Decoupled Quorum-Based Byzantine-Resilient Coor dination
in Open Distributed Systems

Alysson Neves Bessanit  Miguel Correiat  Joni da Silva Fragdiau Cheuk Lung§
T LASIGE, Faculdade de Ciéncias da Universidade de Lisk®artugal
T Departamento de Automagao e Sistemas, Universidade&lete Santa Catarina — Brazil
§ Prog. de P6s-Grad. em Informética Aplicada, Ponéfidniversidade Catblica do Parana — Brazil

Abstract spaces (e.g., [24, 2]). The objective of those works is essen
tially to guarantee the availability of the service proddsy

Open distributed systems are typically composed by anthe tuple space, evenif some of the servers thatimplement it
unknown number of processes running in heterogeneousrash. This paper goes one step further by describing a tuple
hosts. Their communication often requires tolerance te tem space that tolerates Byzantine faults. More specificallg, t
porary disconnections and security against malicious ac- Work is part of a recent research effortinrusion-tolerant
tions. Tuple spaces are a well-known coordination model Systemsi.e., on systems that tolerate malicious faults, like
for this sort of systems. They can support communicationattacks and intrusions [23]. These faults can be modeled as
that is decoupled both in time and space. There are cur- arbitrary faults, also called Byzantine faults in the teerre.

rently SeVeraI imp|ementati0ns Of distributed fault—tahi The proposed tup'e Space is dubbed LBTS since itis a
tuple spaces but they are not Byzantine-resilient, i.@yth | jnearizable Byzantine Tuple Spa¢eBTS is implemented

do not provide a correct service if some replicas are at- py a set of distributed servers and behaves according to its
tacked and start to misbehave. This paper presents an efspecification if up to a number of these servers fail, either
ficient implementation of LBTS, a linearizable Byzantine accidentally (e.g., crashing) or maliciously (e.g., byrigei
fault-tolerant tuple space. LBTS uses a novel Byzantineattacked and starting to misbehave). Moreover, LBTS also
quorum systems replication technique in which most opera-tolerates accidental and malicious faults in an unbounded
tions are implemented by quorum protocols while stronger numper of clients accessing it. LBTS has two important
operations are implemented by more expensive protocolsproperties. First, it idinearizable i.e., it provides a strong
based on consensus. LBTS is linearizable and wait-free,concurrency semantics in which operations invoked concur-
showing interesting performance gains when compared torently appear to take effect instantaneously sometime be-
a similar construction based on state machine replication. tween their invocation and the return of their result [13].
Second, it iswait-freg i.e., every correct client process

1. Introduction that invokes an operation in LBTS eventually receives a

The generative coordination modebriginally intro- response, independe_ntly_ of the failure of other client pro-
duced in the INDA programming language [11], uses a CESS€S or the contention in the system [12].
shared memory object calledtaple spaceo support co- Another distinguished feature of LBTS is its novel use of

ordination between distributed processes. Tuple spaces cathe Byzantine quorum systemasplication technique. Most
support communication that is decoupled both in time — pro- operations on the tuple space are implemented by pure asyn-
cesses do not have to be active at the same time — and spaeshronous Byzantine quorum protocols [15]. However, a tu-
— processes do not need to know each others’ addresses [Sple space is a shared memory object with consensus number
The tuple space can be considered to be a kind of storagéigher than one [22], according to Herlihy’s wait-free hier
that storeduples i.e., finite sequences of values. The op- archy [12], so it cannot be implemented using only asyn-
erations supported are essentially three: inserting & tapl  chronous quorum protocols. In this paper we identify the
the space, reading a tuple from the space and removing auple space operations that require stronger protocots, an
tuple from the space. The programming model supportedshow how to implement them using ByzantinePaxos
by tuple spaces is regarded as simple, expressive and eleconsensus protocol [6, 17]. The philosophy behind our de-
gant, being supported by middleware platforms like Sun’s sign is that simple operations are implemented by “cheap”
Java Spacesand IBM's TSPACES guorum-based protocols, while stronger operations are im-
There has been some research about fault-tolerant tupleplemented by more expensive protocols based on consen-



