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Abstract—NoSQL databases offer high throughput, support
for huge data structures, and capacity to scale horizontally at
the expense of not supporting relational data, ACID consistency
and a standard SQL syntax. Due to their simplicity and flex-
ibility, NoSQL databases are becoming very popular among
web application developers. However, most NoSQL databases
only provide basic backup and restore mechanisms, which allow
recovering databases from a crash, but not to remove undesired
operations caused by accidental or malicious actions. To solve
this problem we propose NOSQL UNDO, a recovery approach
and tool that allows database administrators to remove the effect
of undesirable actions by undoing operations, leading the system
to a consistent state. NOSQL UNDO leverages the logging and
snapshot mechanisms built-in NoSQL databases, and is able to
undo operations as long as they are present in the logs. This is,
as far as we know, the first recovery service that offers these
capabilities for NoSQL databases. The experimental results with
MongoDB show that it is possible to undo a single operation in
a log with 1,000,000 entries in around one second and to undo
10,000 incorrect operations in less than 200 seconds.

I. INTRODUCTION

Most NoSQL databases aim to provide high performance
for large-scale applications [1], [2]. Their ability to split
records and scale-out horizontally allows them to maintain
performance when dealing with high traffic loads and peaks.
In comparison with traditional relational databases, NoSQL
databases offer better performance and availability, over strong
consistency, relational data and ACID properties [1]. These
characteristics make NoSQL databases a good choice for ap-
plications with high availability and scalability requirements,
but no need of strong consistency and complex transactions.

Currently there are many NoSQL databases.! Some of
the best known are: Cassandra [3], MongoDB [4], Hadoop
HBase [5], Couchbase [6], DynamoDB [7], and Google
BigTable [8]. These databases vary mainly in the format of
stored data, which can be key-value [7], columnar [3], [8],
[9], or document oriented [4]. In terms of scalability, all these
systems can be deployed in large clusters and have the ability
to easily extend to new machines and to cope with failures.

Most NoSQL databases offer simple recovery mechanisms
based in local logs and snapshots that support data recovery
when a server crashes. They also use global logs that keep data
consistency across replicas. These mechanisms are useful but
not sufficient to remove the effect of faulty operations from
the system state, e.g., of an exploit to a website vulnerability

'We use “databases” for short to mean database management systems.
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or an incorrect update command by a database administrator
that changes or deletes the wrong document. If an incorrect
operation is executed and corrupts the database, an adminis-
trator may restore an old snapshot that does not include the
faulty operation. However, although this solution removes the
faulty operation from the database it also discards correct state
changes. Even worse, if the faulty operation is detected late,
the amount of data lost may be huge. A better solution is to
manually execute a command, such as an update or a delete,
that removes the effects of the incorrect operation, but this is
difficult and time consuming for the administrator. The time it
takes to recover a database is critical; if a recovery takes too
long it could be impossible to successfully recover the data
without collateral damage.

This paper presents NOSQL UNDO, a recovery approach
and tool that allows database administrators to automatically
remove the effect (“undo”) of faulty operations. NOSQL
UNDO is a client-side tool in the sense that it does not need
to be installed in the database server, but runs similarly to
other clients. Unlike recovery tools in the literature [10]-[12],
NoSQL UNDO does not require an extra server to act as proxy
since it uses the built-in log and snapshots of the database to
perform recovery. It also does not require extra meta-data or
modifications to the database distribution or to the application
using the database. The tool offers two different methods to
recover a database: Full Recovery that performs better when
removing a large amount of incorrect operations; and Focused
Recovery that requires less database writes when there are just
a few incorrect operations to undo. NOSQL UNDO supports
the replicated (primary-secondary) and sharded architecture of
NoSQL databases. The tool provides a graphical user interface
so that a database administrator is able to easily and quickly
find faulty operations and perform a recovery.

To evaluate NOSQL UNDO, we integrated it with Mon-
goDB and conducted several experiments using YCSB [13].
The latter is a benchmark framework for data-servicing ser-
vices that provides realistic workloads that represent real-
world applications. It allows configuring the amount of op-
erations, records, threads and clients using the database. With
the experimental evaluation we wanted to compare both ap-
proaches to undo incorrect operations (Focused Recovery and
Full Recovery), and how both methods perform with different
sets of operations. The experimental results show that it is
possible to undo a single operation in a log with 1,000,000
entries in around one second and to undo 10,000 incorrect
operations in less than 200 seconds.
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Fig. 1: Example of NoSQL instance with two shards.

