts.cag(DECISION 2d), (DECISION,v)) then

forcing the policy in that replica. The access policy could 3: d«vVv {decision valugv) inserted

be hard-coded in the interceptor, or a more generic policy 4: end if

enforcer like the one in [18] might be used. Notice that the _5: return d

policy is enforced strictly locally; there is no need for com-

munication between the interceptors. All the interceptorsin  algorithm 1 presents the algorithm that implements

correct replicas always take the same decision to grant/denyyeak consensus using a PEATS. The algorithm is very sim-

an operation because policies are deterministic and evaluatge: a process tries to insert its proposal in the PEATS object

the same data in all correct replicas. A complete implemen-sing thecasoperation. It succeeds only if there is no deci-

tation of a dependable PEATS is described in [6]. sion tuple in the space. If there is already a decision tuple,
this is the value to be decided and it is returned.

4. Solving Consensus

Object Statel'S
Rcas executécag (DECISION x), (DECISION,y))) :-
In this section we illustrate the benefits of using a PEATS invoke p,cag (DECISION x), (DECISION y)))
to solve two variants of the consensus problem. This prob- Aformal(x)

lem concerns a set of processes proposing values from . . .
a set of possible valueg and trying to reach agreement Figure 2. Access policy for Algorithm 1.



The access policy for the PEATS used in Algorithm 1 Algorithm 2 Strong Byzantine consensus (process
is presented in Figure 2. The predicéemal(x) is true if Shared variables:
x is a formal field, otherwise it ifalse This access pol-  1:ts=0 {PEATS objec}
icy permits only executions of theasoperation. The tuple  procedure x.proposév)
must have two fields, the first with a constant DECISION 5. (s out((PROPOSER;, V)

and the second must be formal. Only one decision tuple can 3. g« 0 {set of processes that proposéd 0

be inserted in the PEATS. 4: S+ 0 {set of processes that proposed 1
Besides its simplicity and elegance, this algorithm has 5: while |S| <t+1A[|S| <t+1do

several interesting properties: first it imiform [4], i.e., 6: forall pje 7\ (SUS)do

it works for any number of processes and the processes do7: if ts.rdp((PROPOSEp;, %)) then

not need to know how many other processes are participat- & en?i: Su{pj} {pj proposed/}

ing. Second, it can solveulti-valued consensus since
. . 10: end for
the range of values proposed can be arbitrary. Finally, thell_ end while
algonthm iswait-free, i.e., it always termlna}tes de;plte the 12: if tscas (DECISION 2, ), (DECISIONv,S,)) then
failure of any number of processes. An interesting point ;5. 4. {decision valudv) inserted
about this algorithm is that our PEATS with the access pol- 14: end if
icy specified in Figure 2 behaves like a persistent object, so1s: return d
our result is in accordance with Theorem 4.1 of [15].

Theorem 1 Algorithm 1 provides a wait-free weak consen- different values and we must ensure that there is a single de-

sus object. cision value. All further invocations afasreturn this value
(lines 12-14).

Proof: Omitted due to lack of space. The access policy for the PEATS used in Algorithm 2 is
presented in Figure 3. This access policy specifies that any

4.2. Strong Consensus Object process can read any tuple; that each process can introduce

only one PROPOSE entry in the space; that the second field

. - .. of the template used in theasoperation must be a formal
A strong consensus object enforces the validity condition . " I )
field; and that the decision valuemust appear in propos-

by requiring that the consensus value be proposed by a cor- ;
) . . als of at least + 1 processes. These simple rules, that can
rect process even in the presence of faulty ones. This strict

" . o easily be implemented in practice, effectively constrain the
condition results in a more complex (but still simple) algo- : . N
rithm. However, this algorithm does not share some of the power of Byzantine processes, thus allowing the simplicity

benefits of the algorithm presented in the previous section:Of the consensus presented in Algorithm 2.
(i.) itis not uniform since a process has to know who are the