sus. Although there are other recent works that use quorumi without removing it from the space. Thep() andrdp()
based protocols to implement objects stronger than registe operations ar@on-blockingi.e., if there is no tuple in the
[1] and to optimize state machine replication [7], LBTS is space that matches the template, an error code is returned.
the first to mix these two approaches supporting wait free- Most tuple spaces also provide blocking versions of these
dom and being efficient even in the presence of contention.operationsjn andrd. These operations work in the same
Although this is the first linearizable Byzantine tuple way of their non-blocking versions but stay blocked until
space that we are aware of, there are several domains inhere is some matching tuple available on the space.
which it might be interesting to use this service. For exam-  These few operations together with the content-
ple, application domains with frequent disconnections and addressable capabilities of generative coordinationideov
mobility like ad hoc network$19] and mobile agentg5] a simple and powerfull programming model for distributed
can benefit from the time and space decoupling provided byapplications. The drawback of this model is that it depends
LBTS. Another domain igrid computing where a large  of aninfrastructure object (the tuple space), whichiis ligua
number of computers are used to run complex computa-implemented as a centralized server, being a single point of
tions. These applications are decoupled in space and timdailure, the main problem addressed in this paper.
since the cqmputers _that run the application can enter andz.z. System Model
leave the grid dynamically [10].
The main contributions of the paper are the following: ~ The system is composed by an infinite setlént pro-
(i.) it presents the first linearizable tuple space that is cessed1 = {p1, pz, ps,...} which interact with a set of
Byzantine fault-tolerant; the tuple space requires4f + 1 servers U= {s1,%,...,5} that simulates a tuple space with
servers, from whicl can be faulty, and tolerates any num- certain dependability properties. We consider that each
ber of faulty clientsfii.) it introduces a new design philos-  client process and each server has an unique id.
ophy to implement shared memory objects with consensus All communication between client processes and servers
number higher than 1 [12], by using asynchronous quorumis made overeliable authenticated point-to-point channels
protocols for the weaker operations and consensus pratocol All servers are equipped with a local clock used to compute
(which require synchrony assumptions) for stronger opera-message timeouts. These clocks are not synchronized so
tions; to implement this philosophy several new techniquestheir values can drift.
are developed; an@i.) it compares the proposed approach  In terms of failures, we assume that an arbitrary num-
with Byzantine state machine replication [21, 6] and shows ber of client processes and a bound of upfte: ;%]
that LBTS presents several benefits: some operations aréervers can be subject Byzantine failuresi.e., they can
much cheaper and it supports the concurrent execution ofdeviate arbitrarily from the algorithm they are specified to
operations, instead of executing them in total order. execute and work in collusion to corrupt the system behav-
. . ior. Clients or servers that do not follow their algorithm in
2. Preliminaries some way are said to Haulty. A client/server that is not
2.1. Tuple Spaces faulty is said to beorrect We assuméault independence
i.e., that the probability of each server failing is indegent

The generative coordinatiormodel, originally intro- . . .
g ginaty of another server being faulty. This assumption can be sub-

duced in the INDA programming language [11], uses a ) ; ) : ) . .
shared memory object calledtaple spaceo support the stantiated in practice using several kinds of diversity][20
coordination between processes. This object essentially. We assume aeventually synchronous system mdég|

allows the storage and retrieval of generic data structures” all executions of the system, there is a bodndnd an

calledtuples instant GST (Global Stabilization Time), so that every mes-

Each tuple is a sequence of fields. A tupla which all sage sent by a correct server to another correct server at
fields have a defined value is called entry. A tuple with instantu > GST is received befora+A. A and GST are

one or more undefined fields is calledemplate(usually unknown. The intuition behind th_is model is that the sys-
denoted by a bar, e.d), An entryt and a templatématch tem can work asynchronously (with no bounds on delays)
— m(t,f) — if they have the same number of fields and all most of the time but there are stable periods in which the

defined field values dfare equal to the corresponding field gommuEicatio? d-(ta):aylls gounthd (assum.lng !ocal cgn:jputa—
values ot. Templates are used to allow content-addressable!ONS take negligi € “”_‘ ) This assump_tlon IS needed to
access to tuples in the tuple space (e.g., temglat ) guarantee the termination of the ByzantimxBs [6, 17].
matches any tuple with three fields in which 1 and 2 are the AN €xecution of a distributed algorithm is said torlue.e|f
values of the first and second fields, respectively). the boundA always holds and there are no server failures.