This work provides the following contributions. First, a
novel recovery approach and tool that supports the distributed
— replicated and sharded — architecture of NoSQL databases,
with two recovery methods, that does not require a proxy to log
operations, and does not require modifications to the service.
This is the first system combining these characteristics. It
is also the first that supports such a replicated and sharded
architecture, that does not require a proxy, and that does
not require modifications to the service to support recovery.
Second, a detailed experimental evaluation of the tool and
comparison of the two recovery methods using YCSB.

IT. NOSQL DATABASES

Most NoSQL databases provide replication, horizontal scal-
ing, unstructured data storage and simple backup and restore
capabilities. There are different NoSQL databases, but there
are many common elements in their architectures. In some
databases several elements can be incorporated in the same
server [6], whereas others require that each component of
the system is placed in a dedicated server [3], [4]. Some
databases [3], [9] may require additional components, such as
Zookeeper [14] to manage group membership. Despite their
differences, NoSQL databases that provide replication and
horizontal scaling tend to have a similar architecture.

A. Architecture

Figure 1 represents the architecture of a common NoSQL
database instance with two shards. In this configuration each
piece of data is divided into slices that are stored in the shards.
Each shard is a collection of servers that store the same data,
i.e., that are replicas. This redundancy provides fault tolerance
(no data is lost in case a replica fails) and more performance
(any of the servers can respond to read operations). In each
replica a server acts as primary and coordinates the replication
actions of the remaining, secondary, servers. The primary
server is responsible for keeping data consistent inside a shard.

In order to correctly split data in shards, a special server
(or a collection of servers, depending on the complexity of
the instance) is responsible for redirecting the requests to
the correct shards and divide the records. These servers are

usually called routers. The routers are the components of the
system that interact with the application. If there are no routers
alive then the database is inaccessible. To prevent this usually
there are several routers. Besides increasing availability of the
database, having several routers also increases the performance
since if reduces the bottleneck of having a single server
responding to every request of the application.

Some NoSQL databases have extra servers that are respon-
sible for recording configuration information of the instance
(configuration servers in the figure). This allows separation
of concerns: while some server are only responsible for
storing data, other are responsible for storing metadata and
configuration parameters of the instance.

This architecture is very similar to a distributed MongoDB
instance. The main difference is that the configuration servers
in a Mongo database are grouped in a replica set (primary with
a set of secondary servers) which means that all the configura-
tion servers store the exact same information. Cassandra also
has a similar architecture except that the configuration servers
are not present. The metadata and configuration parameters
are stored in the data servers. HBase has a slightly different
architecture. Master servers are in a group and manage how
data is partitioned to the slave servers (also called region
servers). This approach does not separate the servers by data
partitions, but instead separates the servers in two groups:
master servers and region servers. In Couchbase it is possible
to aggregate every component in every server. This way all
the servers perform the same tasks. It is also possible to
deploy a Couchbase database having each server responsible
for a specific task. This way the architecture of a Couchbase
database would be like the one in Figure 1.

B. Logging Mechanisms

Most databases have a logging mechanism that records
database requests and take periodic snapshots, allowing the
recovery of the system in case of failure. NoSQL databases
also have logging mechanisms and take snapshots to allow
the recovery of an individual server. However, these logs
are specific to an individual server, so if the entire database
(all servers) fails it is difficult to recover it using the local
logs of each server. Besides the local log of each server,
most NoSQL databases also have a global log that is used to
maintain consistency across all the servers. This global log is
not intended to recover the database, but instead to guarantee
that all the servers receive the same set of operation in the
correct order.

1) Local logs: Any cluster should be prepared for single
servers failing unexpectedly. After a failure, a server has to
perform fail-over, i.e., to take the required actions to come
back to work without interfering with the remaining servers.
In order to do that the server must have a diary in which it
records every operation it writes to disk, so in case of failure
the server only needs to repeat every operation and it should
reach the state right before the failure. In some cases this diary
is not sufficient since it only contains recent operations, so it
is necessary to use a snapshot (a full copy of the server in



a previous moment in time) of the server and complete the
missing information with the entries in the diary. The diary
in which the server stores the operations is a local log and
the information it contains is usually non human readable and
specific to the server itself. A simple query can be decomposed
in several local log entries corresponding to all the disk writes
necessary to execute that query.