. . Object Statel' S
o_ther processes in order to read their input values and de- Ruap: executérdp(t)) :- invoke p, rdp(t))
cide a consensus value proposed by some correct process; Rout: €xecutéout((PROPOSEP, X)) :-
(ii.) it solves onlybinary consensus also due to the fact invoke p, out((PROPOSER, X)))A
that a process needs to know if a value has been proposed #y: (PROPOSEp,y) € TS
by one correct process before deciding(iti.) it is not Reas executécag(DECISION X, x), (DECISION v, P))) :-
wait-free since it requires —t processes to take part in the invoke p, cag (DECISION x, +), (DECISION v, P))) A
algorithm. Nevertheless, the number of processes needed is formal(x) A |P| > t+ 1A
optimal:n> 3t + 1. Vg e P: (PROPOSE,V) € TS

Algorithm 2 presents the strong binary consensus pro-
tocol. The algorithm works as follows: a procegsfirst
inserts its proposal in the augmented tuple sgacssing a
PROPOSE tuple (line 2). Thep; queriests continuously
trying to read proposals (line 7) until it finds that some value
has been proposed by at letist1 processes (loop of lines
5-11). The rationale for the amount of 1 is that at least ) )

: incsticky bits'.
one correct process must have proposed this value, sinc
there are at modt failed processes. The first value that
sa_tlsfles this condlt_|on is t_hen mse_rted in the tu_plg space 3E.g., only 68 bits are needed for- 4 andn — 13,
usmg.theca_soperanon. This commitment phase is impor- 4t s a lot of memory. For example, if we want to tolerate 4 faulty
tant since different processes can coltegtl proposals for  processes, we need at least 13 processes and 1764 sticky bits.

Figure 3. Access policy for Algorithm 2.

Our algorithm requires only([logn] + 1) + (1 + (t +
1)[logn]) bits in the PEATS objeét(n PROPOSE tuples
plus one DECISION tuple). The consensus algorithm with

the same resilience presented in [1] requires- 1) (Z‘jl)




Theorem 2 Algorithm 2 provides a t-threshold strong bi- emulated object in the same order. Each process keeps a
nary consensus object. replica of the state of the emulated obj&ctAn invocation
inv is executed by applying the functi@pplyr (S,inv) to
that state. The problem boils down essentially to define a
total order for the execution of the operations.
5. A Lock-free Universal Construction The operations to be executed in the emulated object can
be invoked in any of the processes, so the definition of an
A fundamental problem in shared memory distributed order for the operations requires a consensus among all pro-
computing is to find out if an object can be used to im-  cesses. Therefore, we need an object with consensus num-
plement (oremulate) another objecY. This section proves  bern, i.e., a universal object.
that PEATSs areiniversal objects[12], i.e., that they can The solution is to add (to “thread”) the operations to be
be used to emulate any other shared memory object. Herexecuted in the emulated object to a list where each element
liny has shown that an object is universal in a system with  has a sequence number. The element with the greater se-
processes if and only if it hasonsensus numben, i.e., if guence number represents the last operation to be executed
it can solve consensus famprocesses [12]. on the emulated object. The consistency of the list, i.e., the
The proof that PEATSs are universal is made by provid- property that each of its elements (each operation) is fol-
ing one universal construction based on this kind of object. lowed by one other element, is guaranteed by the universal
A universal construction is an algorithm that uses one or object, a PEATS in our case. Given this list, each process
more universal objects to emulate any other shared mem-executes the operations of the object emulated in the same
ory object [12]. There are several wait-free universal con- order.
structions for the crash fault model, using consensus objects The list of operations is implemented using a PEATS ob-
[12], sticky bits [19], compare and swap registers [4] and ject. The key idea is to represent each operation as a SEQ
several other universal objects. A universal construction tuple containing a position field, and to insert each of these
for the Byzantine fault model using sticky bits was defined tuples in the space using tbasoperation. When a process
in [15]. However, this construction is not wait-free Bt wants to execute an operation, it invokes tasoperation:
resilient, which is a more appropriate termination condition if there is no SEQ tuple with the specified sequence number

for Byzantine fault-tolerant algorithms. The possibility of in the space, then the tuple is inserted. Algorithm 3 presents
algorithms with stronger liveness properties is still an open this universal object.

problem [15].
In order to define a universal construction that emu""‘tesAlgorithm 3 Lock-free universal construction (process.

a deterministic objecb of a certain type, we have to start Shared variables:

by defining the type of the object. A type is defined

Proof: Omitted due to lack of space.