A tuple space provides three basic operations [11]: | gddmonall_y, v¥e use aj|g|(;al S|gr_1f§1tur_e S(f:hem_thatr:n-
out(t) that outputsfinserts the enttyin the tuple space: cludes a signing function and a verification function that us

inp(f) that reads and re_moves some tUple that mat€hes 1In practice this stable period has to be long enough for therithm
from the tuple spacedp(t) that reads a tuple that matches to terminate, but does not need to be forever.




pairs of public and private keys. A message is signed usingand allows the new leader to verify if some message was

the signing function and a private key, and this signature is already committed with some sequence number. Then, the
verified with the verification function and the corresporidin - new leader continues to order messages. For a complete
public key. We assume that each correct server has a privatelescription of the ByzantineaRos protocol and its many

key known only by itself, and that its public key is known subtleties, we refer the reader to [6, 17].

by all client processes and servers. We represent a messal

signed by a serveswith a subscripts, e.g.,mg. 3. Linearizable Byzantine Tuple Space

This section presents LBTS. Since we are interested only
in wait-free operations, we concentrate our discussioy onl
Byzantine quorum systerfis5] are a technique for im-  in tuple space non-blocking operations. The tuple space
plementing dependable shared memory objects in messageorrectness condition and the protocols correctness groof
passing distributed systems that can suffer Byzantine fail as well as some optimizations and improvements are omit-
ures. Given a universe of data servers, a quorum system is &ed due to lack of space. We refer the interested reader to
set of server sets, callegiorumsthat have a non-empty in-  the extended version of this paper [3].
tersection. The intuition is that if a shared variable isetio
replicated in all servers, any read or write operation has to
be done only in a quorum of servers, not in all servers. For-  As already discussed in the introduction, the design phi-
mally, a Byzantine quorum system is a set of server quo- |osophy of LBTS is to use quorum-based protocols for read
rums 2 C 2V in which each pair of quorums intersect in  (rdp) and write put) operations, and an agreement primitive
sufficiently many serverspnsistencyand there is always  for the read-remove operatioimp). The implementation of
a quorum in which all servers are correavgilability). this philosophy requires the development of some new tech-
The servers can be used to simulate one or more share@iques, described in this section.
memory objects. In this paper the servers simulate a single  To better understand these techniques let us recall how
object — a tuple space. The servers forrfrmasking quo-  basic quorum-based protocols work. Traditionally, the ob-
rum systemwhich tolerates at most faulty servers [15].  jects implemented by quoruns are read-write registers, (e.g
This type of Byzantine quorum systems requires that the[14, 15, 16, 18]). The state of a register in each replica is
majority of the servers in the intersection between any two represented by its current value and a timestamp (a kind of
quorums are correct, th¥Qs, Q2 € 2,|Q1NQ2| >2f +1.  “version number”). The write protocol usually consists in
Given this requirement, each quorum of the system must (i) reading the register current timestamp from a quorum,
haveq = (%HW servers and the quorum system can be (ji.) incrementing it, andiii.) writing the new value with
defined as: 2 = {Q CU : |Q| = q}. This implies that  the new timestamp in a quorum (deleting the old value).
Ul =n2>4f +1 [15]. With these constraints, a quorum |n the read protocol, the standard procedurg.jsreading
system with 4 + 1 servers will have quorums of sizé 3 1. the pair timestamp-value from a quorum afid apply-
ing some read consolidation rule sucH#® current value
of the register is the one associated with the greater times-
Since LBTS requires some modifications to the ba- tamp that appears 4 1 times”to define what is the current
sic Byzantine Rxos total order protocol [6], this section value stored in the register. To ensure register lineailizab
briefly presents this protocol. ity (a.k.a. atomicity) two techniques are usually emplayed
The protocol begins with a client sending a signed mes- write-backs— the read value is written again in the sys-
sagemto all servers. One of the servers, called the leader,tem to ensure that it will be the result of subsequent reads
is responsible for ordering the messages sent by the clients(e.g., [16, 14]) — or thdistener communication pattera
The leader then sends a PRE-PREPARE message to alhe reader registers itself with the quorum system servers
servers giving a sequence numheio m. A server ac-  for receiving updates on the register values until it reegiv
cepts a PRE-PREPARE message if the proposal of thethe same register state from a quorum, ensuring that this
leader isgood the signature ofm verifies and no other state will be observed in subsequent reads (e.g., [18]).
PRE-PREPARE message was accepted for sequence num- In trying to develop a tuple space object using these tech-
beri. When a server accepts a PRE-PREPARE messageniques two differences between this object and a register
it executes two steps of message exchange with the othewere observedil.) the state of the tuple space (the tuples it
servers to commitn as the-th message to be delivered. contains) can be arbitrarily large af@l) theinp operation
When the leader is detected to be faulty, a leader elec-cannot be implemented by read and write protocols due to
tion protocol is used to freeze the current round of the pro- the requirement that the same tuple cannot be removed by
tocol, elect a new leader and start a new round. When a newtwo concurrent operations. Differen€g.) turns difficult
leader is elected, it collects the protocol state (messages the applicability of timestamps for defining what is the cur-
changed) from[%f} servers. This information is signed rent state of the space while differen&) requires that