2) Global logs: In order to keep data consistent across
servers the requests have to be delivered in total order, i.e.,
all requests delivered in the same order to all servers. On the
contrary, simply sending the requests to all the servers might
not work since some messages could be lost in the network
or delivered out of order. To prevent this most databases use a
global log in which they store every request they receive. This
log is then used to propagate the operations to all the servers.
If a server fails to receive an operation it can later consult the
global log and execute it. Some databases have a fixed storage
limit for this global log, i.e., it is implemented as a circular
array (older operations are overwritten by new ones to prevent
the log from growing indefinitely). The way the operations are
stored in the global log is usually similar to the way data is
stored in the database, meaning that is is possible and fairly
easy to perform normal queries over the global log. Random
values are converted into deterministic values to guarantee
that every operation in the log is idempotent. Besides the
operation itself, each log entry contains also a numeric value
that allows ordering the executed operations. This numeric
value guarantees that every server in the instance is able to
reach the same state, since they all execute the operations in
the same order.

In most NoSQL databases the global log has a format that
is close to the format of the requests, contains the executed
queries, is in a human readable form, and stores the operations
in the order they were executed. Therefore, in NOSQL UNDO
we use this log to perform recovery.

I11. NoSQL UNDO

NoSQL UNDO is a client side tool that only accesses a
NoSQL database instance when the database administrator
wants to remove the effect of some operations from the
database, e.g., because they are malicious. The client does not
need to be connected to the server in run time since it uses
the database built-in logs to do recovery.

A. Undo vs Rollback

Every database provides rollback capabilities, meaning that
if an incorrect operation is detected and needs to be removed
then it is possible to revert the entire database to a previous
point in time prior to the execution of that incorrect operation.
The problem with this approach is that every single correct
operation executed after the point in time to recover is lost.
Figure 2 represents the state of a database with three different
documents (D1, D2 and D3). All three documents were
updated 6 times, i.e., there are 6 versions of each of these
documents in the log of the database. Two of these documents
(D1 and D2) were corrupted by malicious operations (red

dots). D1 is later updated with valid operations meaning that
part of the document may be corrupted while the other part is
valid. To use a traditional rollback, the administrator needs to
select a point in time prior to any malicious operation, which
in this case is when all documents were in version 2. After the
rollback the database is clean, however all the documents were
reverted to older versions. Every correct operation executed
after version 2 is then lost. By using any of the algorithms
of NOSQL UNDO, the administrator is able to clean both D1
and D2 and still keep every correct operation that was executed
after, since both algorithms correct the corrupted documents
by removing the effects of the malicious operations, instead
of replacing them with older versions.
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Fig. 2: Comparison of using rollback to recover a corrupted
database with using undo to revert incorrect operations.

B. Architecture

Figure 3 presents an example of a NoSQL instance with
NoSQL UNDoO. The architecture is logically divided in two
layers: the database layer in which the database runs without
any modification to the configuration or to the software;
and the support layer, which includes optional modules that
can also be deployed to improve the capabilities of NOSQL
UNDO.

In order to undo undesired operations there has to be a log
with every executed operation and snapshots with previous
versions of the database. Most recovery systems, such as
Operator Undo [10] and Shuttle [15], implement a proxy
that intercepts every request to the database and saves these
requests in a specific log, independent from the DBMS.
That approach may impact performance since every operation
must pass through a single server [15]. The proxy may also
be a single point of failure; if it fails, the clients become
unable to contact the DBMS. It is possible to circumvent this
limitation by replicating the proxy, however this introduces
more complexity in the system. NOSQL UNDO handles this
issue using the built-in logs and snapshots to do recovery, so
it does not require an additional server (proxy).

Since NOSQL UNDO only accesses the built-in log to
perform recovery it does not have control of when log entries
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Fig. 3: A NoSQL database with NOSQL UNDoO.

are discarded. A database administrator may define a high
storage threshold for the log, but an unpredictable peak of
traffic may be enough to exhaust that limit. To guarantee
that any operation can be undone, the log has to be saved
regularly. NOSQL UNDO does this using a service that runs
along with the database instance and listens to changes in the
log, the Global Log Backup Service (Figure 3). This service
is a daemon that is constantly listening to the database for
changes and keeping a copy of every log entry in an external
database. Every time an operation is executed in the database
instance, a new log entry is created and the global log backup
service is notified, then it copies the global log record to
another database that should be stored in a different server
for availability purposes. This backup operation executes con-
currently with the clients’ operations and does not require the
database to lock until the record was successfully stored, so it
does not interfere with the original database functioning.

