
P2CSTORE: P2P and Cloud File Storage for
Blockchain Applications

Marcelo Silva Miguel Matos Miguel Correia
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

{marcelo.filipe.regra.da.silva, miguel.marques.matos, miguel.p.correia}@tecnico.ulisboa.pt

Abstract—We live in an era where storage systems are of
major importance. In this work, we focus on storing files for
use in blockchain applications. A blockchain is a distributed,
replicated system, that contains a ledger of operations and exe-
cutes programs known as smart contracts. Although a blockchain
may be considered a data storage system, public blockchains like
Ethereum charge the users per each byte stored making them
expensive to store large files. Therefore, applications based on
blockchains often use an external file storage system, usually peer-
to-peer (P2P). We propose P2CSTORE, a new storage system for
blockchain applications using both P2P and cloud subsystems.
This way we aim to provide application developers with the
flexibility of choosing the best place for their files, depending
on aspects such as the trust they place in peers and clouds. We
show the benefits of the approach with a blockchain application
that manages education certificates. The application stores hashes
of the certificates in the cloud and the certificates themselves in
our storage system.

I. INTRODUCTION

Nowadays data is an important component of our world. We
generate vast amounts of data daily, such as application logs,
browser search history, medical records, education certificates,
photos, among many other items that must be properly stored.
The current best way to store files is by using distributed
systems. One example of such a system is a blockchain [1],
[2]. A blockchain can enforce the integrity and availability of
the stored data. After all, if a node attempts to store something
it first must make a valid transaction on the blockchain, which
ensures security properties like integrity, authenticity, and non-
repudiation. The fact that data is replicated in many nodes
additionally ensures availability.

As an example, project QualiChain (https://qualichain-
project.eu/) is developing a blockchain-based system to en-
force the authenticity of university certificates, [3], [4], [5], [6].
The idea is to store certificate data in a blockchain, in such a
way that when a company receives an application for a given
position, it can check with the blockchain if the candidate
certificate is authentic. A natural approach would be to store
the certificates in the blockchain, but certificates are reasonably
large (in the order of a few megabytes). Public blockchains like
Ethereum charge the users per each byte stored making them
expensive to store large files, so storing all certificates from
all users in the blockchain would be very expensive.

Another approach, often used in blockchain-based dis-
tributed applications, also known as DApps [7], is to use

an external storage system to store data. These applications
typically store the hash of the file on the blockchain and the
actual file in a separate storage system.

To create a storage system for DApps, there are two
common architectures: P2P and centralized storage. DApps
often use as external file storage system a peer-to-peer (P2P)
file system [8], [9], [10], [11], [12], [13], as many blockchains
are also P2P systems [14], [15]. In a P2P system, there is no
centralized server, instead some nodes share resources to store
files. If a node wants to get a particular file, it can request it
from the network. A file system is said to provide availability
if it can ensure that a certain file will be ready to be requested
at any given time. This is hard to guarantee in P2P systems
since nodes can leave and join the network at will, making the
files they store available and unavailable as they join and leave
respectively. These systems are typically based on volunteer
nodes and therefore can be used free of charge.

An alternative is a centralized architecture in which client
computers connect to a central server over the Internet. This
client-server architecture allows providing high-availability
by replicating the server and/or disaster recovery by doing
backups and similar mechanisms. Today, with the popularity
of the cloud model [16], this architecture is provided by many
cloud storage services [17], [18], [19], [20], that ensure high-
availability but charge for bytes stored and downloaded.

Our general goal is to create P2CSTORE, a distributed file
system for DApps that leverages the two types of distributed
file storage systems previously described and allows admin-
istrators to select among a wide range of configurations with
different trust, cost, and availability trade-offs. To guarantee
high availability and integrity of the files we will leverage
replication techniques and a proof-of-storage mechanism. The
PoS mechanism allows a client to check if a server has a
file without downloading that file. We will use the storage of
university certificates as a use case.

II. THE P2CSTORE SYSTEM

In this section, we present the design and implementation
of the P2CSTORE system. We start by explaining the system
model. We analyze the problem definition and the relevant
properties and assumptions. Finally, we describe the relevant
algorithms.978-1-7281-8326-8/20/$31.00 c©2020 IEEE



A. System Model

The P2CSTORE system is composed of a set of nodes that
communicate by message passing. Nodes can be online or
offline. For the system to properly function, nodes have to be
online at the same time. Nevertheless, nodes that are offline
during some operations can become online and recover later.
Clocks do not need to be synchronized.

A node is considered correct if it follows the algorithm,
otherwise it is faulty. The system tolerates several types of
node failures: a node can go offline and back online repeatedly;
nodes may go offline indefinitely; a node may tamper the
content of the files it stores.

