
DepSpace: A Byzantine Fault-Tolerant
Coordination Service

Alysson Neves Bessani†, Eduardo Pelison Alchieri‡,
Miguel Correia†, Joni da Silva Fraga‡

†LaSIGE, University of Lisbon, Lisbon, Portugal
‡DAS, Federal University of Santa Catarina, Florianópolis, Brazil

ABSTRACT
The tuple space coordination model is one of the most in-
teresting coordination models for open distributed systems
due to its space and time decoupling and its synchronization
power. Several works have tried to improve the dependabil-
ity of tuple spaces through the use of replication for fault tol-
erance and access control for security. However, many prac-
tical applications in the Internet require both fault tolerance
and security. This paper describes the design and implemen-
tation of DepSpace, a Byzantine fault-tolerant coordination
service that provides a tuple space abstraction. The service
offered by DepSpace is secure, reliable and available as long
as less than a third of service replicas are faulty. Moreover,
the content-addressable confidentiality scheme developed for
DepSpace bridges the gap between Byzantine fault-tolerant
replication and confidentiality of replicated data and can be
used in other systems that store critical data.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed Systems; D.4.5 [
Software]: Operating Systems—Reliability ; D.4.6 [Soft-
ware]: Operating Systems—Security and Protection

General Terms
Algorithms, Design, Reliability, Security

Keywords
Byzantine Fault Tolerance, Confidentiality, Tuple Space

1. INTRODUCTION
Open distributed systems are a fundamental component

of our Information Society. These systems are typically com-
posed by an unknown number of processes running in het-
erogeneous hosts connected by heterogeneous networks like
the Internet. Albeit many distributed applications are still

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’08, April 1–4, 2008, Glasgow, Scotland, UK.
Copyright 2008 ACM 978-1-60558-013-5/08/04 ...$5.00.

programmed using simple primitives like TCP/IP sockets
and remote procedure calls, there is an important demand
for more powerful tools that allow the design of complex
applications with low time-to-market. This requirement is
more stringent due to the need of guaranteeing tolerance to
disconnections, recuperation from server crashes and secu-
rity against malicious actions.

The tuple space coordination model, originally introduced
in the Linda programming language [22], relies on a shared
memory object called a tuple space to support coordina-
tion between distributed processes. Tuple spaces can sup-
port communication that is decoupled in time – processes
do not have to be active at the same time – and space –
processes do not need to know each others locations or ad-
dresses [11], providing some level of synchronization at the
same time. The tuple space is a kind of storage that stores
tuples, i.e., finite sequences of values. The operations sup-
ported are essentially inserting a tuple in the space, reading
a tuple from the space and removing a tuple from the space.
The programming model supported by tuple spaces is re-
garded as simple, expressive and elegant, being supported
by middleware platforms like Sun’s JavaSpaces [39] and
IBM’s TSpaces [30].

There has been some research on fault-tolerant [5, 43] and
secure tuple spaces [9, 33, 41], but these works have a nar-
row focus in two senses: they consider only simple faults
(crashes) or simple attacks (invalid access); and they are
about either fault tolerance or security. The present paper
goes one step further by investigating the implementation
of secure and fault-tolerant tuple spaces. The solution is in-
spired on a current trend in systems dependability that ap-
plies fault tolerance concepts and mechanisms in the domain
of security, intrusion tolerance (or Byzantine fault tolerance)
[21, 14, 40]. The proposed tuple space is not centralized but
implemented by a set of tuple space servers. This set of tuple
spaces forms a tuple space that is dependable, meaning that
it enforces the attributes of reliability, availability, integrity
and confidentiality [4], despite the occurrence of Byzantine
faults, like attacks and intrusions in some servers.

The implementation of a dependable tuple space with the
above-mentioned attributes presents some interesting chal-
lenges. Our design is based on the state machine approach, a
classical solution for implementing Byzantine fault-tolerant
systems [35]. However, this approach does not guarantee
the confidentiality of the data stored in the servers; quite
on the contrary, replicating data in several servers is usually
considered to reduce the confidentiality since the potential
attacker has more servers where to attempt to read the data,

instead of just one. Therefore, combining the state machine
approach with confidentiality is a challenge that has to be
addressed. A second challenge is intrinsically related to the
tuple space model. Tuple spaces resemble associative mem-
ories: when a process wants to read a tuple, it provides a
template and the tuple space returns a tuple that “matches”
the template. This match operation involves comparing data
in the tuple with data in the template, but how can this
comparison be possible if we want to guarantee confidential-
ity and the way to guarantee this property is by encrypting
data? In this paper we present DepSpace, a dependable
tuple space system that addresses these challenges using a
secret sharing scheme together with standard cryptographic
primitives in such a way that it guarantees that a tuple
stored in the system will have its content revealed only to
authorized parties. The proposed confidentiality scheme for
content-based storage developed for DepSpace is novel and
interesting by itself since it bridges the gap between con-
fidentiality of replicated data and Byzantine fault-tolerant
(BFT) replication and can be used in other systems that
require confidentiality.

Algorithms and services based on a dependable tuple space
like DepSpace are well suited for coordination of non-trusted
processes in practical dynamic systems. Instead of trying to
compute some distributed coordination task considering a
dynamic distributed system, we pursue a more pragmatic
approach where a tuple space is deployed on a fixed and
small set of servers and is used by an unknown, dynamic
and unreliable set of processes that need to coordinate them-
selves. An example of scenario where this kind of system can
be deployed are peer-to-peer systems and infrastructured
wireless networks.

This paper has three main contributions. The first is
the design and implementation of a dependable intrusion-
tolerant tuple space1. This design involves a non-trivial sys-
tematic combination of security and fault tolerance mecha-
nisms: BFT state machine replication, space and tuple level
access control, and cryptography. The second contribution is
the development of a content-aware confidentiality scheme
for replicated data that can be combined with any BFT
replication protocols to ensure that critical data stored in a
BFT service will not be revealed as long as at most f out
of n servers are compromised. This is the first work to inte-
grate BFT state machine replication with a confidentiality
scheme. The last contribution is the development of several
generic services – lock service, partial barrier, secret storage
and name service – with DepSpace, showing the simplic-
ity of developing distributed systems abstractions using the
tuple space model.

1.1 Why a dependable tuple space?
Since our objective with DepSpace is to provide a coordi-

nation infrastructure for dynamic and untrusted distributed
systems, the attentive reader may ask: Why someone would
use a service like a tuple space for coordinating processes,
instead of using a fault-tolerant synchronization library that
implement consensus and other distributed algorithms? A
recent paper about Google’s Chubby lock service lists sev-
eral reasons to have a coordination service instead of a dis-
tributed algorithm implemented in a client library [8]. Some
of these reasons and others specific for BFT systems are:

1Freely available at the DepSpace project homepage: http:
//www.navigators.di.fc.ul.pt/software/depspace.

1. Ease of use: in many ways, using a service with a well
defined interface is easier than integrating a library
with a system. The use of a service makes easier to
convert programs that initially are not fault-tolerant
into dependable ones [8].

2. Less resources: encapsulating the replication and syn-
chronization requirements in a service, namely, the al-
gorithm’s required number of replicas and/or special-
ized components, makes the applications that use the
service simpler and less expensive in terms of resources
used. Moreover, if the service is shared by several ap-
plications, its cost is also shared.

3. Ease of Management: the“Achilles’ heel”of Byzantine
fault tolerance is the assumption of fault independence
(or the non existence of correlated failures in the sys-
tem) and how to cover this assumption in a real system
[34]. Encapsulating the core of the synchronization
protocols in a small set of diverse, well-protected and
well-managed servers that implement the coordination
service makes it easier to achieve fault independence
for critical services than assuming that each and every
process of an open system fails independently one from
another.

At this point, another question may be asked: Why a tu-
ple space instead of some other more popular abstraction?
In this paper we argue that the tuple space abstraction is
adequate for dealing with any coordination task required in
distributed systems due to its simplicity and generality. At
least three theoretical results support this statement. First,
the set of operations supported by the tuple space model is
known to be a Turing powerful language [10], which means
that any sequential program can be expressed using them.
Second, if augmented with a special operation (conditional
atomic swap, cas), the tuple space is an universal shared
memory object [26, 37], i.e., it has synchronization power to
solve the important consensus problem between any number
of processes and, consequently, to emulate any other shared
memory object or synchronization primitive [26]. Third,
it was shown that in an untrusted and fault-prone envi-
ronment in which processes are subject to Byzantine fail-
ures, an augmented tuple space with a policy-enforcement
mechanism called PEATS (Policy-Enforced Augmented Tu-
ple Space), from which DepSpace is an instantiation, can
be orders of magnitude more efficient than other abstrac-
tions like read/write storage and sticky bits protected by
access control lists [6]. Besides this theoretical expressive-
ness and efficiency, from a practical point of view there are
three other motivations for using tuple spaces: simplicity
as only four basic operations (and some variants) are sup-
ported; content-addressable, i.e., the fact that tuples are ac-
cessed by their contents gives a high flexibility to the model;
decoupled communication, the time and space decoupling of
the tuple space model are extremely attractive for dynamic
distributed systems.