The last component of the architecture is the Intrusion
Detector, which provides assistance with the process of iden-
tifying operations that need to be undone. We postpone the
explanation of this component to Section III-D.

C. Recovery Mechanisms

NoSQL UNDO uses two methods to undo the effects of
incorrect operations leaving the database in a correct state: full
recovery and focused recovery. Both methods take as input a
list with operations to undo.

1) Full recovery: The full recovery algorithm is the sim-
plest recovery method among the two. It works by loading the
most recent snapshot of the database, then it updates the state
by executing the remaining operations, which were previously
recorded in a log. The algorithm takes as input a list of
incorrect operations that it is suppose to ignore when it is
executing the log operations.

Algorithm 1 shows the full recovery procedure. The algo-
rithm takes as input the most recent snapshot before the first
incorrect operation and a list with the incorrect operations
to undo. In line 1 a new database instance is created using

Algorithm 1 Full recovery algorithm.

. recoveredDatabase < snapshot

: logEntries < getLogEntries(snapshot)

: for logEntry € logEntries do
if logEntry & incorrectLogEntries then

recoveredDatabase.execute(log Entry)

end if

end for

: return recoveredDatabase

that snapshot. The log entries are fetched from the global log
(line 2) using the getLogEntries method. This method returns
an ordered list with every log entry after snapshot. Correct
operations are executed in line 5. When the algorithm finishes
(line 8), recoveredDatabase is a clean copy of the database
without the effects of incorrect operations. This algorithm is
simple and effective, but is not efficient when there are a small
number of operations to undo, since it requires every correct
operation in the log after the snapshot to be re-executed.

2) Focused recovery: The idea behind Focused Recovery is
that instead of recovering the entire database just to erase the
effects of a small set of incorrect operations, only compensa-
tion operations are executed. A compensation operation is an
operation that corrects the effects of a faulty operation. The
algorithm works basically the following way. For each faulty
operation the affected record is reconstructed in memory by
NOSQL UNDO. When the record is updated, NOSQL UNDO
removes the incorrect record and inserts the correct one in the
database. On the contrary of Algorithm 1, this algorithm only
requires two write operations in the database for each faulty
operation.

Algorithm 2 describes the process of erasing the effect
of incorrect operations. The algorithm iterates through every
incorrect operation (line 1). For each incorrect document it
fetches every log entry that affected this record (line 3). For
simplicity the pseudo-code assumes that there is no older
snapshot and that every operation executed is in the log,
therefore the recovered document is initialized empty (line 4).
If there was a snapshot, then the recovered document would
be initialized as a copy of the incorrect document in the
snapshot. Then the reconstruction begins and every correct
operation is executed in memory in the recovered record, not
in the database (lines 4 to 6). Once every correct operation is
executed, the record is ready to be inserted in the database.
First the incorrect record is deleted (line 10) and finally the
correct one is inserted (line 11).

3) Comparison of the two recovery schemes: Both methods
are capable of removing the effects of undesirable operations,
but there are differences. Focused Recovery does not require
a new database to be created (recoveredDatabase) because
it does compensation operations in the existing database. For
each record affected by incorrect operations, it does two write
operations in the database: one to remove the corrupted record,
and another to insert the fixed record. On the contrary, with
Full Recovery every correct operation executed after the last
correct snapshot is executed in a new database instance. In
terms of writes in the database, Focused Recovery is much



Algorithm 2 Focused recovery algorithm.

1: for incorrectOperation € incorrectOperations do

2:  corruptedRecord < incorrectOperation.get Record()

3: documentLogEntries —

get RecordLog Entries(corrupted Record)

recoveredRecord < {}

for recordLogEntry € recordLogEntries do

if recordLogEntry # incorrectOperation then

recoveredRecord —
update Record(recoveredRecord, recordLog Entry)

8: end if

Nk

9:  end for

10:  database.remove(corruptedRecord)
11:  database.insert(recoveredRecord)
12: end for

lighter if the number of incorrect operations is reasonably
small. On the contrary, if the number of incorrect operations
is greater than the number of correct operations in the log,
then using the Full Recovery will be more efficient because
there are less write operations to execute in the database (see
Section V-B).

