
MITRA: Byzantine Fault-Tolerant Middleware for
Transaction Processing on Replicated Databases

Aldelir Fernando Luiz
Federal University of Santa

Catarina - Brazil
aldelir@das.ufsc.br

Lau Cheuk Lung
Federal University of Santa

Catarina - Brazil
lau.lung@inf.ufsc.br

Miguel Correia
INESC/ID, IST

Lisbon - Portugal
miguel.p.correia@ist.utl.pt

ABSTRACT
Replication is often considered a cost-effective solution
for building dependable systems with off-the-shelf hard-
ware. Replication software is usually designed to toler-
ate crash faults, but Byzantine (or arbitrary) faults such
as software bugs are well-known to affect transactional
database management systems (DBMSs) as many other
classes of software. Despite the maturity of replication
technology, Byzantine fault-tolerant replication of data-
bases remains a challenging problem. The paper presents
MITRA, a middleware for replicating DBMSs and make
them tolerant to Byzantine faults. MITRA is designed
to offer transparent replication of off-the-shelf DBMSs
with replicas from different vendors.

1. INTRODUCTION
For many years transactional database manage-

ment systems (DBMSs) have been a key component
of applications from a wide-range of business ar-
eas. These applications depend on the reliability
and availability of the data stored in the databases,
therefore DBMSs have to be fault-tolerant. Repli-
cation is a well-known approach to make services
fault-tolerant, which has already been applied to
DBMSs [9, 19, 4]. The idea is that the service is
executed in a set of servers in such a way that if
some of them fail, the service as a whole stays op-
erational and clients continue to be able to execute
transactions. However, DBMS vendors usually do
not provide native support for replication or hooks
for third-party replication protocols. This puts on
third-parties the burden of modifying DBMS source
code (if available) or to develop middleware that
intercepts client requests and delivers them to the
servers. The latter is the approach followed in this
paper.

The replication of databases has been studied both
in the context of databases and distributed systems.
Although Gray commented that it is typically hard
to achieve strong consistency in replicated databa-
ses [9], Schiper and Raynal have shown that trans-

actions on replicated databases have common prop-
erties with group communication primitives such as
ordering and atomicity [16]. After that result, sev-
eral researchers studied the use of group commu-
nication systems and other middleware to replicate
databases and make them fault-tolerant [13, 3, 11,
18, 7, 14].

Most of the solutions for database replication tol-
erate only crash faults [13, 3, 11]. Although these
are arguably the most common faults, Byzantine or
arbitrary faults are also common in today’s systems.
Faults such as data corruption in disks or RAM due
to physical effects or in software due to bugs are
Byzantine faults, not crashes. Interestingly, many
bugs have historically been found in DBMSs [8].

Some solutions to replicate databases and make
them Byzantine fault-tolerant (BFT) have already
been presented [8, 18, 7, 14]. However, they are ei-
ther focused on a specific problem, based on assump-
tions hard to substantiate in practice, or simply not
the best for certain applications. Specifically, [8]
does not allow concurrent transactions, HRDB [18]
depends on a centralized controller, Byzantium [7]
assumes a consistency criterion weaker than serial-
izability (snapshot isolation), and BFT-DUR [14]
does not handle the case of Byzantine clients.

This paper presents the design of MITRA (Mid-
dleware for Interoperability on TRAnsactional repli-
cated databases), a middleware for Byzantine fault-
tolerant database replication. MITRA supports de-
sign diversity [15], i.e., different replicas running dif-
ferent DBMSs. This is an important mechanism to
avoid common mode failures caused, e.g., by a bug
common to all replicas. The middleware supports
concurrent transactions, has no centralized compo-
nents, and provides serializability. The paper does
not delve into the details of the protocol at the core
of the middleware, which has already been presented
elsewhere [12], but on the design and architectural
aspects of MITRA.

MITRA is modular in the sense that it does not
require any change to the DBMSs and hides the



complexity of BFT replication from both client ap-
plications and DBMSs. The middleware is written
in Java and modularity is achieved by following the
Java Database Connectivity (JDBC) specification
[6].

The rest of this paper is organized as follows. Sec-
tion 2 present background on replication of database
systems. Section 3 introduces MITRA. Section 4
describes some implementation details and experi-
mental results. Section 5 concludes the paper.