2. DEPENDABLE TUPLE SPACE
A tuple space can be seen as a shared memory object that

provides operations for storing and retrieving ordered data
sets called tuples. A tuple t in which all fields have a defined
value is called an entry. A tuple with one or more undefined
fields is called a template (usually denoted by a bar, e.g.,

t). An undefined field is represented by a wild-card (‘*’).
Templates are used to allow content-addressable access to
tuples in the tuple space. An entry t and a template t match
if they have the same number of fields and all defined field
values of t are equal to the corresponding field values of t.
For example, template 〈1, 2, ∗〉 matches any tuple with three
fields in which 1 and 2 are the values of the first and second
fields, respectively. A tuple t can be inserted in the tuple
space using the out(t) operation. The operation rd(t) is used
to read tuples from the space, and returns any tuple in the
space that matches the template t. A tuple can be read and
removed from the space using the in(t) operation. The in
and rd operations are blocking. Non-blocking versions, inp
and rdp, are also usually provided [22].

There are two other extensions provided by modern tuple
space implementations [23, 39, 30]: multiread operations,
versions of rd , in, rdp and inp in which all (or a given max-
imum number of) tuples that match a given template are
returned; and tuple leases, a validity time for inserted tu-
ples such that the tuple is removed from the space after this
time.

This paper presents the implementation of a policy-en-
forced augmented tuple space (PEATS) [6] so we provide an-
other operation usually not considered by most tuple space
works: cas(t, t) (conditional atomic swap) [5, 37]. This op-
eration works like an indivisible execution of the code: if
¬rdp(t) then out(t) (t is a template and t an entry). The
operation inserts t in the space iff rdp(t) does not return
any tuple, i.e., if there is no tuple in the space that matches
t2. The cas operation is important mainly because a tuple
space that supports it is capable of solving the consensus
problem [37], which is a building block for solving many
important distributed synchronization problems like atomic
commit, total order multicast and leader election. Table 1
presents a summary of the tuple space operations supported
by DepSpace.

A tuple space is dependable if it satisfies the dependabil-
ity attributes [4]. The relevant attributes in this case are:
reliability (the operations on the tuple space have to be-
have according to their specification), availability (the tuple
space has to be ready to execute the operations requested),
integrity (no improper alteration of the tuple space can oc-
cur), and confidentiality (the content of tuple fields can not
be disclosed to unauthorized parties).

The difficulty of guaranteeing these attributes comes from
the occurrence of faults, either due to accidental causes (e.g.,
a software bug that crashes a server) or malicious causes
(e.g., an attacker that modifies some tuples in a server).
Since it is difficult to model the behavior of a malicious ad-
versary, intrusion-tolerant systems assumes the most generic
class of faults – arbitrary or Byzantine faults. In this sce-
nario, a tuple space built using BFT state machine replica-
tion (e.g., [1, 14, 18, 28]) together with a simple access con-
trol scheme can provide all dependability attributes except
confidentiality. Therefore, most research in DepSpace was
related to the problem of maintaining tuple confidentiality
in presence of faulty servers.

2Notice that the meaning of the tuple space cas operations
is the opposite of the well known register compare&swap
operation, where the object state is modified if its current
state is equal to the value compared.

Oper. Description

out(t) inserts tuple t in the space

rdp(t)
reads a tuple that matches t from the space
(returning true); returns false if no tuple is
found

inp(t)
reads and removes a tuple that matches t
from the space (returning true); returns
false if no tuple is found

rd(t)
reads a tuple that matches t from the space;
stays blocked until some matching tuple is
found

in(t)
reads and removes a tuple that matches t
from the space; stays blocked until some
matching tuple is found

cas(t, t)
if there is no tuple that matches t on the
space, inserts t and returns true; otherwise
returns false

Table 1: DepSpace supported operations.

3. SYSTEM MODEL
The system is composed by an unlimited set of clients

which interact with a set of n servers that implement a de-
pendable tuple space with the properties described in the
previous section. We consider that each client and each
server have an unique identifier (id).

All communication between clients and servers is made
over reliable authenticated point-to-point channels. These
channels can be implemented using TCP sockets and mes-
sage authentication codes (MACs) with session keys under
the common assumption that the network can drop, corrupt
and delay messages, but can not disrupt communication be-
tween correct processes indefinitely.

The dependable tuple space does not require any explicit
time assumption. However, since we use a total order multi-
cast primitive based on the Byzantine Paxos consensus pro-
tocol [14, 32, 45] to ensure that all replicas execute the same
sequence of operations, an eventually synchronous system
model [19] is required for liveness.

We assume that an arbitrary number of clients and a
bound of up to f servers can be subject to Byzantine failures,
i.e., they can deviate arbitrarily from the algorithm they are
specified to execute and work in collusion to corrupt the sys-
tem behavior. Our architecture requires n ≥ 3f + 1 servers
to tolerate the aforementioned f faulty servers. We assume
fault independence for servers, i.e., that the failures of the
servers are uncorrelated. This assumption can be substan-
tiated in practice using several types of diversity [34].

4. ARCHITECTING DEPSPACE
The architecture of the dependable tuple space consists in

a series of integrated layers that enforce each one of the de-
pendability attributes listed in Section 2. Figure 1 presents
the DepSpace architecture with all its layers.

On the top of the client-side stack is the proxy layer, which
provides access to the replicated tuple space, while on the
top of the server-side stack is the tuple space implemen-
tation (a local tuple space). The communication follows
a scheme similar to remote procedure calls. The applica-
tion interacts with the system by calling functions with the

� � � � � � � � � � � 	 �

� � � � �
 � � � � �
 � � �

	 � �
 � � � � � � �

� � � � � � � � � � � 	 �

� �
 � � � � � � � � 	 � � � � � �

� � � � �
 � � � � �
 � � �

	 � �
 � � � � � � �

� � � � � 	 ��
 � � � � � � 	 � � 	

� � �
 � � � � � � �

� �

� 	 � � �

Figure 1: DepSpace architecture

usual signatures of tuple spaces’ operations: out(t), rd(t),
. . . These functions are called on the proxy. The layer below
handles tuple level access control (Section 4.3). After, there
is a layer that takes care of confidentiality (Section 4.2) and
then one that handles replication (Section 4.1). The server-
side is similar, except that there is a new layer to check the
access policy for each operation requested (Section 4.4).

We must remark that not all of these layers must be used
in every tuple space configuration. The idea is that the lay-
ers are added or removed according to the quality of service
desired for the tuple space.

4.1 Replication
The most basic mechanism used in DepSpace is replica-

tion: the tuple space is maintained in a set of n servers in
such a way that the failure of up to f of them does not im-
pair the reliability, availability and integrity of the system.
The idea is that if some servers fail, the tuple space is still
ready (availability) and the operations work correctly (reli-
ability and integrity) because the correct replicas manage to
overcome the misbehavior of the faulty ones. A simple ap-
proach for replication is state machine replication [35]. This
approach guarantees linearizability [27], which is a strong
form of consistency in which all replicas appear to take the
same sequence of states.

The state machine approach requires that all replicas (i.)
start in the same state and (ii.) execute all requests in the
same order [35]. The first point is easy to ensure, e.g., by
starting the tuple space with no tuples. The second requires
a fault-tolerant total order multicast protocol, which is the
crux of the problem. The state machine approach also re-
quires that the replicas are deterministic, i.e., that the same
operation executed in the same initial state generates the
same final state in every replica. This implies that a read
(or removal) in different servers in the same state (i.e., with
the same set of tuples) must return the same response.

The protocol for replication is very simple: the client sends
an operation request using total order multicast and waits
for f+1 replies with the same response from different servers.
Since each server receives the same set of messages in the
same order (due to the total order multicast), and the tuple
space is deterministic, there will be always at least n− f ≥
2f + 1 correct servers that execute the operation and return
the same reply.

4.2 Confidentiality
Replication is often seen not as a helper but as an im-

pediment for confidentiality. The reason is easy to under-
stand: if secret information is stored not in one but in sev-
eral servers, it probably becomes easier for an attacker to
get it, not harder. Any solution that requires key sharing
between clients contradicts the anonymity property of the
tuple space model [22], which states that communicating
processes do not need to know each other. Since we assume
Byzantine failures, no server individually can have access to
the tuples, so the solution must rely on a set of servers.

The basic tool we use to implement confidentiality for
DepSpace is a special kind of secret sharing scheme [38].
In a secret sharing scheme, a special party called dealer dis-
tributes a secret to n players, but each player gets only a
share of this secret. The basic property of the scheme is
that it is needed at least f + 1 ≤ n different shares of a
secret to recover it and no information about the secret is
disclosed with f or less shares. More specifically, our solu-
tion is based on a (n, f+1)–publicly verifiable secret sharing
scheme (PVSS) [36]. Each server i has a private key xi and a
public key yi. The clients know the public keys of all servers.
Clients play the role of the dealer of the scheme, encrypting
the tuple with the public keys of each server and obtaining
a set of tuple shares (function share of the PVSS scheme).
Any tuple can be decrypted with f + 1 shares (function
combine), therefore a collusion of malicious servers can not
disclose the contents of confidential tuple fields (we assume
at most f servers can be faulty). A server can use a func-
tion prove to build a proof that the share that it is giving
to the client is correct. The PVSS scheme also provides two
verification functions, one for each server to verify the share
it received from the dealer (function verifyD) and another
for the client/combiner to verify if the shares collected from
servers are not corrupted (function verifyS).