2.3. Byzantine Quorum Systems

3.1. Design Rationale and New Techniques

2.4. Byzantine Paxos



concurreninp operations are executed in total order by all tuple spacé, but their extension to support multiple tuple
servers. The challenge is how to develop quorum protocolsspaces is straightforward: a copy of each space is deployed
for implementing an object that does not use timestampsin each server and all protocols are executed in the scope of
for versioning and, at the same time, requires a total orderone of the spaces (adding a field in each message indicating
protocol in one operation. To solve these problems, we de-which tuple space is being accessed). Finally, we assume
veloped three algorithmic techniques. that the reactions of the servers to message receptions are
The first technique introduced in LBTS serves to avoid atomic (e.g., lines 3-4 in Algorithm 1).
timestamps in a collection object (one that its state is com-Protocol variables. Before we delve into the protocols, we
posed by a set of items added to it): we partition the state ofhave to introduce four variables stored in each sesvég,
the tuple space in infinitely many simpler objects, the taple rs, Rs andLs. Ts is the local copy of the tuple spadein
that have three states: not inserted, inserted, and removedhis server. The variable gives the number of tuples pre-
This means that when a process invokes a read operatioryiously removed from the tuple space replicasinThe set
the space chooses the response from the set of matching tuRs contains the tuples already removed frdgnWe callRs
ples that are in the inserted state. So, it does not need théhe removal set and we use it to ensure that a tuple is not
timestamp of the tuple space, because the read consolidacemoved more than once from. Finally, the sels con-
tion rule is applied to tuples and not to the space state. tains all clients registered to receive updates from thpéetu
The second technique is the application of the listener space. This set is used in thdp operation. The protocols
communication pattern in thelp operation, to ensure that use a functiorsendto,msg to send a messagesgto the
the usual quorum reasoning (e.g., a tuple can be read if itrecipientto, and a functionmeceivefrom, msg to receive a
appears inf + 1 servers) can be applied in the system even messagensgsent byfrom.
in parallel with executions of ByzantineaRos for inp op- Tupleinsertion. Algorithm 1 presents theut protocol.
erations. In the case of a tuple space, ithgoperation is
the single read-write operationif there is some tuple that  Algorithm 1 outoperation (clienp and serves).
matcht on the space, remové.it The listener pattern is  {CLienT}
used to “fit” therdp between the occurrence of tvmap op- procedureout(t)
erations. The listener pattern is not used to ensure lineari  1: Yse U, sends, (OUT, 1))
ability as in previous works, but for capturing replicasitst 2: wait until 3Q € 2: Vse Q, receives, (ACK-OUT))
between removals. {SERVER}
The third technique is the modification of the Byzantine upon receivep, (OUT,t))
Paxos algorithm to allow the leader to propose the order 3: ift ¢ Rgthen Ts «— TsU {t}
plusa candidate result for an operation, allowing the system 4: sendp, (ACK-OUT))
to reach an agreement even when there is no state agreement
between the replicas. This is the case when the tuple space When a procesp wants to insert a tuplein the tuple
has to select a tuple to be removed that is not present in allspace, it sendsto all servers (line 1) and waits for acknowl-
servers. Notice that, without this modification, two agree- edgments from a quorum of servers (line 2). At the server
ments would have to be executed: one to decide wimt  side, if the tuple is not in the removal set (indicating that i
would be the first to remove a tuple, in case of concurrency has already been removed), it is inserted in the tuple space
(i.e., to ordeiinp requests), and another to decide which tu- (line 3). An acknowledgment s returned (line 4).
ple would be the result of thiep. With this simple algorithm a faulty client process can
3.2. Protocols inserts a tgple_ in a subset (_)f the servers. In that case, we
say that it is arincompletely inserted tupl@he number of
Additional assumptions. We adopt several simplifications incomplete insertions made by a process can be bounded to
to improve the presentation of the protocols. First, we as- one, as described in [3]. As can be seen in next sections,
sume that all tuples are unique. In practice this might be rdp (resp. inp) operations are able to read (resp. remove)
implemented by appending to each tuple its writer id and a such a tuple if it is inserted ifi+ 1 servers.
sequence number generated by the writer. Second, we asFuple reading. rdp is implemented by Algorithm 2. The
sume that any message that was supposed to be signed bygotocol is more tricky than the previous one for two rea-
serversand is not correctly signed is simply ignored. Third, sons. First, it employs the listener communication pattern
all messages carry nonces in order to avoid replay attacksto capture the replicas state between removals. Second, if
Fourth, access control is implicitly enforced: the tuplasp  a matching tuple is found, the process may have to write it
has some kind of access control mechanism (like an ACL) back to the system to ensure that it will be read in subse-
specifying what processes can insert tuples in it and eachquent reads, satisfying linearizability property.
tuple has two sets of processes that can read and remove Whenrdp(f) is called, the client procegssends the tem-
it. Fifth, the algorithms are described considering a gngl platef to the servers (line 1). When a sergzeceives this