1 ts= PEATS obj
by the tuple (STATE,Sr,INVOKEr, REPLY,applyr) LocaTva?iableS' { S objec}
where STATE is the set of possible states of objects of b : e ob
type T, St € STATE is an initial state for objects of this 2: St:;e__OST {positon of té‘;‘gﬁg}fﬁ?i Oert_at‘?o?] SJ?%;
type, INVOKE is the set of possible invocations of oper- ™ E d'_ P P
ations provided by objects of typk, REPLY is the setof "o
possible replies for these invocations, amblyr is a func- ‘5‘: 'C’OpIOOSH p0s+ 1
tion defined as: 6: if tscaq(SEQpos ?posinv), (SEQ posinv)) then

. 7: (statereply) <+ applyr (stateinv)
applyr : STATE x INVOKEr — STATE x REPLY. 8 retum reply
The functionapplyr represents the state transitions of 93_ end if _
the object. Given a stat§ and an invocatiorinv for an 12: engsfggzrepb’) < applyr (state posinv)

operatiorop, applyr (S, inv) gives a new stats; (the result
of the execution of operatiomp in stateS) and a replyrep
for the invocation. This definition is enough for showing The algorithm assumes that each progeg®gins its ex-
the universality of tuple spaces, although Malkhi et al. have ecution with an initial state composed by the initial state of
shown that a (trivial) generalization is needed for emulating the emulated objecs{ate= Sy, line 2) plus an empty list
non-deterministic types and some objects that satisfy weak(pos= 0, line 3). When an operation is invoked (denoted
liveness guarantees [15]. by inv), p; iterates through the list updating issatevari-
Our lock-free universal constructionfollows previous able (loop in lines 4-11) and trying to thread its operation
constructions [4, 12, 15]. The idea is to make all correct by appending it to the end of the list using ttessoperation
processes execute the sequence of operations invoked in th@ine 6). If casis executed successfully kpy, thestatevari-




able is updated and the reply to the invocation is returned Theorem 3 Algorithm 3 provides a lock-free universal con-
(lines 7 and 8). struction.

The algorithm is lock-free due to theas operation: o _
when two processes try concurrently to put tuples at the engProof: Lemma 1 implies that there is a total order on the
of the list, at least one of them succeeds. However, the algo-OPerations executed in the emulated object. Through an in-
rithm is not wait-free since some processes might succeedPection of the algorithm, it is easy to see that a process
in threading their operations again and again, delaying otherUpdates its copy of the state of the emulated object by ap-

processes forever. plying the deterministic functioapplyr to all SEQ tuples
in the order defined by the sequence number. In this way,
Object Statel' S all operations are executed in the same order by all correct
Reas executécag(SEQ posx), (SEQ posinv))) :- processes, and this order is according to the sequential spec-
invoke p,cag (SEQ pos x), (SEQ posinv)))A ification of the object provided by the functi@pply. This
formal(x) A proves that the universal construction satisfies linearizabil-
(pos=1Vv3y:(SEQpos—1y)) €T ity. Lemma 2 proves that the construction is lock-freel

Figure 4. Access policy for Algorithm 3.
6. Related Work

The access policy for our universal construction (Fig-

ure 4) states that a SEQ tuple with the second fglecan In this paper we present several shared memory algo-
only be inserted in the space (usiogs if there is a SEQ  rithms that tolerate Byzantine faults using an augmented
tuple with the second field with valygos— 1. tuple space. To the best of our knowledge, the only other