The confidentiality scheme has also to handle the problem
of matching encrypted tuples with templates. When a client
inserts a tuple in the space, it chooses one of three types of
protection for each tuple field:

• public: the field is not encrypted so it can be compared
arbitrarily but its content may be disclosed if a server
is faulty;

• comparable: the field fi is encrypted but a crypto-
graphic hash of the field obtained with a collision-
resistant hash function H(fi) is also stored;

• private: the field is encrypted and no hash is stored so
no comparisons are possible.

The type of protection for each field of a tuple is defined
in a protection type vector. Given a tuple t, we define its
protection type vector vt as a sequence of protection types,
one for each field of t. The possible values for the fields of
a protection type vector are PU, CO and PR, indicating if
the corresponding tuple field is public, comparable or pri-
vate, respectively. Therefore, each field of vt describes the
protection type required by the corresponding field of t. For
example, if a tuple t = 〈7, 8〉 has a protection type vector
vt = 〈CO,PR〉, we known that the first field is comparable
and that the second field is private.

The idea behind comparable fields is to allows tuple match-
ing without disclosing tuple contents. For example, suppose

client c1 wants to insert in the space a tuple t with a sin-
gle comparable field f1. c1 sends t encrypted and H(f1) to
the servers. Suppose later a client c2 requests rd(t) and the
tuple space needs to check if t and t match. c2 calculates
H(f1) and sends it to the tuple space that verifies if this
hash is equal to H(f1). This scheme works for equalities
but clearly does not work with more complex comparisons.
The scheme has another limitation. Although hash func-
tions are unidirectional, if the range of values that a field
can take is known and limited, then a brute-force attack
can disclose its content. Suppose a field takes 8 bit values.
An attacker can simply calculate the hashes of all 28 pos-
sible values to discover the hashed value. This limitation
is a motivation for not using typed fields in a dependable
tuple spaces. Also, the limitation of comparable fields is the
reason why we also define private fields: no hash is sent to
the servers so comparisons are impossible, but their content
can not be disclosed.

4.2.1 Protocol
The confidentiality scheme is implemented by the confi-

dentiality layers in the client and server sides. Before pre-
senting the algorithms to insert and retrieve tuples, we have
to define the concept of fingerprint. Given a tuple t =
〈f1, ..., fm〉 and a protection type vector vt = 〈p1, ..., pm〉,
the fingerprint th = 〈h1, ..., hm〉 of t is calculated calling
function fingerprint(t, vt) = th. This function calculates each
field of the fingerprint using:

hi =

8><>:
∗ if fi = ∗
fi if vi = PU
H(fi) if vi = CO
PR if vi = PR

The fingerprint function ensures that if a tuple t matches
a template t, the fingerprint th of t matches the fingerprint
th of t if both are generated using the same protection type
vector vt. Consequently, there should be a vector vt that
must be known (and used) by all clients that insert and
read certain kinds of tuple.

Besides the PVSS and the hash function, the confiden-
tiality scheme uses a symmetric cryptography scheme and
a digital signature scheme. The cryptography scheme pro-
vides two functions E(k, v) (encrypt) and D(k, v′) (decrypt).
The signature scheme includes a signing function and a ver-
ification function that use pairs of public and private keys.
We assume that each correct server has a private key know
only by itself, and that its public key is known by all client
processes and servers. We represent a message signed by a
server i with a subscript σi.

A fundamental idea of the confidentiality scheme is that,
on the contrary to a straightforward implementation of a de-
pendable tuple space using BFT state machine replication,
the replicas do not have the same state since each server
stores the fingerprint of the tuple, a share of the tuple and
the public data generated by the PVSS scheme. This data
set is called the tuple data and our scheme ensures that all
DepSpace replicas have equivalent states, i.e., that for each
tuple inserted in the tuple space, each correct replica stores
some tuple data in its local tuple space. This is ensured
using the total order multicast provided by the replication
layer.

Tuple insertion. Algorithm 1 presents the procedure for
storing a tuple with confidentiality. All shares are sent en-

Algorithm 1 Storing tuple t (client c and server i)

{Client}

C1. Client c generates n shares t1, ..., tn of t and the proof of
correctness PROOFt using the function share(y1, ..., yn, t).

C2. c computes the fingerprint th of the tuple t using the pro-
tection vector vt calling fingerprint(t, vt).

C3. c encrypts each share ti generating the encrypted share t′i
with the symmetric shared key kc,i between client c and
replica i using E(kc,i, ti) = t′i.

C4. c executes the procedure for total order multicast the mes-
sage 〈STORE, t′1, ..., t′n, th,PROOFt 〉 to the n servers.

C5. c waits for acknowledgements from f + 1 different servers.

{Server}

S1. When a server i receives the message
〈STORE, t′1, ..., t′n, th,PROOFt 〉 from client c, it first
retrieves its share executing D(kc,i, t

′
i) = ti.

S2. i calculates PROOF it = prove(ti, xi,PROOFt) and store

the tuple data 〈ti, th,PROOF t,PROOF it, c〉.
S3. i sends an acknowledge to c.

crypted together with the tuple fingerprint and its validity
proof by the client using total order multicast. The encryp-
tion of each share ti addressed to server i is made through
symmetric cryptography, using the session key shared be-
tween the client c and the server i. Notice that all servers
will receive all encrypted shares, but each server will have
access only to its share, which is the only one it has a shared
key to decrypt.

Tuple reading/removal. Algorithm 2 presents the proce-
dure for reading a tuple. The same algorithm is executed for
removing the tuple, with the difference that the chosen tu-
ple data is removed in step S1. To access a tuple, the client
sends the fingerprint of the template and then waits for en-
crypted replies from the servers containing the same tuple
fingerprint that matches the template fingerprint sent, the
share of the server for this tuple and its corresponding proof
of validity (produced by the server). Each reply is encrypted
by the servers with the session key shared between the client
and the server to avoid eavesdropping on the replies. Addi-
tionally, the replies from the servers can be signed to make
the client capable of cleaning invalid tuples from the space
(see below). The client decrypts the received shares, veri-
fies their validity, and combines f + 1 of them to obtain the
stored tuple.

Repair procedure. Nothing prevents a malicious client from
inserting a tuple with a fingerprint that does not correspond
to it. Consequently, as show in step C5 of Algorithm 2, after
obtaining a stored tuple, the client has to verify if the tuple
corresponds to the fingerprint. If it does not correspond,
the client must clear the tuple from the space (if it is not
removed yet) and reissue the operation to the space. This
repair procedure is described in Algorithm 3. The cleaning
of the tuple is made in two steps: (1.) the client sends all
replies received to the servers to prove that the stored tu-
ple is invalid; and (2.) if the replies were produced by the
servers and the tuple returned does not correspond to the
fingerprint, the servers remove the tuple from their local tu-

Algorithm 2 Reading template t (client c and server i)

{Client}

C1. c computes the fingerprint th of the template t using the
protection type vector vt executing fingerprint(t, vt).

C2. c executes the total order multicast primitive to send a
message 〈READ, th〉 to the servers.

C3. c waits for a set containing at least f + 1 valid replies
from different servers. A reply mi from server i is valid if
D(kc,i, mi) = 〈TUPLE, th,PROOF t, ti,PROOF it〉σi with
the same th and PROOF t fields and, for each reply from a
server i, verifyS(ti, yi,PROOF t,PROOF it) is true.

C4. c combines the f + 1 correct shares received calling
combine(t1, ..., tf+1) and obtains the tuple t.

C5. c verifies if th = fingerprint(t, vt). If true, the operation is
finished, otherwise the repair procedure is called and the
operation is repeated.

{Server}

S1. When receiving 〈READ, th〉 from client c, a
server i chooses deterministically some tuple data
〈ti, th,PROOF t,PROOFst , c

′〉 such that th matches th.

S2. i sends the signed and encrypted message
E(kc,i, 〈TUPLE, th,PROOF t, ti,PROOF it〉σi) to c
and stores the id of the client c′ that inserted the tuple
read by c together with the hash of the tuple fingerprint in
last tuple[c].

ple space. Furthermore, the client that inserted the invalid
tuple is put on a black list and its further requests ignored.
This ensures that a malicious client can not insert tuples
after some of its invalid insertions have been cleaned.

Algorithm 3 Tuple space repair (client c and server i)

{Client}

C1. The set S of signed TUPLE messages that the shares are
used to build the tuple t (the invalid tuple) are used to
justify the tuple space repairing. c calls the total order
multicast primitive to send the message 〈REPAIR, S〉 to
all servers.