Algorithm 2 rdp operation (clienp and serves).

{CLIENT}
procedure rdp(f)
1: Vse U, sends, (RDR,T))
2: Vxe{1,2,..},Vse U,Repliegx[g «— L
3: repeat
4:  wait until receivés, (REP-RDPs, T{, rs)6,)
5:  Repliegrg][s| «+ (REP-RDPs, T{, rs) g,
6: until 3r € {1,2,...},{se U : Replier][g # L} € 2
7: {From now orr indicates the of the condition above
8: Vse U, sends, (RDP-COMPLETET))
9: if 3t,counttuple(t,r,Repliesr]) > qthen
10: returnt
11: elseif 3t,counttuplet,r,Repliesr]) > f + 1 then
12:  Vse U, sends, (WRITEBACK,t, Replie$r]))
13:  wait until 3Q € 2:Vse Q, receives, (ACK-WB))
14: returnt
15: else
16: return L
17: end if
{SERVER}

upon receivé p, (RDPT))
18: Ls — LsU{(p,T)}
19: TH e {t € Ts: m(t, D)}
20: send p, (REP-RDPs, T{,rs)6.)
upon receivé p, (RDP-COMPLETET))
21: Ls—Ls\ {(p,[)}
upon receive p, (WRITEBACK;t, proof))
22: if counttuple(t, proof) > f 4+ 1 then
23: ift¢ Rsthen Ts — TsU{t}
24:  sendp, (ACK-WB))
25: end if
upon removal oft from Ts or insertion oft in Ts
26: for all (p,T) € Ls: m(t,T) do
27 T —{' eTs:mt D)}
28:  sendp,(REP-RDPs T rs)q.)
29: end for
Predicate: counttuple(t,r,msgs =
|{s€ U : msgés = (REP-RDPs, T r)g At € T}
message, it registegsas a listener, and replies with all tu-
ples inTs that matcH and the current number of tuples al-
ready removeds (lines 18-20). Whilep is registered as
a listener, whenever a tuple is added or removed from the
space the tuples that matths sent top ? (lines 26-29).
Proces9 collects replies from the servers, putting them
in the Replieg matrix, until it manages to have a set of
replies from a quorum of servers reporting the state after
the same number of tuple removal@ines 2-6). After that,
a RDP-COMPLETE message is sent to the servers (line 8).
The result of the operation depends on a single row
of the matrixReplieg. This row represents a cut on the

system state in which a quorum of servers processed exactly

the same removals, so, in this cut, quorum reasoning can

agreement algorithms and quorum-based protocols can be
used together for different operations, one of the novelsde

of this paper. If there is some tuglén Repliegr] that was
replied by all servers in a quorum, thers the result of the
operation (lines 9-10). This is possible because this quoru
ensures that the tuple can be read in all subsequent reads,
thus ensuring linearizability. On the contrary, if therets
tuple replied by an entire quorum, but there is still some
tuplet returned by more thah server$ for the same value

of r, thent is write-backin the servers (line 11-12). The
purpose of this write-back operation is to ensure that if
has not been removed untjlthen it will be readable by all
subsequentdp(t) operations requested by any client, with
m(t,T) and untilt is removed. Therefore, the write-back is
necessary to handle incompletely inserted tuples.