2. DATABASE REPLICATION
There are several taxonomies of database repli-

cation schemes in the literature [9, 20]. A partic-
ularly interesting taxonomy classifies protocols in
terms of their update propagation strategy. This
taxonomy classifies database replication schemes in
three classes: synchronous (or eager replication),
asynchronous (or lazy replication), and certification-
based. The differences between these strategies are
related to the way in which they make the state of
the replicas converge.

A synchronous or eager replication protocol prop-
agates the updates of a transaction applying them
on the replicas before the transaction commits [9].
More specifically, such a scheme provides strong con-
sistency and fault tolerance by ensuring that up-
dates are stable at multiple replicas before replying
to the clients.

An asynchronous or lazy replication protocol works
by executing and committing each transaction at a
single replica, delaying the propagation of updates
until the transaction has committed [9]. On the
positive side, lazy replication tends to perform bet-
ter because it avoids the communication overhead
of eager replication during normal execution. On
the negative, lazy replication can let replicas diverge
and lose the effects of some transactions [19].

A certification-based protocol uses group commu-
nication primitives such as total order multicast for
ordering transactions and propagating write sets /
read sets to the group of replicas [13, 19]. This ap-
proach is optimistic in the sense that it updates a
single replica without synchronization with the rest,
and at the end the transaction aborts it if there were
conflicting updates. MITRA follows this approach,
which has been shown to be able to provide good
performance [13, 11].

3. THE MITRA MIDDLEWARE
MITRA is a middleware for Byzantine fault-tolerant

certification-based database replication. It imple-
ments the JDBC API specification, in order to pro-
vide a heterogeneous, replicated, DBMS that ap-

pears to the clients as a single virtual DBMS. The
ability to support DBMS diversity is important be-
cause different systems are not likely to have the
same common bugs or vulnerabilities [8].

Figure 1: Basic architecture of MITRA

Figure 1 presents the basic architecture of MI-
TRA. The client application interacts with the da-
tabase through a proxy that exports the JDBC API
and replaces what would normally be a DBMS-specific
JDBC driver (e.g., a MySQL or a PostgreSQL JDBC
Driver). The middleware is implemented essentially
on the server-side, meaning that the protocol is mostly
executed by the servers where the database is repli-
cated. The figure represents it abstractly in the form
of a mid-layer, but there are server-side replication
processes running in all the servers and communicat-
ing through the network. The middleware at each
server has a DBMS driver that hides the specifics
of the DBMSs from the replication process. These
drivers are also JDBC drivers, so they are readily
available for a wide range of DBMSs1. The use of
different DBMSs in different servers provides diver-
sity.

3.1 Assumptions
We consider a system composed of an arbitrary,

finite, set of clients C = {c1, c2, ..., cn} and a set of
n replicas S = {r1, r2, ..., rn}. These entities com-
municate by message passing, through the network.
We assume that an unlimited number of clients and
up to f = bn−1

3 c replicas can be faulty, i.e., can de-
viate arbitrarily from their specification (Byzantine
faults).

Let a database be a collection of data items D =
{x1, x2, ..., xn}. A transaction is a sequence of read
/ write statements over these items ending with a
commit or an abort statement. We make two as-
sumptions related to certification-based replication.
First, the back-end DBMSs must support the roll-
back of operations, so they have to be transactional.
Second, statements have to modify every DBMS
atomically, without side effects.

1http://devapp.sun.com/product/jdbc/drivers



As mentioned, MITRA is based on a group com-
munication primitive. Specifically, MITRA runs a
BFT total order multicast based on a consensus pro-
tocol called Byzantine Paxos [21]. We make a weak
assumption about the synchrony of the system to
ensure the termination of this primitive: commu-
nication delays do not grow exponentially. This is
required by the impossibility of solving consensus
deterministically in asynchronous systems [5].

We assume the existence of collision-resistant cryp-
tographic hash functions and message authentica-
tion functions to ensure the integrity and authen-
ticity of messages.

3.2 Replication Protocol
The replication strategy adopted in MITRA is an

extension of the original certification-based replica-
tion scheme [19] to handle Byzantine faults. This
section briefly presents the protocol, which was re-
ported in detail elsewhere [12].

A certification-based replication protocol operates
by letting transactions execute optimistically in a
single replica (the leader) and during the commit-
ment phase sending the updates to the rest of the
replicas (followers) using a total order multicast prim-
itive [2, 19]. This primitive makes all replicas exe-
cute the commitment phases of different transac-
tions in the same order, letting them take the same
decision about each transaction: commit or abort.
This avoids the need of a voting phase at the end
of transactions, in opposition to other replication
strategies that need it.