{Server}

S1. When server i receives 〈REPAIR, S〉 from client c it ver-
ifies if the repair is justified: (i.) all messages in S are
correctly signed; (ii.) all messages in S have the same th
and PROOF t; and (iii.) the fingerprint of the tuple t which
was built from the shares from the messages in S is different
from th.

S2. If the tuple data corresponding to the invalid tuple is still
present in the tuple space of server i, it is deleted.

S3. Finally, server i adds the process that inserted the invalid
tuple in the space (it’s id was stored together with the in
last tuple[c]) in a black list and its future requests are ig-
nored.

4.2.2 Discussion
There are several comments that deserve to be made con-

cerning the proposed confidentiality scheme.

Linearizability. The confidentiality scheme weakens the se-
mantics of BFT state machine replication since it no longer
satisfies linearizability. The problem is that a malicious

client writing a data item can insert invalid shares in some
servers and valid shares in others, so it is not possible to
ensure that the same read operation executed in the same
state of the system will have the same result depending on
the f + 1 responses collected on step C3 of Algorithm 2, a
client can access a tuple or call the repair procedure. How-
ever, the confidentiality scheme ensures that this condition
is satisfied for all data items that have been inserted by cor-
rect processes.

Lazy recovery. The repair procedure uses a blacklist to en-
sure that a malicious client can not write data items after
some of their invalid writings have been recovered. This
means that the damage caused by malicious clients is re-
coverable and bounded. A question one can ask is that if
it is possible to integrate the fingerprint calculation inside
the PVSS scheme in such a way that the servers can verify
if the share delivered to them corresponds to the data item
that originated the fingerprint without revealing the whole
data item to them. We investigated this question and the
answer is no for the general case. The PVSS scheme requires
a symmetric cryptography algorithm in order to be used to
share arbitrary secrets (like tuples) [36]. This fact, together
with the hash function used to compute fingerprints and re-
quired by the PVSS scheme means that, in order for such
verification to be executed in the servers, it would be needed
that functions share (PVSS shares’ generation function), E
(encryption function) and H (hash function) has some math-
ematical relation such as share(v) = E(v) + H(v). Clearly,
there is no such relationship for arbitrary functions share, E
and H. We do not know if there is some set of cryptographic
functions with these properties but, even if there are, we
believe that a lazy and recover-oriented approach like the
one used in our scheme is efficient in the common case (no
malicious faults) since the recover is executed only when
data items written by malicious processes are read from the
system (once per invalid data item).

Generality of the scheme. For space constraints and to
maintain the focus of the paper, we chose to present the
confidentiality scheme in terms of tuples and tuple spaces.
However, the presented scheme can be used (with little mod-
ification) in any content-based BFT data store built above a
BFT replication protocol. The key modification that must
be made to implement this scheme in other data stores con-
cerns the fingerprint function. This function is used to gen-
erate the “address information” of data items and the “query
information” used for accessing these items. In adapting the
scheme for other data stores, this function must be changed
to ensure that a query can find a data item that matches its
condition.

4.3 Access Control
Access control ia a fundamental security mechanism for

tuple spaces [9]. We do not make a decision about the spe-
cific access control model to be used, since the better one
depends on the application. For instance, access control lists
(ACLs) might be used for closed systems, but some type of
role-based access control (RBAC) might be more suited for
open systems. To accommodate these different mechanisms
in our dependability architecture, access control mechanisms
are defined in terms of credentials: each tuple space TS has
a set of required credentials CTS and each tuple t has two

sets of required credentials Ctrd and Ctin. To insert a tuple
in TS, a client must provide credentials that match CTS .
Analogously, to read (resp. remove) t from a space, a client
must provide credentials that match Ctrd (resp. Ctin).

The credentials needed for inserting a tuple in TS are
defined by the administrator that configures the tuple space.
If ACLs are used, CTS is the set of processes allowed to
insert tuples in TS and the Ctrd and Ctin associated with t
would be the sets of processes allowed to read and remove
the tuple, respectively.

In our architecture, the access control is implemented by
the access control layers in the clients and servers (Figure 1).
In the client side, when an out or a cas operation are invoked,
the associated credentials Ctrd and Ctin are appended to the
tuple. In the server side, it is verified if the operation can
be executed. If the operation is the insertion of a tuple
t, the client credentials appended to t must be sufficient
for inserting t in the space. If the requested operation is a
read/remove, the credentials associated with the template t
passed must be sufficient for executing the operation.

4.4 Policy Enforcement
The idea behind policy enforcement is that the tuple space

is governed by a fine-grained access policy [6]. This kind
of policies takes into account three types of parameters to
decide if an operation is approved or denied: identifier of the
invoker; operation and arguments; and the tuples currently
in the space.

A tuple space has a single access policy. It should be de-
fined during the system setup by the system administrator.
Whenever an operation invocation is received in a server,
there is a verification if the operation satisfies the access
policy of the space in the policy enforcement layer. Correct
servers correctly verify the access policy, while faulty servers
can behave arbitrarily. The verification itself is a simple lo-
cal evaluation of a logical condition expressed in the rule of
the operation invoked. When an operation is rejected the
server returns an error code to the invoker. The client ac-
cepts the rejection if it receives f+1 copies of the same error
code.

4.5 Properties and Correctness
In this section we present a sketch of the main safety prop-

erties satisfied by our design. The liveness of the architecture
is satisfied as long as the total order multicast is live.

The DepSpace architecture ensures four safety proper-
ties. First, the replication layer ensures that every tuple
space operation issued by a correct client is executed in ac-
cordance with the formal linearizable tuple space specifica-
tion [7]. This happens because the total order multicast
ensures that all operations are executed in the same order
by all replicas, and, together with the determinism of the
tuple space, makes all replicas execute the same state tran-
sitions. The second property is due to the confidentiality
and access control layers and can be summarized as follow-
ing: given a tuple t inserted in a tuple space with required
access credentials Ctrd and Ctin, it is infeasible for an adver-
sary that does not have credentials that satisfy Ctrd or Ctin to
disclose the contents of comparable or private fields as long
as at most f servers are faulty. This property holds mainly
because the PVSS scheme requires f + 1 tuple shares to re-
construct a tuple. Since we assume at most f faulty servers,
no correct server will send the tuple share to a client that did

not present credentials that match the required credentials
for accessing the tuple. The third safety property concerns
the amount of visible damage that a faulty client can do is
recoverable and bounded. By visible damage we mean the
insertion of an invalid tuple (i.e., a tuple that can not be de-
crypted or that is different from the fingerprint) that is read
by a correct client. Visible damage is recoverable because,
independently of the problem of the invalid tuple inserted
by the malicious client, a correct server only stores the tuple
data associated with it if it is delivered by the total order
multicast protocol (Algorithm 1, steps S1 and S2). This im-
plies that all correct servers will store some tuple data for
the tuple. When this tuple is read by a correct client (i.e.,
it is passed a template fingerprint that matches the tuple
fingerprint), the client executes the verification of tuple con-
sistency (Algorithm 2, steps C5), and when it fails, invokes
the repair procedure. A repair issued by a correct client will
be accepted by correct servers that will remove the tuple
from the space (if it was not removed) and the client that
inserted this tuple (stored in the last tuple variable) is put
in a black list, and has its subsequent requests ignored. This
fact proves also that the visible damage is bounded: after
the tuple space is repaired from an invalid tuple, the faulty
client that inserted this tuple can not insert more invalid
tuples on the system. The final property is that every op-
eration is executed on a given tuple space if and only if this
operation is in accordance with the policy defined for this
space. This property is satisfied because the policy enforce-
ment layer approves or denies the operation in each correct
replica and since the state of the servers are equivalent, this
layer will give the same result on each correct replica.

4.6 Optimizations
This section presents a set of optimizations that can be

applied to the basic DepSpace protocols to improve the
performance of the system.

Read-only operations. An optimization of the rd/rdp op-
erations that can be made in the replication layer is to try
to execute them first without total order multicast and wait
for n−f responses. If all responses are equal (or equivalent,
in case the confidentiality layer is used), the returned value
is the result of the operation, otherwise the normal protocol
must be executed. This optimization is quite effective when
there is no faulty servers in the system.

Avoiding verification of shares. One of the most costly
steps of the confidentiality scheme is the share verification
operation executed by clients when a tuple is read/removed
(Algorithm 2, step C3). If the tuple is inserted by a correct
client and there are no faulty servers, the first f + 1 replies
received by a reading client will contain correct shares that
suffice to generate the original tuple. So, we change the al-
gorithm to make the client first try to combine the shares
without verifying them and, if the recovered secret is not
the tuple corresponding to the stored fingerprint, the nor-
mal algorithm is used (i.e., the shares are verified and only
f + 1 correct shares are used to recover the tuple). This op-
timization drastically reduces the cryptographic processing
time required for the client read a tuple, in the fault-free
case.

Laziness in share extraction/proof generation. When a
tuple is inserted, the servers execute steps S1-S2 of Algo-
rithm 1 to decrypt their share and generate the correspond-
ing proofs. However, Section 6 shows that tuple insertion
involves the most expensive cryptographic operations. In
order to alleviate this processing, we delay this operation
until the tuple is first read.