Although the algorithms leave the database in a consistent
state, a user that has read a corrupted document and suddenly
reads the corrected document may believe that the state is
inconsistent. To solve this problem, the tool can be configured
to leave a message to the users so that they understand why
the state suddenly changed [10].

Both algorithms are able to remove the effects of faulty
operations but they require the database to be paused, i.e., not
executing operations while recovering. If the database keeps
serving clients, then data consistency after recovery cannot be
guaranteed.

D. Detecting Incorrect Operations

NoSQL UNDO provides an interface for administrators to
select which operations should be discarded during recovery.
This interface provides searching capabilities making it easier
to find incorrect operations. An interesting case to use this tool
is to do recovery from intrusions.

One of the problems in recovering faulty databases is to
detect when the database became corrupted in the first place.
Detecting the incorrect operations in a log with millions of
operations can be a difficult and error prone task. Searching for
regular expressions of possible attacks may not be sufficient
since a database administrator may not remember every search
pattern to all possible malicious operations.

To cope with this, it is possible to deploy alongside with the
NoSQL database an Intrusion Detection System (IDS). This
IDS permanently listens to the requests to the database and
if they match a certain signature, it logs this operation as
suspicious. The most conspicuous case of requests that match
signatures are attempts of doing NoSQL injection attacks,
which are similar to SQL injection attacks but target NoSQL
databases [16], [17]. Later, when NOSQL UNDO is being
used it first consults all the suspicious operations and suggests
them to the database administrator who then decides if they
should be removed from the database. This automates the

identification process and reduces the time to recovery, which
can be critical in a highly accessible database. An example
of an IDS that can be deployed in this manner is Snort [18].
Different solutions to detect malicious operations in the log
can be used, such as [19]-[21].

E. Recovery Without Configuration

An interesting feature of NOSQL UNDO is that it does
not have to be configured a priori to be able to recover a
database. If an incorrect operation is detected soon enough,
i.e., while it is still present in the log, then it is possible to
remove the effects of this faulty operation without any previous
configuration of NOSQL UNDoO. This is interesting as many
organizations do not take preventive measures to allow later
recovery.

This approach however has some limitations in comparison
to the full-fledged recovery scheme presented in the previ-
ous sections. When a recovery service uses specific logging
mechanism it is able to store additional information useful for
later recovery (e.g., dependencies between operations, origin
of the operations and versions of the affected documents). With
this extra information it is possible to improve the recovery
process as well as provide more information to the database
administrator to help him find the faulty operations.

IV. IMPLEMENTATION WITH MONGODB

To evaluate the proposed algorithms, a version of NOSQL
UNDO was implemented in Java. This instance of the tool
allows recovering MongoDB databases.

A. MongoDB

MongoDB supports replication to guarantee availability if
servers fail, and horizontal scaling to maintain performance
when the traffic load increases [22], [23]. A set of servers
with replicated data is called a replica set. In each replica
set there is a server that coordinates the replication process
called primary, while the remaining servers are called sec-
ondary. Each secondary server synchronizes its state with the
primary. It is possible to fragment data records into MongoDB
instances, called shards, to balance load. A shard can be either
a single server or a replica set. Data in MongoDB is structured
in documents. Each document contains a set of key-value pairs.
A set of related documents is a collection. The documents in
a collection do not need to have the same set of key-value
pairs nor the same type, as opposed to relational DBMSs that
impose a strict structure to the records (rows) of a table.

MongoDB uses two logging mechanisms: journaling, which
is the local log used to recover from data loss when a single
server crashes; and oplog, which is the global log that ensures
data consistency across replicas of a replica set. From time to
time a database copy, a snapshot, is saved in external storage
and the journal logs are discarded, otherwise they would grow
indefinitely.

In relation to journaling, MongoDB uses a local log called
journal to recover a single server that failed unexpectedly.
Every time MongoDB is about to write to disk it first logs the



write to a journal file. The journal is then used to recover a
single replica that failed without intervention by other servers.
The journal file contains non-human readable, binary, data so
it is hard to process.

Oplog is the global log used by MongoDB. The primary
server uses it to log every operation that changes the database.
The oplog collection has limited capacity, so MongoDB re-
moves older log entries. The oplog is stored in a (MongoDB)
database, not in a file as logs usually are.

B. NoSQL Undo with MongoDB

The integration of NOSQL UNDO with MongoDB is pretty
straightforward and follows the architecture in Figure 3. We
installed the Global Log Backup Service in the same network
of the database. NOSQL UNDO accesses both the database
and the backup of the log in order to perform recovery and
undo operations.