Upon the reception of a write-back message
(WRITEBACK,t, proof), servers verifies if the write-
back is justified i.e., if proof includes at leastf + 1
correctly signed REP-RDP messages from different servers
with r andt (line 22). A write-back that is not justified is
ignored by correct servers. After this verificationt, i§ not
already inTs and has not been removed, themsertst in
its local tuple space (line 23). Finallg,sends a ACK-WB
to the client (line 26), which waits for these replies from a
qguorum of servers and returhdines 13-14).

Tuple destructivereading. The previous protocols are im-
plemented using only Byzantine quorum techniques. The
protocol forinp, on the other hand, requires stronger ab-
stractions. This is a direct consequence of the tuple space
semantics that does not allanp to remove the same tuple
twice (once removed it is no longer available).

An approach to implement this semantics is to execute
all inp operations in the same order in all servers. This can
be made using a total order multicast protocol based on the
Byzantine Rxos algorithm (Section 2.4). A simple ap-
proach would be to use it as an unmodified building block,
but this requires two executions of the protocol for eimgh
[4]. To avoid this overhead, the solution we propose is based
on modifyingthis algorithm in three specific points:

1. When the leadesreceives a requestp(f) from client
p (i.e., a messagelNP, p,f)), it sends to the other
servers a PRE-PREPARE message with not only the
sequence numberbut also(ts, (INP, p,t)s,) o5, Where
tr is a tuple inTg that matches. If there is no tuple that
matcheg in Tg, thentr = L.

2. A correct serves accepts to remove the tupiepro-
posed by the leader in the PRE-PREPARE message if:
(i.) the usual ByzantineAXos conditions for accep-
tance described in Section 2.4 are satisf{éd; s’ did

not accept the removal of previously;(iii.) tg andt

be applied. This mechanism is fundamental to ensure that

2|n practice, only the update is sentfio

3If a tuple is returned byf or less servers it can be a tuple that has not
been inserted in the tuple space, created by a collusioruttj feervers.



match; andiv.) t is not forged, i.e., eithere Tsor s
receivedf + 1 signed messages from different servers
ensuring that they havein their local tuple spaces.
This last condition ensures that a tuplean be re-
moved if and only if it can be read, i.e., only if at least
f 4+ 1 servers report having it.

. When a new leadéf is elected, each server sends its
protocol state td/ (as in the original total order Byzan-
tine Pxos algorithnt) and a signed set with the tu-
ples in its local tuple space that mafcihis informa-
tion is used by’ to build a proof for a proposal with a
tuplet (in case it gets that tuple froh+ 1 servers). If
there is no tuple reported iyt 1 servers, this set of tu-
ples justifies al. proposal. This condition can be seen

servers and waits untit + 1 servers reply with the same
response, which is the result of the operation (lines 1-3).

In the server side, the requests for executionspfre-
ceived are inserted in the pending BetWhen this set is not
empty, the code in lines 4-13 is executed by the leader (the
predicatgpaxosleader(s) is trueiff sis the current leader).
For each pending request B, a sequence number is at-
tributed (line 5). Then, the leader picks a tuple from the
tuple space that match&glines 6-7) and marks it with its
sequence number to prevent it from being removed (line 8).
The procedurenark(i,t) marks the tuple as the one pro-
posed to be removed in tleh removal, while the predicate
markedt) says ift is marked for removal. If no unmarked
tuple matches, L is proposed for the ByzantineaARos
agreement (using the aforementioned PRE-PREPARE mes-

as a write-back from the leader in order to ensure thatsage), i.e., is sent to the other servers (lines 10, 12). The

the tuple will be available in sufficiently many replicas
before its removal.

Giving these modifications on the total order protocol,
aninp operation is executed by Algorithm 3.