Signatures in tuple reading. Algorithm 2 shows that the
responses for read operations have to be signed because these
messages can be used as justifications in the repair proce-
dure. Since the processing cost of asymmetric cryptography
is high, instead of signing all responses, the servers can first
send them without signatures and the clients request signed
responses if they find that the read tuple is invalid. Since
it is expected that invalid tuples will be rare, in most cases
digital signatures will not be used.

5. DEPSPACE IMPLEMENTATION
DepSpace was implemented in the Java programming

language, and at present it is a simple but fully functional
dependable tuple space. The system has about 12K lines of
code, most of them on the replication (5K) and confidential-
ity (2.5K) layers. Here we present some interesting points
about its implementation.

Replication protocol. The BFT total order multicast al-
gorithm implemented is based on the Paxos at War pro-
tocol [45] that makes consensus in two communication steps
as long as there are no faulty servers in the system, which
is optimal [32]. The protocol is modified to work as a to-
tal order multicast following ideas of PBFT [14]. There are
two important differences between our protocol and PBFT,
though: (1.) it does not use checkpoints but works under the
assumption of authenticated reliable communication (check-
points can be implemented to deal with cases where these
channels are disrupted); and (2.) it does not employ au-
thenticators (i.e., MAC vectors) [14] in its critical path but
only MACs, resulting in much less cryptographic processing
in synchronous executions with correct leaders (from 3 + 8f
[28] to 4 MACs per consensus executed on the bottleneck
server). Two common optimizations are implemented in the
total order protocol: agreement over hashes (the consensus
protocol is executed using message hashes instead of full
messages) and batch agreement (a consensus protocol is ex-
ecuted to order a batch of messages, instead of just one).

Cryptography. Authentication was implemented using the
SHA-1 algorithm for producing HMACs (providing an ap-
proximation of authenticated channels on top of Java TCP
Sockets). SHA-1 was also used for computing the hashes.
For symmetric cryptography we employed the 3DES algo-
rithm while RSA with exponents of 1024 bits was used for
digital signatures. All the cryptographic primitives used in
the prototype were provided by the default provider of ver-
sion 1.5 of JCE (Java Cryptography Extensions). The only
exception was the PVSS scheme, which we implemented fol-
lowing the specification in [36], using algebraic groups of 192
bits (more than the 160 bits recommended). This implemen-
tation makes extensive use of the BigInteger class, provided
by the Java API, which provides several utility methods for
implementing cryptography.

Tuples and tuple space. All client-side (resp. server side)
layers in DepSpace provide the same interface to the layer
above (resp. below). Tuples are represented by a common
tuple class and all fields are represented as generic objects
to simplify the design (fields are not typed). DepSpace
supports multiple logical tuple spaces with different config-
urations. Therefore, it provides an administrative interface
for creating, destroying and managing logical tuple spaces.

Serialization. During DepSpace’s development we discov-
ered that the default Java serialization mechanism was very
inefficient, specially when the confidentiality layer was en-
abled. To overcome this, we implemented serialization meth-
ods for all classes that have to be serialized using the java.

io.Externalizable Java interface, decreasing all message
sizes significatively. For example, the STORE message (step
C4 of Algorithm 1) for a 64-byte tuple with four compara-
ble fields has 2313 bytes when transformed using standard
Java serialization. The main problem is that the BigIn-

teger class breaks 192 bits numbers in many fields, which
makes the serialized version of this class much bigger than
24 bytes. Our custom serialization only stores 24 bytes for
each big integer, and thus improved the serialized form of
the described tuple from 2313 to 1300 bytes.

Access control. Our current implementation of the access
control layer is based on ACLs. We assume that each client
has an unique id (a 32 bit integer) that is obtained by a
server when the client establishes an authenticated channel
with it. When a logical space is created, the administrator
creates an ACL with the ids of the clients that can insert
tuples. When a tuple is inserted, it takes two ACLs that
define the clients that can read and remove it.

Policy enforcement. The DepSpace implementation re-
quires that the policy of the tuple space is passed as an
argument when the space is created. Currently, the system
accepts policies specified in the Groovy programming lan-
guage [17]. A policy is defined in a Groovy class and then
passed as a string to the servers. At a server, the string
is transformed in a binary Java class and instantiated as
a policy enforcer. Every time an operation is requested to
a server, an authorization method is called on the policy
enforcer. If the method returns true, the operation is exe-
cuted in the upper layer, otherwise access is denied. Notice
that after the script being processed during the tuple space
creation, its execution involves a normal Java method invo-
cation, i.e., no script interpretation is made. To ensure that
no malicious code will be executed by the script3, the class
loader used to instantiate the policy enforcer is protected by
a security manager that only gives it the right to read the
contents of the tuple space. No I/O and no external calls
can be executed by the script.

6. EXPERIMENTAL EVALUATION
We executed a set of experiments to assess the perfor-

mance of DepSpace under different conditions. We used
Emulab [42] to run the experiments, allocating 15 pc3000
machines and a 1Gbps switched network. The machines
were 3.0 GHz 64-bit Pentium Xeon with 2GB of RAM and

3For example, a System.exit(0) call that shutdowns the
server.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1024 256 64

La
te

nc
y

(m
s)

Tuple Size (bytes)

conf.
not conf.

giga

(a) Tuple insertion (out) latency.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1024 256 64

La
te

nc
y

(m
s)

Tuple Size (bytes)

conf.
not conf.

giga

(b) Tuple reading (rdp) latency.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1024 256 64

La
te

nc
y

(m
s)

Tuple Size (bytes)

conf.
not conf.

giga

(c) Tuple removal (inp) latency.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1024 256 64

T
hr

ou
gh

pu
t (

op
/s

eg
)

Tuple Size (bytes)

conf.
not conf.

giga

(d) Tuple insertion (out) throughput.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1024 256 64

T
hr

ou
gh

pu
t (

op
/s

eg
)

Tuple Size (bytes)

conf.
not conf.

giga

(e) Tuple reading (rdp) throughput.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1024 256 64

T
hr

ou
gh

pu
t (

op
/s

eg
)

Tuple Size (bytes)

conf.
not conf.

giga

(f) Tuple removal (inp) throughput.

Figure 2: DepSpace operations performance with (conf) and without (not-conf) confidentiality enabled for
different tuple sizes and n = 4. We report also performance values for a commercial non-fault-tolerant tuple
space (giga).

gigabit network cards. The network is emulated as a VLAN
configured in a Cisco 4509 switch with near zero latency.
The software installed on the machines was Red Hat Linux
6 with kernel 2.4.20 and Sun’s 32-bit JRE version 1.6.0 02.
All experiments were done with the Just-In-Time (JIT) com-
piler enabled, and run a warm-up phase to transform the
bytecode into native code. We concluded that JIT compila-
tion cuts down the cryptographic processing delays around
10 times.

Two logical tuple space configurations were deployed for
the experiments: the complete system with all layers (conf)
and the system with the confidentiality layer deactivated
(not-conf). We did not measure configurations with or with-
out policy enforcement and access control layers because
these layers do only modest local computations, which are
not significative when compared to replication and confiden-
tiality.

To better understand the costs of making the tuple space
model dependable, we compared the performance of our sys-
tem (DepSpace) with GigaSpaces XAP Community ver-
sion 6.0 (giga in the graphics) [23]. GigaSpaces is a com-
mercial highly-scalable production-level tuple space system
developed in Java that is used in mission critical appli-
cations. This version of GigaSpaces is implemented as a
non-replicated application server and thus does not toler-
ate faults. Neither the two configurations of DepSpace nor
GigaSpaces execute disk access during the experiments. Al-
though DepSpace does tolerates faults, all performance val-
ues were obtained in fault-free executions.

Figure 2 presents experimental results considering tuples
with 4 comparable fields, with sizes of 64, 256, and 1024

bytes, running on a system with 4 servers in the case of
DepSpace (tolerating 1 failure) or a single tuple space server
for GigaSpaces. We report latency and throughput values
for the main tuple space operations: tuple insertion (out),
tuple read (rdp), and tuple removal (inp). To execute la-
tency experiments, we deployed a client in one machine and
servers in other four (or one, in the case of GigaSpaces).
We executed each operation 1000 times and obtained the
mean time and standard deviation discarding the 5% values
with greater variance. To execute throughput experiments,
we deployed clients in one to ten machines executing opera-
tions on DepSpace (or GigaSpaces). We varied the number
of clients and measured the maximum throughput obtained
in each configuration.

The results presented in the figure show that out and inp
have almost the same latency on DepSpace when the con-
fidentiality layer is not used (Figures 2(a) and 2(c)). This is
mainly due to the latency imposed by the total order mul-
ticast protocol (about 3.5 ms). rdp, on the other hand, is
much more efficient (less than 2 ms) due to the optimiza-
tion presented in Section 4.6, which avoids running the to-
tal order multicast protocol in read-only operations (Figure
2(b)). The confidentiality scheme adds from 3 ms to 4 ms in
all operations. GigaSpaces latency is always less than 2 ms,
which is the same latency for the optimized tuple reading in
not-conf configurations.