Nodes communicate through the Kademlia DHT [21]. Each
node will exchange information through the lookup of other
nodes. Each node as a node ID and the Kademlia algorithm
uses the node ID to locate values on the network.

Every time a node adds a file to the system a key is
generated. This consists of a hash of the file contents plus
the owner ID. This key is stored in the DHT as a new entry
every time an add operation is done, and as said before, when
combined with the owner ID is used to locate the file in
the system either for reading or deletion. This key can be
shared with other nodes to enable them to see the file content,
associated with the shared key.

We assume the communication is reliable and secure. We do
not present a specific solution for how to obtain this as there
are several, e.g., using the TLS protocol [22] or the DTLS
protocol [23].

Fig. 1. P2CSTORE System Overview.

B. P2Cstore Overview

The problem that we solve, as described above, is to create a
storage system to store generic files for DApps, e.g., education

certificates, on the Ethereum blockchain.
To solve this problem we created P2CSTORE which consists

of a peer-to-peer (P2P) network for nodes/clients to interact
with, with access to cloud storage services. The clients decide
how they want their data to be stored: on peers, on clouds, or
both. Next, we describe in more detail each component of the
P2CSTORE architecture.

The P2CSTORE system has two types of participants. First
there are storage peers (or nodes). These participants provide
storage space and act as both readers and writers of files.
Second there are readers. These are not full participants, but
simply allowed to read files. (not write or delete). This second
type of participants was included to allow sharing of files
among people that do not want to participate in the system
but with whom someone who does participate wants to share a
file, e.g., HR recruiters could want to see education certificates
from candidates without wanting to participate in the system.
The sharing of the file by some node in the system with
someone else would work by having the node simply send
the key of the file, (which is how nodes can identify files in
the storage system as said before), to that other person/node
and this person/node can then request the file to the system
without participating on anything. To increase availability we
also use Cloud storage systems. It is important to mention that
these clouds do not execute any code, they are only there for
storage purposes.

An overview of the P2CSTORE is presented in Figure 1. As
described above, it is composed of peers of the peer network
that also provide storage, by readers, and by cloud storage
providers. The readers do not participate in the peer network,
they can only read content shared by storage peers. Therefore
we have the cloud storage peer layer, the peer network layer,
and finally the reader’s layer.

Each peer can leave and rejoin at will and the system will
still function as long as other nodes are online providing the
content hosted by the node that left. If a node changes the
content of data without permission the system will catch this
and consider the content corrupt and reject it. If a certain node
fails to prove that it is storing the file the system will also catch
this fault.

P2CSTORE is based on a fairness condition: each peer can
only use the same amount of P2P storage that it gives to the
system, although it can use more storage in the cloud with the
associated costs. This way the sustainability of the system is
ensured. One could think that this way it is not worth it to
use the system, given that an organization can only use what
it gives. However, it allows replicating files in a set of nodes,
improving availability.

This guarantee is enforced with two mechanisms that pre-
vent a node to use storage space in other nodes without
providing space (free-riding). The first is an extension of the
Kademlia routing table with extra data about the used storage
and the storage given to the system by the node; every time
a node wants to add some content to the system it does
verification on the routing table to see if a set of nodes on
the network have available storage for that file or not; when



the writer node finds a destiny node to store the file it (the
writer node) will verify on the routing table if the destiny node
has available space for that content. To clarify we called this
node writer to distinguish it from the destiny node, in reality,
this is an ordinary peer node that is attempting to perform
an add operation. The second is a Proof-of-Storage algorithm,
explained in the next section.

C. Proof-of-Storage Algorithm

In this section, we will present the algorithm for proof-of-
storage (that we designate PoS for short, but not to be confused
with Proof-of-Stake).

In the algorithm nodes play two roles: a prover, P , that is a
node attempting to convince a verifier, V , that it (P ) is storing
some data, D. V issues a challenge, c, to P that answers it
with a proof π, according to the scheme in question.

Consider a node that wants to check if all its files are
replicated in other nodes. First, for each file f it has stored in
the system, V generates a random array of bytes that represent
positions of the file; the size of the array can be configurable
and the positions can be repeated on the array, meaning that
we can have index 1 several times on the array. Afterward,
V generates a nonce (to prevent replay attacks). This nonce
corresponds to a random string of configurable size. Then,
V creates a challenge object c containing the byte array and
the nonce, sends c to the node(s) that is(are) storing f , and
initiates a counter. A node that receives that request plays the
role of the prover. Once a prover P receives the challenge c it
will reply with the bytes corresponding to the positions given
by the list of bytes, and concatenates the result with the nonce
in the challenge.