We used two scenarios in the experiments. Scenario 1
corresponds to Figure 3. It is a fully distributed instance
of MongoDB that was installed in 10 EC2 machines of
Amazon AWS. The database is divided in two shards, each
one containing 3 servers (one primary and two secondary).
The configuration servers are grouped in a replica set since
that is how MongoDB uses the configuration servers. Finally
there is a single router (unlike the 2 in the figure), which
is a MongoDB server that is responsible for redirecting the
requests to the correct servers. All the servers have the exact
same configuration: t2.small instances with a 1 vCPU and 2GB
of memory and running Ubuntu 14.04LTS.

We also used a second configuration in our experimental
evaluation for diversity: Scenario 2. In that scenario NOSQL
UNDO was deployed in Google Compute Engine. The deploy-
ment was composed by a single replica set with 4 machines:
1 primary and 3 secondaries. Each machine had 1 vCPU and
4GB of memory. The OS used was Debian 8.

V. EXPERIMENTAL EVALUATION

The objective of the experimental evaluation was to answer
the following questions using the implementation of NOSQL
UNDO for MongoDB: (1) what is the performance trade-off
between Focused Recovery and the Full Recovery mechanism?
(2) How long does it take to undo different numbers of
operations? (3) How does the number of versions of a file
affects the time to recover?

To inject realistic workloads we used YCSB [13]. YCSB is
a framework to evaluate the performance of different DBMSs
using realistic workloads. Some examples of DBMSs sup-
ported by YCSB are MongoDB, Cassandra [3], Couchbase [6],
DynamoDB [7], and Hadoop HBase [5]. We choose this
framework because it is widely adopted for benchmarking
NoSQL DBMSs, it provides realistic workloads, and has
several configuration options (number of operations, amount of
records to be inserted, distribution between reads and writes).

The YCSB workloads used in the experiments were: (A)
update heavy, composed by 50% reads and 50% writes; (B)
read mostly, with 95% reads and 5% writes; (C) only read,
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without write operations; (D) new records inserted and the
most read, simulating social networks and forums where users
consult the most recent records; (E) short ranges, where read
operations fetch a short range of records at a time, like a
conversation application, blogs and forums; and (F) records
updated right after read, simulating social networks when users
update their profile.

MongoDB offers two different interfaces: synchronous,
where only one operation can be submitted at a time, and
asynchronous, where operations can be executed in parallel.

A. Global Log Backup Service Overhead

The Global Log Backup Service runs alongside with the
database. It listens for changes in the log, so when an operation
is executed in the database server, the Global Log Backup
Service is notified and saves the operation in external storage.
To evaluate the throughput overhead of using this backup
service we executed several workloads of YCSB 10 times each
using Scenario 2.

Figure 4 presents the average throughput (operations per
second) of 10 executions of several workloads of YCSB using
both the asynchronous and the synchronous driver with a
confidence level of 95%. The cost of having this additional
service varies from 6% to 8% when using the asynchronous
driver, and from 20% to 30% when using the synchronous
driver. The overall throughput seems acceptable given the
advantages of storing every executed operation in the database.

In terms of storage, after executing every workload of YCSB
the database occupied 100MBs in disk while the global log
backup occupied 120MBs. The overhead in terms of storage
is considerable (120%), but this is an unavoidable cost of
supporting state recovery.

B. Focused Recovery versus Full Recovery

To evaluate how Focused Recovery performs in comparison
with Full Recovery a set of operations were undone from the
database using both algorithms in Scenario 1. The size of this
set varied from 1 to 10,000. Each case was repeated 10 times.
The goal of using different sets of incorrect operations to undo
was to understand how both algorithms perform when they
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undo from just a few operations to almost every operation in
the database.

Figure 5 shows the average time to recover using both
methods, with a confidence level of 95%. The Full Recovery
method performs better as the number of operations to remove
increases, which makes sense as less operations have to be
executed. On the other hand, the Focused Recovery method
performs a lot better when there are just a few operations
to be removed and it degrades the performance linearly as
the number of operations increases. Focused Recovery takes
almost a second to remove 1 operation, whereas Full Recovery
takes around 700 seconds. Both methods achieve a similar
performance around 5,000 operations to be removed. This
result shows that for a small number of operations to be
removed Focused Recovery is a better choice, but if more than
60% of the operations are incorrect than the Full Recovery
method should be used.