From the latency results (Figures 2(a)-2(c)), it is clear
that the size of the tuple being inserted has almost no effect
on the latency experienced by the protocols. This happens
due to two implementation features: (i.) the BFT agree-
ment is made over message hashes; and (ii.) the secret

shared in the PVSS scheme is not the tuple, but a sym-
metric key used to encrypt the tuple. (i.) implies that it
is not the entire message that it ordered by the total order
multicast protocol, but only its hash, which always have the
same size. With feature (ii.) we can execute all the required
PVSS cryptography in the same, relatively small algebraic
field of 192 bits, which means that the tuple size has no ef-
fect in these computations and the use of the confidentiality
scheme implies almost the same overhead regardless of the
size of the tuple.

DepSpace provides about a third of out-throughput and
a half of inp-throughput, when compared with GigaSpaces
(a non-fault-tolerant tuple space). This is a consequence
of the maximum throughput attained by our BFT total or-
der multicast implementation. We believe that if more ag-
gressive BFT replication protocols are used (e.g., Zyzzyva
[28]), the attained throughput can be better. The confi-
dentiality scheme has little impact on DepSpace’s through-
put because most of the cryptographic processing happens
at the client side (see Table 2). Considering the perceived
rdp-throughput, both DepSpace configurations outperform
GigaSpaces. We suspect that this happens because we use
manual serialization, which is more efficient than standard
Java serialization, which is used in GigaSpaces.

The figure shows also that, even with large tuples, the
reduction in throughput is reasonably small, e.g., increasing
the tuple size 16 times causes a decrease of about 10% in the
system throughput. Therefore, the good throughput of the
system is due to the low processing required at server side
and the batch message ordering implemented in the total
order multicast protocol [14].

We do not report results for configurations with more than
four servers for two reasons. First, in our opinion it is cur-
rently infeasible to implement BFT systems with more repli-
cas due to the difficulty of justifying the fault-independence
assumption [34]. Second, the fault-scalability limitations of
the kind of replication protocol used by DepSpace are well
studied [1, 18, 28]. However, we present the cost of the most
important cryptographic operations used in the confidential-
ity scheme, for three different configurations of n and f in
Table 2.

Operation 4/1 7/2 10/3 Side

share 2.94 4.91 6.90 client
prove 0.47 0.49 0.48 server

verifyS 1.48 1.51 1.50 client
combine 0.12 0.14 0.23 client

RSA sign 9.79 server
RSA verify 0.52 client

Table 2: Cryptographic costs (in ms) of operations
used in the confidentiality scheme for different n/f
and a 64 bytes tuple and the side in which it is used.

The table shows several interesting issues. First, the op-
eration share is the only one that increases its costs sig-
nificantly as n increases in the system, but it is executed
at the client side. Second, almost all significant confiden-
tiality processing costs are at the client side. The small
share extraction cost (function prove) is the only crypto-
graphic processing at server side in the optimized protocol
(where RSA sign is not used). Moreover, it is executed only

once during a tuple lifetime. This shows that the confiden-
tiality scheme proposed in this paper is scalable, i.e., it is
not expected to have a significant impact on a BFT system
throughput. Third, all PVSS operations are less costly than
a standard 1024-bit RSA signature generation. This means
that our confidentiality scheme will not turn a system sig-
nificantly less responsive than secure systems that rely on
standard cryptographic primitives. Finally, since operation
verifyS must be executed at the client at least f + 1 times in
the non-optimized version of the read protocol (Algorithm
2, step C3), shows that our optimization to avoid this veri-
fication is crucial to the responsiveness of the system.

7. USING DEPSPACE
In this section we present the design of several services

that can be built over DepSpace. Due to space constraints,
we only sketch the design of these services, in order to give a
feeling of how to use our system to program useful abstrac-
tions. Other examples of how to build distributed systems
abstractions using tuple spaces can be found in [6, 9, 13, 23,
30, 33].

Partial barrier. A barrier is an abstraction accessed by
a set of distributed processes through an enter operation.
The processes stay blocked until all invoke this operation.
A partial barrier is a weaker abstraction in which it is not
required that all processes enter the barrier for the barrier
to be released [3]. This abstraction is more adequate for
dynamic and fault-prone environments.

With DepSpace, we implemented a partial barrier with
the same semantics as the one proposed in [3]. The idea is
very simple: to create a barrier, a tuple 〈BARRIER, N, P, I〉
defining the barrier’s name N , the set of processes that can
enter the barrier P and other info I (e.g., the percentage of
processes from P that is required to enter the barrier for it
to be released). To enter a barrier, a process p first reads
the barrier tuple and them inserts a tuple 〈ENTERED, N, p〉
with the name of the barrier N and its id p. Then, process p
keeps reading the tuple space until it sees that the required
number of processes inserted “entered” tuples in the space.
This reading can be implemented with a single blocking op-
eration rdAll(〈ENTERED, N, ∗〉, k) in which k corresponds
to the number of required tuples to be read. A security
policy is deployed in the space to ensure that (i.) no two
barriers with the same name can be created, (ii.) only the
processes in P can insert entered tuples, (iii.) a process can
insert at most one entered tuple per barrier and the id field
must contain its id. Notice that this design tolerates Byzan-
tine faults on clients and servers, which is not the case of
the barrier presented in [3].

Lock service. Another example of synchronization service
that can be build using DepSpace is a lock service. It pro-
vides lock and unlock operations for stored objects, in the
same way as the lock service provided by Chubby [8]. The
idea is that the presence of a “locked” tuple in the space rep-
resents that the object is locked, while the non-existence of
this tuple means that the object is not locked. To lock an
object the cas operation is executed to insert the “locked”
tuple: if there is no locked tuple for the object in the space,
a tuple of this type is inserted. To unlock an object, the
“locked” tuple is removed from the space by its owner (using

inp). Since there are several opportunities for a malicious
processes to disrupt this algorithm, a policy must be de-
ployed in the space to ensure that the state of the tuple
space is always valid. Additionally, “locked” tuples should
have a lease time associated to guarantee that after a cer-
tain time the tuple is deleted from the space, i.e., the lock
is released.

Secret Storage. Since our design assumes that tuples are
relatively small pieces of data, we do not expect that general
purpose storage systems are built using DepSpace. How-
ever, it can be used to implement metadata services like
key management systems, file systems metadata servers and
naming and directory services.

As an example, it is almost trivial to implement a se-
cret storage service with the same guarantees offered by the
CODEX system [31]. This service provides three main oper-
ations: create(N), to create a name N ; write(N,S), to bind
a secret S to a name N ; and read(N), to read the secret
associated with the name N . A fundamental property of
CODEX is that a name can not be deleted and the binding
of a name and a secret have at-most-once semantics, i.e., if
the secret S is bound to name N , no other secret S′ can be
bound to that name. The secret storage service uses secret
sharing to ensure that a bounded secret will not be revealed
to a malicious adversary as long as at most f out of n servers
are faulty.

The confidentiality scheme of DepSpace makes it very
easy to implement a service like CODEX: to create a name,
a client executes out(〈NAME, N〉) with a protection type
vector 〈PU,CO〉 to insert a name tuple in the space; to bind
a secret to a name, a client executes out(〈SECRET, N, S〉)
with a protection type vector 〈PU,CO, PR〉; to read a secret
a client executes rdp(〈SECRET, N, ∗〉). A policy must be
deployed in the space to ensure that (i.) there is at most
one name tuple in the space with some name N , (ii.) at
most one secret tuple can be inserted in a space for a name
N , and only if there is a name tuple for N ; and (iii.) no
name or secret tuple can be removed. Access control is used
to define what are the required credentials to read secret
tuples.

Naming service. A more complex storage service that can
be built using DepSpace is a naming service. The idea
is to have tuples to describe naming trees stored in the
service. A tuple 〈DIRECTORY, N,D〉 represents a direc-
tory with name N and with parent directory D. A tuple
〈NAME, N, V,D〉 represents a name N bound with a value
V associated with a parent directory D. The most complex
operation to be implemented in a naming service is the up-
date operation, in which the value associated to a name is
updated. The problem is that the tuple space abstraction
does not support updates on stored tuples: the tuple must
be removed, updated and inserted. In high level, the solu-
tion for this problem is to insert a temporary name tuple
in the space; then remove the outdated name tuple. A pol-
icy must be deployed in the space to avoid directory tree
corruption by faulty processes.

8. LESSONS LEARNED
In this section we list some lessons learned from imple-

menting, testing and using DepSpace.

BFT replication library. Apart from PBFT [14] (which is
outdated in terms of OS support), none of the subsequent
BFT replication protocols (e.g., [1, 18, 28]) have complete
implementations available to be used. Most of these sys-
tems only implement the contention- and fault-free parts of
the protocol with several optimizations to obtain best-case
performance figures for the proposed algorithm. When im-
plementing the Byzantine Paxos protocol, we found it very
easy to implement the optimized fault-free case (about 2K
lines of code), but much harder to implement the controls
needed to support all fault scenarios (our complete replica-
tion layer have about 5K lines of code). Moreover, as al-
ready pointed in [16], converting a published fault-tolerant
algorithm into a production-ready library requires a lot of
effort implementing features and optimizations that do not
appear in the original protocol.