The proof of the correctness of the algorithm is based onworks which use this type of object to resolve fundamental
the following lemmas: distributed computing problems are [5, 21]. However these

works address only the wait-free consensus problem in fail-

Lemma 1 For any execution of the system, the following stop systems (no Byzantine failures).
properties are invariants of the PEATS used in Algorithm 3: Asynchronous shared memory systems with processes
that can fail in a Byzantine way have been first studied inde-
pendently by Attie [3] and Malkhi et al. [15]. The work in
[3] shows that weak consensus cannot be solved using only
2. For any tuple(SEQposinv) in the tuple space with  resettable objects This result implies that algorithms for

pos> 1, there is exactly one tupkSEQ pos— 1,inv) solving consensus in this model must use some kind of per-

in the space. sistent (non-resettable) object like sticky bits. The PEATS
used in our algorithms can be viewed as a persistent object
since the specified access policies do not allow processes to
reset the state of the object.

The work presented in [15] uses shared memory objects
with ACLs to define a-threshold strong binary consensus

Proof: This lemma is proved by contradiction. Letbe algorithm and d-resilient universal construction. The for-

an execution with only two correct processgs and p; mer uses 2+ 1 sticky bits and requires > (t +1)(2t + 1)
(without loss of generality) which invoke operatioims; processes. The paper also shows that there can be no strong
andinv,, respectively. Suppose that they stay halted for- binary consensus algorithm with < 3t processes in this
ever, not receiving replies. We have to show thhatoes not ~ model of computation.

exist. An inspection of the algorithm shows that the pro-  In @ more recent work, Alon et al. [1] extend previous
cesses keep updating their copies of the object state untiresults by presenting a strong binary consensus algorithm
they execute the most recent threaded operation (with posithat attains optimal resiliencyn(> 3t + 1) using an expo-

tion field value equal tos without loss of generality). At~ nential number of sticky bits and requiring also an expo-
this point, p; and p, will try to thread their invocations to ~ nential number of rounds. That work proves several lower
the list in positionpos+ 1 executingcas(line 6). Since the ~ bounds related to the number of objects required to imple-
PEATS is assumed to be linearizable, the wesinvoca- ment consensus, including a tight trade-off characterizing
tions will happen one after another in some order, so eitherthe number of objects required to implement strong consen-
theinv; or theinv, SEQ tuples will be inserted in position ~Sus: a polynomial number of processes needs an exponen-

pos+1. The process that succeeds in execunagwnl 5An objecto is resettableif, given any of its reachable states, there is

thrfaa_d its invocat.ioﬂ and_Wi” retum_ it.S_ reply (lines 7. and 8). 5 sequence of operations that can return the object back to its initial state
This is a contradiction with the definition of. [ ] [3].

1. For any pos> 1, there is at most one tuple
(SEQ posinv) in the tuple space;

Proof: Omitted due to lack of space.

Lemma 2 The universal construction of Algorithm 3 is
lock-free.




tial number of objects and vice-versa. This result empha- [5] D. E. Bakken and R. D. Schlichting. Supporting fault-

sizes the power of ACLs in limiting malicious processes but
also shows the limitations of this model, specially in terms
of the large number of objects required to attain optimal re-

(6]

silience. The approach proposed in the present paper uses a
different model so this trade-off does not apply.

The type of policy enforcement used in this paper was
inspired by the LGI (Law-Governed Interaction) approach

[18] and its use in protecting centralized tuple spaces [17].

7. Concluding Remarks

The approach for distributed computing with shared

(7]

(8]

9]

memory accessed by Byzantine processes presented in this

paper differs from the previous model where objects are
protected by access control lists. Our approach is based on10]

the use of fine-grained access policies that specify rules that

allow or deny an operation invocation to be executed in an
object based on the arguments of the operation, its invoker,
and the state of the object. The constructions presented in

[11]

this paper (consensuses and universal object) demonstrate
that this approach allows the development of simple and el- [12]
egant algorithms

An inherent characteristic of the proposed approach is

that its utility is limited when used to implement simple per-

sistent objects like sticky bits (its use would be equivalent
to using ACLs). The full potential of PEOs appears when

(13]
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