The execution of MITRA’s protocol for a single
transaction is represented in the time diagram of
Figure 2. For each transaction, a replica is selected
to be the leader and the rest are followers. The
protocol has three phases that we explain next: be-
ginning, execution, and commitment.

Figure 2: MITRA’s protocol with its three
phases.

Beginning. As the name suggests, this is the first
phase of a transaction. It starts when a client tries
to open a connection within the database system.
The client’s proxy sends a begin message to all
replicas using the total-order multicast primitive.
Upon delivering this message, the replicas apply a
deterministic criterion to select a single leader. This
will be the replica that will execute speculatively the
statements for that transaction. Afterwards, every
replica sends an acknowledgment with the identifier
of the leader to the client. This phase of the protocol
is shown in steps 1 and 2 of Figure 2.

Execution. When the client receives the acknowl-
edgment, it becomes aware of which replica is the
leader. Then, the client starts issuing statements
to the leader that executes them speculatively, and
returns results to the client. The rest of the replicas
do not even receive the statements. This phase is
represented in the steps 3-6 of the figure.

Commitment. The commitment phase of a trans-
action is shown in the steps 7-9 of the figure. This
phase starts when the client requests the commit-
ment of the transaction by sending a req-commit
message using total-order multicast. This message
takes the statements issued by the client during the
transaction and a cryptographic hash of their re-
sults. When the leader receives this message, it also
uses the total-order multicast primitive to send a
commit message to all the replicas containing: (i)
the sequence of transaction’s statements that it ex-
ecuted; (ii) a digest summarizing the actions for
that transaction (reflecting the state after its execu-
tion); (iii) the read set and write set of the transac-
tion (i.e., the data items read/written). When the
followers receive these two messages, they become
aware of the operations executed during the trans-
action.

The req-commit and commit messages must be
delivered in the same order to all replicas, so that
all execute the certification in the same order. This
order is imposed by having the leader of each trans-
action disseminating these messages using the total-
order multicast primitive. If a transaction tj is com-
mitted after the request to commit ti and before the
commitment of ti, tj is concurrent with ti and ti has
to be certified against tj in order to preserve seri-
alizability. These messages (and events) also pre-
vent a Byzantine client from forging a commit re-
quest or committing a spurious transaction, in the
sense that all replicas only commit transactions that
matches the contents of the req-commit and com-
mit messages. Therefore, when a replica delivers a
commit message it first checks its integrity. If the
check fails the transaction is simply aborted. Oth-



Figure 3: MITRA’s components.

erwise, every follower keeps locked the data items
in the read and write sets in their local database.
So, every replica, including the leader starts a certi-
fication test that verifies if reads and writes of com-
mitting transactions do not conflict with previously
committed concurrent transactions to preserve seri-
alizability. This certification is very similar to the
backward-validation of classical optimistic concur-
rency control [10]: if no conflicts occur, the transac-
tion is committed; otherwise, it is aborted.

The last step of the protocol consists in the repli-
cas replying to the client with the outcome of the
transaction. The client accepts an outcome if it re-
ceives f+1 matching replies from that same number
of replicas.

3.3 Middleware Components
Figure 3 presents a detailed architecture of the

server-side of the middleware. Recall that the mid-
dleware runs at each server, so the representation of
the middleware as a single box is an abstraction of
reality. The client-side is not detailed as it is much
simpler.

Client Connection Manager. The client connection
manager is the interface with the clients, i.e., it
is the component that receives messages from the
clients and sends them messages. It works at the
level of communication abstractions such as sock-
ets and channels. Therefore, this module simply re-
ceives messages with statements and forwards them
to the request manager for appropriated treatment.

Request Manager. The request manager has the
role of linking a statement with its transaction, as
there can be several concurrent transactions being
executed using the middleware. For each statement
received, the module first performs basic syntax check-
ing and preprocessing of the statement (next mod-
ule). Once the request passes this check, it is di-
rected to the transaction manager for execution.

Request Preprocessor. This component is responsi-
ble for the just mentioned syntax checking and pre-
processing. The second aspect is the most interest-
ing. MITRA has to support diversity of DBMSs, so
there are compatibility issues that must be solved.
The middleware supports the standard way of inter-
action with databases using SQL (Structured Query
Language), so the use of different dialects of this lan-
guage is a problem when diversity is needed. A solu-
tion would be to restrict statements to ANSI SQL,
but our experience shows that this is too limitative.
Therefore, our middleware solves this problem by
translating the SQL statements issued by the clients
into the native SQL dialect of the back-end database
replica running at the server. This translation is a
complex task, but there are software packages that
do it for a large number of SQL dialects, e.g., the
SwisSQL API [17].