Providing confidentiality. Our effort to build a confiden-
tiality scheme to be used on top of BFT state machine
replication let us draw the following observations. First,
as showed by the reasonable complexity of our confidential-
ity scheme, a secret sharing scheme alone is not sufficient
to give confidentiality for data. Second, it is interesting to
note that despite the large body of research on secret shar-
ing schemes, there is no publicly available implementation of
a non-trivial scheme; we had to implement it from scratch.
Finally, a secret sharing scheme is not as slow as we thought.
Our experiments showed that the latency of generating and
combining shares is about half the time needed to sign a
message using 1024-bit RSA.

Pursuing fault independence. During the development of
DepSpace we investigated how to make the fault indepen-
dence assumption valid for our system [34]. Is it worth to
implement multiple versions of DepSpace? Is it worth to ex-
ploit opportunistic diversity [15] using different tuple spaces
implementations on each DepSpace replica? Both these
possibilities require a high implementation effort, which is
obvious for multiple version programming, but less obvious
for opportunistic diversity. In the case of tuple spaces, the
most common problem in using diverse local tuple spaces
would be the non-determinism of read/remove operations.
A solution for this problem would be the use of abstract
specifications [15], but it would impose a high performance
loss in our system. Investigating the sources of diversity and
the vulnerabilities associated with security attacks, we found
that the most common problems are due to faults in infras-
tructure software (operating systems, services like naming,
file systems, etc.) or bad system management, not on ap-
plication software. Given the costs on supporting diverse
implementations, and the sources of security problems, we
found out that it is more interesting to spend resources try-
ing to improve a single implementation of a tuple space and
deploy the different replicas in diverse locations, with differ-
ent operating systems and administrators. The fact that our
system is built using Java make this pragmatical approach
even more attractive.

The power of an abstraction. The tuple space model al-
lows the development of a large spectrum of services and
applications using the abstraction of a bag of tuples and
some operations to store and retrieve them. Given the cur-
rent trend of the increasing complexity of computer sys-

tems, we believe that pursuing the use of powerful and ef-
ficient abstractions should be a priority in our current re-
search agenda, specially in areas that are complex by nature,
like Byzantine fault tolerance. Concerning the tuple space
model, we found that revising and extending this abstrac-
tion allow us to work efficiently in research areas as diverse as
fault-tolerant grid scheduling [20], BFT agreement/message
ordering layers (in the sense of [44]) and web services col-
laboration.

9. RELATED WORK
As a general purpose coordination service, the system

that most resembles DepSpace is Google’s Chubby lock
service [8]. However, there are at least three important
differences between these systems. First, Chubby provides
an (extended) file system abstraction while DepSpace im-
plements the tuple space model. Second, despite the fact
that both systems provide high availability, DepSpace tol-
erates Byzantine faults and provides data confidentiality,
while Chubby assumes a non-malicious fault model. Finally,
Chubby is a production-level system used by many clients,
while DepSpace is a proof-of-concept prototype. Another
recent system that resembles DepSpace in some aspects is
Sinfonia [2]. Sinfonia provides a transactional shared mem-
ory abstraction that can be used to store data with different
qualities of service and synchronize processes using mini-
transactions, which are constrained transactions that can be
implemented very efficiently. The main difference between
Sinfonia and DepSpace are in the abstractions provided
and the goals they achieve. Regarding the abstraction, Sin-
fonia provides a low-level address-based memory that sup-
ports constrained transactions while DepSpace provides a
content-addressable tuple space extended with a synchro-
nization operation (cas). Considering the objectives of the
two systems, while Sinfonia provides a scalable solution to
coordinate processes in a relatively safe environment (data
centers) and tolerates only crash faults, DepSpace does not
address scalability but tries to provide an ultra-dependable
solution for coordinating process in unreliable and untrusted
environments. The secret storage service CODEX [31] has
also some similarities with DepSpace since both systems
provides confidentiality for generic data. The main differ-
ence is that while CODEX provides simple operations to
deal with secret storage and retrieval, our system focus on
providing a generic abstraction that offers storage and syn-
chronization operations.

There are several works that aim to improve the depend-
ability of the tuple space coordination model using security
or fault tolerance mechanisms. Several papers have pro-
posed the integration of security mechanisms in tuple spaces.
Amongst these works, some try to enforce security policies
that depend on the application [33], while others provide
integrity and confidentiality using access control at tuple
space level, tuple level or both [9, 41]. However, these works
consider centralized servers so they are not fault-tolerant,
neither propose a confidentiality scheme like the one pro-
posed in this paper. Some of the work on fault tolerance
for tuples spaces aims to increase the dependability of the
tuple space using replication [5, 43]. However, all of these
proposals are concerned with crash failures and do not tol-
erate malicious faults, the main requirement for intrusion
tolerance. DepSpace is the first system to employ state-of-
the-art BFT replication to implement a tuple space.

Recently, some of the authors have proposed a quorum-
based linearizable Byzantine-resilient tuple space – LBTS
[7]. The work presented in this paper differs from LBTS
since it presents a complete solution for building a depend-
able tuple space while LBTS focus on a novel replication
algorithm, and thus does not provides access control, policy
enforcement and tuple confidentiality. Additionally, LBTS
does not implement the cas operation and thus can not be
used to solve important synchronization problems like con-
sensus. Moreover, LBTS was not fully implemented on the
contrary to DepSpace.

Despite the existence of several proposals of BFT repli-
cation protocols (e.g., [1, 14, 18, 28, 44]), only the privacy
firewall described in [44] tries to improve the confidential-
ity of replicated services. The idea is to introduce a privacy
firewall between the service replicas and the agreement layer
(that gives total order to requests issued to the BFT repli-
cated service) to avoid that faulty service replicas disclose
service information to other parties. The privacy firewall
works only if all communication between service replicas and
other system components is inspected by the firewall. The
confidentiality scheme used in DepSpace considers that ser-
vice data is shared between servers in such a way that at
least f + 1 servers are required to disclose encrypted data.

There are several works that advocate the use of secret
sharing to ensure data confidentiality. The seminal paper
in the area had a partial solution for confidentiality in syn-
chronous systems since data was scattered in several servers
[21]. We are aware of only two works that guarantee the con-
fidentiality of replicated data in asynchronous systems. The
first is the Secure Store, which uses a secret sharing scheme
to split data among the servers [29]. To reconstruct the orig-
inal data, the collaboration of at least f+1 servers is needed.
The scheme is not very efficient so the data shares created
are replicated in several servers, thus using a large number
of servers. Moreover, the system does not tolerate malicious
clients. The second solution is used to store (large) files effi-
ciently in a set of servers so it uses an information dispersal
scheme [12]. The idea is essentially to encrypt the file with
a random secret key, split it in parts using an erasure code
scheme, and send these parts to the servers. The secret key
is also split in shares and sent to the servers, which use a
threshold cryptography scheme to reconstruct the key (re-
quires the collaboration of f + 1 servers). In the same line,
there are several other works that use information dispersal
based on erasure codes for efficient data storage (e.g., [24,
25]). Despite the fact that both secret sharing and erasure
codes have similarities (both generate n “shares” of a data
block and at least f+1 ≤ n of these shares are required to re-
cover the block), the properties ensured by these techniques
are very different: erasure code shares are smaller than the
original data block and do provide some information about
their content (provide efficient storage but not confidential-
ity), while secret sharing shares have usually the same size of
the original block and do not reveal any information about
their content (provide confidentiality but not efficient stor-
age). So, in works that use erasure codes for efficient storage
confidentiality is usually not addressed. DepSpace does not
employ information dispersal since tuples are expected to be
reasonable small pieces of data. Our solution is closer to the
Secure Store since it uses secret sharing, but does not have
an impact in terms of number of servers and tolerates any
number of malicious clients. Moreover, ours is the first work

to combine state machine replication and a confidentiality
scheme, presenting also a practical assessment of the perfor-
mance of this kind of scheme.

10. CONCLUSIONS
The paper presents a solution for the implementation of

a dependable – fault- and intrusion-tolerant – tuple space.
The proposed architecture integrates several dependability
and security mechanisms in order to enforce a set of de-
pendability properties. This architecture was implemented
in a system called DepSpace, a coordination service for un-
trusted and dynamic environments. DepSpace implements
an abstraction called PEATS (Policy-Enforced Augmented
Tuple Space), an object that can be used to build distributed
computing abstractions efficiently even in Byzantine-prone
environments [6].

Another interesting aspect of this work is the integration
of replication with confidentiality. To the best of our knowl-
edge, this is the first paper to integrate BFT state machine
replication and data confidentiality. Experimental evalua-
tion shows that despite the fact the confidentiality scheme
has some impact in the performance of the system, it has
little impact on the system perceived throughput. Although
the confidentiality scheme was developed for tuple spaces, it
can be adapted to be used in any content-based data storage
system.

DepSpace source code (including the total order multi-
cast and the PVSS scheme) is available at project homepage:
http://www.navigators.di.fc.ul.pt/software/depspace.