Algorithm 3 inp operation (clienp and serves).
{CLIENT}
procedureinp(f)
1: TO-multicastU, (INP, p,T))
2: wait until receive(REP-INRt) from f + 1 servers irJ
3: returnty

{SERVER}
upon paxosleader(s) APs # 0

4: for all (INP,p,T) € Psdo

5. ie—i+1
6: if 3t € Ts: m(t,T) A —-markedt) then
7 tp—t
8: mark(i,t)
9: €dse
10: tf — 1
11:  endif
12:  paxospropos€i, (t, (INP, p,t)))
13: end for
upon paxosdeliver(i, (t;, (INP, p,T)))
14: unmarki)
15: Ps+ Ps\ {{INP, p,T)}
16: if t; # L then
17: if tfe Ts then T3<—T3\{tf}
18: Rs — RSU {tf}
19: rg—rs+1
20: end if

21: send p, (REP-INBtg))

For a clientp, theinp(t) algorithm works exactly as if
the replicated tuple space was implemented using Byzantin
state machine replication [6, 21D sends a request to all

4The objective is to ensure that a value decided by some ¢areecer
in some round will be the only possible decision in all sulsed rounds.

code in lines 4-13 corresponds to the modification 1 above.
Modifications 2 and 3 do not appear in the code since they
are reasonably simple changes of Byzanting®s.

When the servers reach agreement about the sequence
number and the tuple to remove, thexosdeliverpredicate
is set totrue and the code in the bottom of the algorithm is
executed (lines 14-23). Then, each serseinmarks any
tuple that it marked for removal with the sequence nunhber
(line 14) and removes the ordered request fRyrtline 15).
After that, if the result of the operation is a valid tugte
the server verifies if it exists in the local tuple spdgéline
17). If it does, it is removed frorig (line 18). Finally,tr is
added toRs, the removal countear is incremented and the
result is sent to the requesting client process (line 23).

It is worth noticing that ByzantineAXxos usually does
not employ public-key cryptography when the leader does
not change. The signatures required by the protocol are
made usingauthenticators which are vectors of message
authentication codes [6]. However, modification 3 requires
that the signed set of tuples will be sent to a new leader
when it is elected. Therefore, oump protocol requires
public-key cryptography, but only when the operation can-
not be resolved in the first Byzantine ®os round.

4. Evaluation

This section presents an evaluation of the system us-
ing two distributed algorithms metricenessage complexity
and communication stepsMessage complexity measures
the maximum amount of messages exchanged between pro-
cesses, so it gives some insight about the communication
system usage and the algorithm scalability. The communi-
cation steps is the number of sequential communications be-
tween processes, so it is the main factor for the time needed
for a distributed algorithm execution to terminate.

In this evaluation, we compare LBTS with an imple-
mentation of a tuple space with the same semantics based
on state machine replicatiof21], which we call SMR-TS.
SMR is a generic solution for the implementation of fault-

e



tolerant distributed services using replication. The idea and state machine replication [21, 6]. The former is a data-
to make all replicas to start in the same state and deter-centric approach based on the idea of executing different
ministically execute the same operations in the same ordemperations in different intersecting sets of servers, evtie

in all replicas. The implementation considered for SMR- latter is based on maintaining a consistent replicate@ stat
TS is based on the Byzantine¥os [6] with fast decision across all servers in the system. One advantage of quo-
(two communication steps) in nice executions [17, 25]. The rum systems in comparison to the state machine approach
fast decision is also considered for the modified Byzantine is that they do not need that the operations are executed in
Paxos used in LBTS'inp protocol. The SMR-TS imple-  the same order in the replicas, so they do not need to solve
ments an optimistic version for read operations in which all consensus. Quorum protocols usually scale much better due
servers return immediately the value read without exegutin to the opportunity of concurrency in the execution of oper-

the Byzantine Bx0s if no concurrency is perceived. ations and the shifting of hard work from servers to client
Operation LBTS SMR-TS processes [1]. On the other hand, pure quorum protocols
M.C. [ CS. M.C. [CS. gannot be used to implement objects stronger than regi;ter
out o) 2 on?) 4 (in gschhronqus ;ystems), on the contrary of state machine

rdp o) | 2/4 || on)jo?) | 2/6 replication, which is more general [9].

inp on?) | 4/7 o(n?) 4 To the best of our knowledge there is only one work
on Byzantine quorums that has implemented objects more

Table 1. Costs in nice executions powerful than registers in a way that is similar to ours, the