A related issue is the lack of determinism on the
order of the results returned by SQL queries. Since
relations are unordered sets, a result set may be re-
turned in any order unless an order is explicitly spec-
ified. In our case, different replicas may return dif-
ferently ordered results to the same SQL query. We
solve this in MITRA by adding an order by clause
to all SELECT queries.

Transaction Manager. When the request manager
receives a transaction control message, it forwards
it to the transaction manager module. There are
three types of control messages: (i) begin, sent by
clients to start a transaction; (ii) req-commit, sent
by clients to request committing a transaction; and
(iii) commit, sent by the leader when it receives
a req-commit from a client. When a replica re-
ceives one of these messages, the transaction man-
ager performs the according action for the relevant
transaction.

Transaction Certifier. This module performs the
certification step that gives its name to certification-
based database replication. This operation is done
during the commitment phase of the protocol and
consists in verifying if there is some conflict between
the transaction being committed and other already
commited concurrent transactions. This verifica-
tion is based on Kung-Robinson’s certification [10],



which verifies if there are some conflict between the
transaction that is being committed (ti) and con-
current transactions that were already committed
(tj). More specifically, tj is considered concurrent
with ti if the replicas delivered the commit mes-
sage corresponding to tj both after the delivery of
the req-commit and before delivery of the commit
for transaction ti (i.e. in the middle of these two
events). It is noteworthy that these messages are
delivered in the same order by all replicas, therefore
all do the same verifications.

Lock Manager. This module is responsible for ac-
quiring the read and write locks on the data items
of a given transaction, according to the read and
write sets for that transaction. The lock manager
acts as a scheduler for requesting the locks. All lock
requests are done in the same order in all replicas
because they are started when replicas receive the
commit message for a transaction, which they all
do in the order imposed by the total order multicast
protocol.

Request Scheduler. When a request with a read
/ write statement is received and validated, it is
passed to the request scheduler that executes it in
the local database. The scheduler is responsible for
dealing with concurrency control issues in coopera-
tion with the local DBMS. All operations are exe-
cuted synchronously in the sense that the scheduler
waits for a result from the DBMS then sends it to
the client. The scheduler waits for a response for a
given interval of time and returns an exception to
the client if that time expires without receiving it.

Authentication Manager. The authentication man-
ager maps the authentication credentials provided
by the user – and login and password in the cur-
rent version – with the credentials used to access
the local DBMS in the server. The login/password
provided by the user are not the ones used in the
local databases, but a form of access to the virtual
database provided by the middleware.

4. EVALUATION
We implemented a prototype of MITRA in Java.

The BFT total order multicast was provided by BFT-
SMaRt [1], a BFT replication library written in Java
that implements a variation of Byzantine Paxos [21].
Although the code was implemented carefully, no at-
tempt was made to make it efficient to the point of
being usable in real systems at this stage.

4.1 Analytical Evaluation
The first part of the evaluation is analytical. We

compare MITRA with three well-known BFT repli-

cation protocols in the literature, HRDB [18], By-
zantium [7], and BFT-DUR [14]. HRDB is based on
a concurrency control protocol called commit bar-
rier scheduling and requires a coordinator that can
be a single-point of failure. Byzantium, on the con-
trary, is distributed and has no single-points of fail-
ure, but provides only snapshot isolation, not seri-
alizability. Both protocols tolerate f faulty servers
and any number of faulty clients, similarly to MI-
TRA. BFT-DUR is distributed like Byzantium and
MITRA, but considers that clients do not fail.

The evaluation is shown in Table 1. Most lines
are self-explainable. The communication steps line
shows the number of communication steps for com-
mitting a transaction. This line is simplified by in-
cluding a value TOMcast that represents the num-
ber of communication steps of the total order mul-
ticast protocol (which can vary), and a δ that rep-
resents the number of statements for a transaction.
The table shows that HRDB has lower number of
communication steps (it uses no total order multi-
cast) and message complexity (O(n) instead ofO(n2)),
benefiting from the centralized controller. In the
case of BFT-DUR, only read statements take part in
the equation, as write statements are disseminated
just at commit time. This improvement on commu-
nication steps is mainly due to the type of database
assumed, once key/value database transactions are
less complex than relational ones.