Acknowledgments
We would like to thank Lau Cheuk Lung, Fabio Favarim,
Wagner Saback Dantas and the EuroSys’08 reviewers for
their contributions to improve this paper. This work was
partially supported by the EC, through projects IST-2004-
27513 (CRUTIAL) and NoE IST-4-026764-NoE (ReSIST),
by the FCT, through the Multiannual and the CMU-Portu-
gal Programmes, and by CAPES/GRICES (project TISD).

11. REFERENCES
[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter,

and J. Wylie. Fault-scalable Byzantine fault-tolerant
services. In Proceedings of the 20th ACM Symposium
on Operating Systems Principles - SOSP’05, Oct.
2005.

[2] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: A new paradigm for
building scalable distributed systems. In Proceedings
of the 21st ACM Symposium on Operating Systems
Principles - SOSP’07, Oct. 2007.

[3] J. Albrecht, C. Tuttle, A. C. Snoeren, and A. Vahdat.
Loose synchronization for large-scale networked
systems. In Proceedings of the 2006 Usenix Annual
Technical Conference – Usenix’06, 2006.

[4] A. Avizienis, J.-C. Laprie, B. Randell, and
C. Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11–33,
Mar. 2004.

[5] D. E. Bakken and R. D. Schlichting. Supporting
fault-tolerant parallel programing in Linda. IEEE

Transactions on Parallel and Distributed Systems,
6(3):287–302, Mar. 1995.

[6] A. N. Bessani, M. Correia, J. S. Fraga, and L. C.
Lung. Sharing memory between Byzantine processes
using policy-enforced tuple spaces. In Proceedings of
26th IEEE International Conference on Distributed
Computing Systems - ICDCS 2006, July 2006.

[7] A. N. Bessani, M. Correia, J. S. Fraga, and L. C.
Lung. Decoupled quorum-based Byzantine-resilient
coordination in open distributed systems. Technical
Report DI-FCUL TR 07–9, Dep. of Informatics,
University of Lisbon, May 2007.

[8] M. Burrows. The chubby lock service. In Proceedings
of 7th Symposium on Operating Systems Design and
Implementations - OSDI 2006, Nov. 2006.

[9] N. Busi, R. Gorrieri, R. Lucchi, and G. Zavattaro.
SecSpaces: a data-driven coordination model for
environments open to untrusted agents. Electronical
Notes in Theoretical Computer Science, 68(3), 2003.

[10] N. Busi, R. Gorrieri, and G. Zavattaro. On the
expressiveness of Linda coordination primitives.
Information and Computation, 156(1-2):90–121, Jan.
2000.

[11] G. Cabri, L. Leonardi, and F. Zambonelli. Mobile
agents coordination models for Internet applications.
IEEE Computer, 33(2), 2000.

[12] C. Cachin and S. Tessaro. Asynchronous verifiable
information dispersal. In Proceedings of the 24th IEEE
Symposium on Reliable Distributed Systems - SRDS
2005, Oct. 2005.

[13] N. Carriero and D. Gelernter. How to write parallel
programs: a guide to the perplexed. ACM Computing
Surveys, 21(3):323–357, Sept. 1989.

[14] M. Castro and B. Liskov. Practical Byzantine
fault-tolerance and proactive recovery. ACM
Transactions on Computer Systems, 20(4), 2002.

[15] M. Castro, R. Rodrigues, and B. Liskov. BASE: Using
abstraction to improve fault tolerance. ACM
Transactions on Computer Systems, 21(3), Aug. 2003.

[16] T. Chandra, R. Griesemer, and J. Redstone. Paxos
made live - an engineering perspective (2006 invited
talk). In Proceedings of the 26th ACM Symposium on
Principles of Distributed Computing - PODC’07, Aug.
2007.

[17] Codehaus. Groovy programing language homepage.
Avaliable at http://groovy.codehaus.org/, 2006.

[18] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and
L. Shrira. HQ-Replication: A hybrid quorum protocol
for Byzantine fault tolerance. In Proceedings of 7th
Symposium on Operating Systems Design and
Implementations - OSDI 2006, Nov. 2006.

[19] C. Dwork, N. A. Lynch, and L. Stockmeyer.
Consensus in the presence of partial synchrony.
Journal of the ACM, 35(2):288–322, Apr. 1988.

[20] F. Favarim, J. S. Fraga, L. C. Lung, and M. Correia.
GridTS: A new approach for fault-tolerant scheduling
in grid computing. In Proceedings of 6th IEEE
Symposium on Network Computing and Applications -
NCA 2007, July 2007.

[21] J. S. Fraga and D. Powell. A fault- and
intrusion-tolerant file system. In Proceedings of the 3rd

International Conference on Computer Security, 1985.

[22] D. Gelernter. Generative communication in Linda.
ACM Transactions on Programing Languages and
Systems, 7(1):80–112, Jan. 1985.

[23] GigaSpaces. GigaSpaces – write once, scale anywere.
Avaliable at http://www.gigaspaces.com/, 2007.

[24] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K.
Reiter. Efficient Byzantine-tolerant erasure-coded
storage. In Proceedings of Dependable Systems and
Networks - DSN 2004, June 2004.

[25] J. Hendricks, G. Ganger, and M. Reiter. Low-overhead
Byzantine fault-tolerant storage. In Proceedings of the
21st ACM Symposium on Operating Systems
Principles - SOSP’07, Oct. 2007.

[26] M. Herlihy. Wait-free synchronization. ACM
Transactions on Programing Languages and Systems,
13(1):124–149, Jan. 1991.

[27] M. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programing Languages and Systems,
12(3):463–492, July 1990.

[28] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong. Zyzzyva: Speculative Byzantine fault
tolerance. In Proceedings of the 21st ACM Symposium
on Operating Systems Principles - SOSP’07, Oct.
2007.

[29] S. Lakshmanan, M. Ahamad, and H. Venkateswaran.
Responsive security for stored data. IEEE
Transactions on Parallel and Distributed Systems,
14(9):818–828, Sept. 2003.

[30] T. J. Lehman, A. Cozzi, Y. Xiong, J. Gottschalk,
V. Vasudevan, S. Landis, P. Davis, B. Khavar, and
P. Bowman. Hitting the distributed computing sweet
spot with TSpaces. Computer Networks,
35(4):457–472, Mar. 2001.

[31] M. A. Marsh and F. B. Schneider. CODEX: A robust
and secure secret distribution system. IEEE
Transactions on Dependable and Secure Computing,
1(1):34–47, Jan. 2004.

[32] J.-P. Martin and L. Alvisi. Fast Byzantine consensus.
IEEE Transactions on Dependable and Secure
Computing, 3(3):202–215, July 2006.

[33] N. H. Minsky, Y. M. Minsky, and V. Ungureanu.
Making tuple-spaces safe for heterogeneous distributed
systems. In Proceedings of the 15th ACM Symposium
on Applied Computing - SAC 2000, 2000.

[34] R. R. Obelheiro, A. N. Bessani, L. C. Lung, and
M. Correia. How practical are intrusion-tolerant
distributed systems? DI-FCUL TR 06–15, Dep. of
Informatics, University of Lisbon, Sept. 2006.

[35] F. B. Schneider. Implementing fault-tolerant service
using the state machine aproach: A tutorial. ACM
Computing Surveys, 22(4), 1990.

[36] B. Schoenmakers. A simple publicly verifiable secret
sharing scheme and its application to electronic
voting. In Proceedings of the 19th International
Cryptology Conference on Advances in Cryptology -
CRYPTO’99, Aug. 1999.

[37] E. J. Segall. Resilient distributed objects: Basic
results and applications to shared spaces. In
Proceedings of the 7th IEEE Symposium on Parallel
and Distributed Processing - SPDP’95, Oct. 1995.

[38] A. Shamir. How to share a secret. Communications of
ACM, 22(11):612–613, Nov. 1979.

[39] Sun Microsystems. JavaSpaces service specification.
Availiable at http://www.jini.org/standards, 2003.

[40] P. Verissimo, N. F. Neves, and M. P. Correia.
Intrusion-tolerant architectures: Concepts and design.
In Architecting Dependable Systems, volume 2677 of
LNCS. 2003.

[41] J. Vitek, C. Bryce, and M. Oriol. Coordination
processes with Secure Spaces. Science of Computer
Programming, 46(1-2):163–193, Jan. 2003.

[42] B. White, J. Lepreau, L. Stoller, R. Ricci,
S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment
for distributed systems and networks. In Proceedings
of 5th Symposium on Operating Systems Design and
Implementations - OSDI 2002, Dec. 2002.

[43] A. Xu and B. Liskov. A design for a fault-tolerant,
distributed implementation of Linda. In Proceedings of
the 19th Symposium on Fault-Tolerant Computing -
FTCS’89, June 1989.

[44] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement form execution for
Byzantine fault tolerant services. In Proceedings of the
19th ACM Symposium on Operating Systems
Principles - SOSP’03, Oct. 2003.

[45] P. Zielinski. Paxos at war. Technical Report
UCAM-CL-TR-593, University of Cambridge
Computer Laboratory, June 2004.