Table 1 evaluates nice executions of the operations inQ/U protocols [1]. That work aims to implement general
terms of message complexity (M.C.) and communication S€rvices using quorum-based protocols in asynchronous
steps (C.S9 The costs of LBTS’ operations are presented Byzantine systems. Since this cannot be done ensuring
in the second and third columns of the table. The fourth andWait-freedom, the approach sacrifices liveness: the opera-
fifth columns show the evaluation of SMR-TS. The LBTS tions are guaranteed to terminate only if there is no other
protocol forout is cheaper than SMR-TS in both metrics. OPeration executing concurrently. A tuple space build us-
The protocol fordp has the same costs in LBTS and SMR- ing Q/U has mainly two drawbacks, when compared with
TS in executions in which there is no matching tuple being LBTS: (i.) it is not wait-free so, in a Byzantine environ-
written concurrently withrdp. The first values in the line ~ Ment, malicious clients could invoke operations continu-
of the table corresponding top are about this optimistic ~ Ously, causing a denial of service; afid) it requires § + 1
case Q(n) for message complexity, 2 for communication serversf more than LBTS, and it has an impact on the cost
steps). When a read cannot be made optimistically, the op-Of the system due to the cost of diversity [20].
eration requires 4 steps in LBTS and 6 in SMR-TS (opti-  Recently, Cowling et al. proposed HQERLICATION
mistic phase plus the normal operation). Moreover LBTS’ [7], an interesting replication scheme that uses quorum pro
message complexity is linear, instead@?) like SMR- tocols when there are no contention in operations execsition
TS. The protocol folinp uses a single ByzantineaRos and consensus protocols to resolve contention situations.
execution in both approaches. However, in cases in whichThis protocol requires > 3f -+ 1 replicas and process reads
there are many tuples incompletely inserted (extreme con-and writes in 2 to 4 communication steps in contention-free
tention or many faulty clients), LBTS might not decide in €executions. When contention is detected, the protocol uses
the first round (as discussed in [3]). In this case a new leaderByzantine RXxos to order of contending requests. This
must be elected. We expect this situation to be rare. contention resolution protocol adds great latency to tioe pr

The table allow us to conclude that an important advan- tocols, reaching more than 10 communication steps even in
tage of LBTS when compared with SMR-TS is the fact that nice executions. Comparing LBTS with a tuple space based
in SMR-TS all operations require protocols with message on HQ-REPLICATION, in executions without contention,
complexity O(n?), turning simple operations such edp ~ LBTS’ outwill be faster (2 steps instead of 4 of HQip
andoutas complex aip. Another advantage of LBTS is  Will be equivalent (the protocols are similar) angp will
that its quorum-based operatiomsit andrdp, always ter- have the same latency in both, however, LBTS' protocol has
minate in few communication steps while in SMR-TS these O(n?) message complexity instead ©fn) of HQ. In con-
operation relies on ByzantineRos, that we can have cer- tending executions, LBTS is expected to outperform HQ
tainty that terminates in 4 steps only in nice executiong[17  in orders of magnitude since its protocols are little afeict

by these situations. On the other hand, HQPRICATION
5. Related Work requiresf fewer replicas than LBTS.

Two replication approaches can be used to build Byzan-  There are several works that replicate tuple spaces for

tine fault-tolerant services: Byzantine quorum systens§ [1  fault tolerance. Some of them are based in the state machine

5Recall from Section 2.2 that an execution is said toiseif the max- replication (e.g., [2]) while others use quorum SySt_errgi (e.
imum delayA always hold and there are no failures. [24]). However, none of these proposals deals with Byzan-




tine failures and intrusions, the main objective of LBTS.

The construction presented in this paper, LBTS, builds
on a preliminary solution with several limitations, BTS [4]
LBTS goes much further in mainly three aspects: it is lin-
earizable; it uses a confirmable protocol for operatian
and it implements thenp operation using only one Byzan-
tine FAXos execution, instead of two in BTS.

6. Final Remarks
In this paper we presented the design of LBTS, a Lin- [10]

earizable Byzantine Tuple Space. This construction pro-

vides reliability, availability and integrity for coordation

between processes in open systems. The overall architec
ture is based on a set of servers from which less than a

fourth may be faulty and on an unlimited number of client
processes, from which arbitrarily many can also be faulty.

LBTS combines Byzantine quorum systems protocols
with consensus-based protocols resulting in a design in
which simple operations use simple quorum-based proto- [13
cols while a more complicated operation, which requires

(7]

(8]

9]

[11]

[12]

servers’s synchronization, uses more complex agreement 14]
based protocols. An important contribution of this work
is the assertion thatut and rdp can be implemented us-
ing quorum-based protocols, whilep requires consensus.

This design shows important performance benefits when
compared with the same object implemented using state[16

machine replication.
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