Afterward, P executes a hash function on the resulting
string. This hash is then sent to V . Once V receives the hash it
will verify if it was sent in the available time-frame, if yes, and
if the response is correct than V has a proof that P is storing
file f properly. If the response was not sent in the available
time-frame the node down counter is incremented by 1. If this
counter reaches the threshold Tf (e.g., Tf = 5) the node is
considered faulty. If the response is not correct than V will
handle this node as being faulty. If a node is considered faulty
the system handles this case by marking locally (in a local
file) the node as faulty. Afterward, the V removes the files
that are storing that belong to P . Once this is done V will
need to update the DHT. It does so by adding the files again
into the system while ignoring the faulty nodes. This way the
files will be replicated among the number of nodes that they
configured.

On Algorithm 1 we can see the four functions of the PoS
algorithm Verifier side. Namely, we have the storageProofRe-
quest (lines 1-21) which is the main function of the algorithm,
here we call the function generateChallenge (lines 34-45)
that will generate the challenge as previously described. Then
for each of the nodes that are storing the file we send the
challenge, start the timer, and receive the response. Afterwards,
we verify whether the response arrived on the available time;
if not then we increment the down counter by 1 and if

1 Function storageProofRequest(file):
2 call function generateChallenge
3 for each node that is storing the file do
4 send challenge to node
5 start timer
6 get response from node
7 if response time greater than time available then
8 /* Assume node temporarily

unavailable */
9 increment node down counter by 1

10 if node down counter equals n then
11 /* n is configurable */
12 call function handleFaultyNode
13 end
14 call function checkReplicationUpdateDHT
15 end
16 else if response is not valid then
17 call function handleFaultyNode
18 call function checkReplicationUpdateDHT
19 end
20 /* Otherwise everything ok, continue */
21 end
22
23 Function handleFaultyNode(nodeInfo):
24 mark locally node as faulty /* Local file stores

faulty nodes */
25 remove files of faulty node
26 return
27
28 Function checkReplicationUpdateDHT(fileInfo):
29 /* This works like a new add, removes the

previous information on the DHT and adds
the file to the system ignoring the
faulty nodes */

30 remove file from the system
31 add file to the system
32 return
33
34 Function generateChallenge(fileInfo):
35 create a list of bytes of size n
36 while list of bytes size equals 0 do
37 generate random(file size -1)
38 /* random can be from 0 to file size */
39 if random number is an odd number then
40 add i to list
41 end
42 end
43 generate a random nonce
44 generate the challenge with the list of bytes plus the nonce
45 return

Algorithm 1: Verifier Functions – PoS Algorithm

this counter reaches a certain value n we consider this node
faulty and call the function handleFaultyNode (lines 23-26)
which will handle this case. After this we call the function
checkReplicationUpdateDHT (lines 28-32) that will update
the DHT according to the nodes that are now considered
faulty, ignoring the faulty ones. If the response arrived on
time than we have to verify the correctness of it. If it is not
correct that we call the handleFaultyNode (lines 23-26) and the
checkReplicationUpdateDHT (lines 28-32) to mark the faulty
nodes and update the DHT accordingly. Finally, if everything
is all right and the verifications were successful we proceed
to the next node.

On Algorithm 2 we can see the PoS algorithm Prover side.
There is a single function, handleProofOfStorageChallenge
(lines 1-11). This function receives the challenge sent by the



1 Function handleProofOfStorageChallenge(challenge,
fileInfo):

2 get byte list from challenge
3 get nonce from challenge
4 get file from fileInfo
5 for each byte i in list do
6 get byte of position i of file
7 convert byte to character add character to response array
8 end
9 challenge response equals response array plus nonce

10 send the hash of the response to verifier
11 return

Algorithm 2: Prover Function – PoS Algorithm

Verifier and obtains the positions list, the nonce, and the file.
Next, it will get the respective character on the file associated
with the position on the list and make an array. Once all the
positions of the challenge list are converted to characters of
the file in a string we add the string plus the nonce creating the
response or proof. Finally, we send the hash of the response
to the Verifier.

As presented, the scheme requires the Verifier node V to
keep its copy of the file. Although this makes sense in some
cases, e.g., if V is a university that stores its certificates
in other nodes only for replication purposes, generically it
is undesirable. To remove this limitation, before storing and
deleting a file f , the V has to generate a bag of challenges
Bf = {c1, c2, ...cm} and use these challenges one by one
when needed (each one only once). When no challenges
are left, V has to download f and generate a new bag of
challenges.