4.2 Experimental Evaluation
The experiments were based on the industry stan-

dard OnLine Transaction Processing TPC-C bench-
mark2. The experimental evaluation compares MI-
TRA, HRDB (with CBS configuration), Byzantium
(with multi-master configuration) and stand-alone
DBMSs. BFT-DUR was not considered because it
assumes a key/value database and TPC benchmarks
are not compatible with it.

We did our experiments in a LAN with nine ma-
chines running CentOS 5.8 and IBM’s JDK 6.0. In
order to employ diversity, we used MySQL 5.5.8, In-
formix Innovator-C Edition 11.70 and PostgreSQL
8.4 as DBMSs. We loaded the databases with 10
warehouses and 10 districts per warehouse. We con-
sidered only the case of f = 1, which is the typical
value used in the evaluation of BFT protocols, as
replicas are expensive. This means that we used
4 replicas in MITRA and 3 in HRDB. The other
5 machines were used to run up to 50 clients issu-
ing transactions with an interval of 200 ms between
them. The values presented are averages of 25 ex-
periments.

2http://www.tpc.org/tpcc



Table 1: Analytical evaluation.
MITRA HRDB [18] Byzantium [7] BFT-DUR [14]

Number of replicas 3f + 1 2f + 1 + controller 3f + 1 3f + 1
Communication steps 2δ + 3(TOMcast) + 2 4δ + 3 2δ + 2(TOMcast) + 2 2δ + (TOMCast) + 1
Message complexity O(n2) O(n) O(n2) O(n2)
Consistency serializability serializability snapshot isolation serializability
Control distributed centralized distributed distributed
Database Type relational relational relational key/value
Byzantine clients yes yes yes no

(a) Throughput without replication.

(b) Throughput with replication.

(c) General abort rate.

Figure 4: Experimental results for standard
TPC-C workload (with no batches).

The experimental results are shown in Figure 4.
Figure 4(a) assesses the overhead introduced by the
middleware. The label Mid/MySQL corresponds to
MITRA with the MySQL DBMS and Mid/Ifmx to
MITRA with Informix. In both cases the interac-
tion between clients and servers was done through
MITRA but there was a single server, no replication.
It is noteworthy that we use the Mid/* only as a ref-
erence point, because they represent the best case of
what our prototype is expected to achieve. The ex-
periments labeled MySQL, Informix and PostgreSQL
were obtained with these DBMSs accessed directly
through JDBC, without the middleware being in-
volved. A comparison of the lines for the same
DBMS and number of clients shows that the over-
head introduced by MITRA varies from 0% to near
35%. We believe this overhead can be reduced by
better engineering the source code of the middle-
ware, but our purpose was to have only a proof-of-
concept prototype.

Figure 4(b) presents the results of running TPC-
C with MITRA, HRDB and our own implementa-
tion of Byzantium. These experiments were done
used 50 clients, MITRA and HRDB used MySQL
as DBMS, and Byzantium used PostgreSQL for the
same purpose. The figure shows that MITRA has
worse performance than the rest, which is coher-
ent with the analytical evaluation of the previous
section. The fact that HRDB relies on a coordina-
tor removes the need of using multicast between the
replicas or run a certification in every replica. How-
ever, the benefit is clear: the failure of up to any
f servers does not preclude the system from con-
tinuing to process transactions, on the contrary to
what happens with HRDB that can be stopped by
a single failure. Byzantium scales better due to two
reasons: it uses snapshot isolation that needs only
write sets to certify transaction; and just one atomic
multicast to accomplish commit, another advantage
of using snapshot isolation.

Figure 4(c) shows the abort rate of each evaluated
system. As the experiments of Figure 4(b) the envi-
ronment had 50 clients running MITRA and HRDB
with MySQL and Byzantium with PostgreSQL. Again
MITRA has a higher abort rate than the rest. This



was to be expected as an increase in the abort rate
is a well-known side-effect of speculative/optimistic
executions. Nevertheless, this abort rate seemed to
be not too high with TPC-C.

5. FINAL REMARKS
The paper presents a flexible middleware for the

Byzantine fault-tolerant replication of databases us-
ing heterogeneous DBMSs. Due to use of the JDBC
interface, MITRA is transparent to the DBMSs, ex-
cept for issues related to the dialects of SQL. The
middleware is also compatible with applications that
use JDBC to interact with the database. Although
MITRA is not the only solution for BFT database
replication, none of the alternatives provides simul-
taneously serializability and full distribution. The
performance of MITRA is slightly worse than oth-
ers, which was expected due to the characteristics
of that protocol and the fact that we did not made
a strong effort to make the prototype efficient. Nev-
ertheless, the results are promising and the costs
seem to provide an adequate tradeoff with the ben-
efits at least for some applications. We believe that
these overheads are not overly onerous, especially
given the increased robustness and fault tolerance
that MITRA offers.