C. Recovery with Different Versions

The focused recovery method reconstructs every document
affected by incorrect operations, meaning that if a document
has a thousand versions and one of them is incorrect, then the
focused recovery method needs to re-execute the remaining
999 operations in order to reconstruct the document correctly.
To evaluate how focused recovery is able to remove incorrect
operations in documents with different number of versions,
we executed both the focused and the full recovery methods
in a document varying the number of versions from 1 to
100,000 in steps of 10. Each recovery execution was repeated
10 times. These experiments were conducted in Scenario 1.
The average recovery time of each execution can be seen
in Figure 6. The time to recover increases exponentially for
the Focused Recovery, while it remains almost constant for
the Full Recovery. This result was expected since the Full
Recovery needs to undo one incorrect operations in every
case. Focused Recovery has more work to do if the number
of versions of a document increases. This is because it needs
to reconstruct the affected record.
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Fig. 6: Focused and Full recovery a document with different
versions with 95% confidence level.
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Fig. 7: Overhead of using Snort to detect incorrect operations
in a MongoDB Cluster.

D. Intrusion Detection Overhead

Using an IDS to tag incorrect operations facilitates the
database administrator job. When an alarm is triggered the
administrator consults the IDS log and can immediately undo
incorrect operations, instead of browsing the entire database
log for incorrect operations. To evaluate the cost of using an
IDS to detect incorrect operations, we set up an extra machine
(with the same characteristics of the others) running Snort in
Scenario 1. We then added 10 rules to Snort and executed
every YCSB workload.

Figure 7 shows the overhead of using Snort. The throughput
is degraded by 10 to 30%. It is a considerable cost given the
benefits of allowing the database administrator to recover a
database immediately without loosing time searching in the
database log for incorrect operations.

VI. RELATED WORK

The use of logs and snapshots to recover databases after
a crash is far from new and is covered in textbooks in the
area, e.g., [24]. This work follows a more recent line of work
on recovering databases [11], [25], operating systems [12],
web applications [15] and other services [10] by eliminating
the effect of undesirable operations, but not of the rest of the
operations. We discuss some of these works next.



Operator Undo seems to be the first work in this line [10]. It
is an architecture that aims to provide administrators the ability
to undo operations. The authors argue it is generic, but it has
been applied specifically to email servers. To remove the effect
of an operation —a verb— from the state, the system is rollback
to the moment immediately before that verb (Rewind), the
verb is removed (Repair), then every entry in the log after
that point is re-executed until the present moment (Replay).

ITDB is a self-healing database built on top of a commercial
DBMS [25]. It detects intrusions and is able to isolate the
effect of attacks. It also provides recovery mechanisms that
repair the effects of intrusions in useful time. ITDB provides
a repair mechanism that removes the effect of intrusions
similarly to NOSQL UNDO.

Phoenix is another recovery system for databases [11]. The
operations executed on a database may depend on each other,
e.g., a write operation may modify record a using values
read from record b. Phoenix tracks these dependencies and
considers them during recovery. It consists in a PostgreSQL-
based database that gathers record dependencies while logging
requests.

Shuttle is a recent recovery system form applications de-
ployed in Platform-as-a-Service clouds [15]. It combines the
use of snapshots with selective re-execution of log operations
to recover a web application and undo the effects of intrusions.
It considers the existence of more than one server (application
servers) and a back-end database, unlike the previous systems.

NoSQL UNDO is inspired in these systems but has several
crucial differences. Firstly, it is the first to support a distributed
DBMS, that can be replicated for fault tolerance (replica set)
and performance (sharding), where most of the other systems
consider a single server. Secondly, it is the only system of
the kind that does not require a proxy or modifications to
the service to support recovery (MongoDB in this case).
Instead, it takes advantage of the built-in log and uses an
external component to guarantee that no log operations are
lost. Thirdly, except for Shuttle it is the only system that
supports two modes of recovery and NoSQL databases.

VII. CONCLUSION

This paper presents a tool that allows the database ad-
ministrator to remove incorrect operations from a MongoDB
database. It runs as a client of the DBMS and uses its built-
in log and snapshots to do recovery. The tool provides two
different approaches to recover a database: Focused and Full
Recovery. Both methods are capable of recovering databases,
but there is a trade-off between performance and number of
operations to undo.
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