III. CONCLUSION

In this paper, we presented P2CSTORE, a P2P and Cloud
storage system for Blockchain applications. Our approach
includes a P2P network in which nodes locate each other
through lookup calls using the Kademlia DHT. We also
included two cloud storage providers to our solution, namely
AWS S3 buckets and GCP Storage buckets. To prevent free-
riding attacks we designed a PoS algorithm in which nodes
have to prove that they are storing the files. We also created a
mechanism that only allows nodes to use the storage space that
they provide to the system. This way we prevent the collapse
of P2CSTORE by incentivizing cooperation and sharing of
resources. This way nodes will opt for being correct and work
with the system instead of working against it. This is important
to ensure the system’s sustainability.

The design and implementation of P2CSTORE can be ex-
tended and improved in several different ways. It could be
done a smart contract on Ethereum that would be responsible
to reference the hash of Ethereum transactions to the respective
node on P2CSTORE. This could be used for the education
certificates, meaning that when some university issued a
certificate it could store the file in our system and make an
Ethereum transaction holding a smart contract that would point
for the file location on our storage system. Another natural
improvement is to make the processing of the operations
concurrent on the client-side to reduce latency.

Acknowledgements This research was supported by the European
Commission under grant agreement number 822404 (QualiChain)
and by national funds through Fundação para a Ciência e Tecnologia
(FCT) with reference UIDB/50021/2020 (INESC-ID).

REFERENCES

[1] S. Underwood, “Blockchain beyond Bitcoin,” Communications of the
ACM, vol. 59, no. 11, pp. 15–17, 2016.

[2] M. E. Peck, “Blockchains: How they work and why they’ll change the
world,” IEEE Spectrum, vol. 54, no. 10, pp. 26–35, 2017.

[3] D. Serranito, A. Vasconcelos, S. Guerreiro, and M. Correia, “Blockchain
ecosystem for verifiable qualifications,” in Proceedings of the 2nd
IEEE Conference on Blockchain Research & Applications for Innovative
Networks and Services, September 2020.

[4] A. Mikroyannidis, A. Third, and J. Domingue, “Decentralising online
education using blockchain technology,” in The Online, Open and
Flexible Higher Education Conference: Blended and online education
within European university networks, Oct. 2019.

[5] C. Kontzinos, O. Markaki, P. Kokkinakos, V. Karakolis, S. Skalidakis,
and J. Psarras, “University process optimisation through smart curricu-
lum design and blockchain-based student accreditation,” in Proceedings
of 18th International Conference on WWW/Internet, 2019.

[6] I. R. Keck, M.-E. Vidal, and L. Heller, “Digital transformation of
education credential processes and life cycles: A structured overview
on main challenges and research questions,” in 12th International
Conference on Mobile, Hybrid, and On-line Learning (eLmL 2020),
2020.

[7] A. M. Antonopoulos and G. Wood, Mastering Ethereum: building smart
contracts and dApps. O’Reilly Media, 2018.

[8] J. Benet, “IPFS-content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014.

[9] D. Vorick and L. Champine, “Sia: Simple decentralized storage,” Neb-
ulous Inc, 2014.

[10] S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, “Storj a peer-
to-peer cloud storage network,” 2014.

[11] J. Benet and N. Greco, “Filecoin: A decentralized storage network,”
Protoc. Labs, 2018.

[12] Swarm, “SWARM: Storage and communication for a sovereign digital
society,” https://ethersphere.github.io/swarm-home/, 2019.

[13] S. Wilkinson, J. Lowry, and T. Boshevski, “Metadisk a blockchain-based
decentralized file storage application,” Tech. Rep., 2014.

[14] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[15] G. Wood, “Ethereum: A secure decentralised generalised transaction

ledger,” Ethereum project yellow paper, 2014.
[16] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwin-

ski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A
view of cloud computing,” Communications of the ACM, vol. 53, no. 4,
pp. 50–58, Apr. 2010.

[17] “Amazon S3,” https://aws.amazon.com/s3/.
[18] B. Calder et al., “Windows Azure Storage: a highly available cloud

storage service with strong consistency,” in Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, 2011, pp. 143–
157.

[19] “Google Cloud Storage,” https://cloud.google.com/storage/.
[20] “MagicBox, DropBox new storage infrastructure.”

https://blogs.dropbox.com/tech/2016/05/inside-the-magic-pocket/.
[21] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-

tion system based on the xor metric,” in International Workshop on
Peer-to-Peer Systems, 2002, pp. 53–65.

[22] T. Dierks and C. Allen, “The TLS protocol version 1.0 (RFC 2246),”
IETF Request For Comments, Jan. 1999.

[23] E. Rescorla and N. Modadugu, “Datagram transport layer security
version 1.2 (RFC 6347),” IETF Request For Comments, 2012.