6. REFERENCES
[1] BFT-SMaRt: High-performance Byzantine

fault-tolerant state machine replication.
http://code.google.com/p/bft-smart, 2010.

[2] D. Agrawal, G. Alonso, A. E. Abbadi, and
I. Stanoi. Exploiting atomic broadcast in
replicated databases. In Proceedings of the 3rd
International European Conference on Parallel
Processing, pages 496–503, 1997.

[3] E. Cecchet, J. Marguerite, and W. Zwaenepoel.
C-JDBC: Flexible database clustering middleware.
In Proceedings of the USENIX Annual Technical
Conference, 2004.

[4] B. Charron-Bost, F. Pedone, and A. Schiper,
editors. Replication: Theory and Practice, volume
5959 of LNCS. Springer-Verlag, Berlin,
Heidelberg, 2010.

[5] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one
faulty process. Journal of the ACM,
32(2):374–382, Apr. 1985.

[6] M. Fisher, J. Ellis, and J. Bruce. JDBC API
Tutorial and Reference. Addison Wesley, 3 edition,
jun 2003.

[7] R. Garcia, R. Rodrigues, and N. Preguiça.
Efficient middleware for byzantine fault-tolerant
database replication. In Proceedings of the 6th
ACM SIGOPS/EuroSys European Conference on
Computer Systems. ACM, 2011.

[8] I. Gashi, P. T. Popov, and L. Strigini. Fault
tolerance via diversity for off-the-shelf products: A
study with SQL database servers. IEEE

Transactions on Dependable and Secure
Computing, 4(4):280–294, 2007.

[9] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The
dangers of replication and a solution. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages
173–182, 1996.

[10] H. T. Kung and J. T. Robinson. On optimistic
methods for concurrency control. ACM
Transactions on Database Systems, 6:213–226,
June 1981.

[11] Y. Lin, B. Kemme, M. P. no Mart́ınez, and
R. Jiménez-Peris. Middleware based data
replication providing snapshot isolation. In
Proceedings of the ACM SIGMOD International
Conference on Management of data, pages
419–430, 2005.

[12] A. F. Luiz, L. C. Lung, and M. Correia. Byzantine
fault-tolerant transaction processing for replicated
databases. In Proceedings of the 10th IEEE
International Symposium on Network Computing
and Applications, pages 83–90, 2011.

[13] F. Pedone, R. Guerraoui, and A. Schiper. The
database state machine approach. Distributed and
Parallel Databases, 14(1):71–98, 2003.

[14] F. Pedone, N. Schiper, and J. Armendáriz-Iñigo.
Byzantine fault-tolerant deferred update
replication. In Proceedings of the 5th
Latin-American Symposium on Dependable
Computing. SBC, 2011.

[15] B. Randell. System structure for software fault
tolerance. IEEE Transactions on Software
Engineering, 1(2):221–232, 1975.

[16] A. Schiper and M. Raynal. From group
communication to transactions in distributed
systems. Communications of the ACM, 39:84–87,
April 1996.

[17] SwisSQL. Swissql api 5.5.
http://www.swissql.com/products/sql-
translator/sql-converter.html,
2012.

[18] B. Vandiver, H. Balakrishnan, B. Liskov, and
S. Madden. Tolerating Byzantine faults in
transaction processing systems using commit
barrier scheduling. In Proceedings of 21st ACM
Symposium on Operating Systems Principles, Oct.
2007.

[19] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme,
and G. Alonso. Understanding replication in
databases and distributed systems. In Proceedings
of the 20th International Conference on
Distributed Computing Systems - ICDCS’00, pages
464–474, Washington, DC, USA. IEEE Computer
Society.

[20] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme,
and G. Alonso. Database replication techniques: a
three parameter classification. In Proceedings of
the 19th IEEE Symposium on Reliable Distributed
Systems - SRDS’00, pages 206–215, Washington,
DC, USA, 2000. IEEE Computer Society.

[21] P. Zielinski. Paxos at war. Technical Report
UCAM-CL-TR-593, Univ. of Cambridge
Computer Lab, Cambridge, UK, June 2004.


