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Abstract—Mobile devices such as smartphones are becoming
the majority among computing devices. Currently, millions of
persons use such devices to store and process personal data.
Unfortunately, smartphones running Android are increasingly
being targeted by hackers and infected with malware. Anti-
malware software is being used to address this situation, but
it may be subverted by the same malware it aims to detect.

We present DROIDPOSTURE, a posture assessment service for
Android devices. This service aims to securely evaluate the level
of trust we can have on a device (assess its posture) even if
the mobile OS is compromised. For that to be possible, DROID-
POSTURE is protected using TrustZone, a security extension
for ARM processors. DROIDPOSTURE is configurable with a
set of application and kernel analysis mechanisms that enable
detecting malicious applications and rootkits. We implemented
a DROIDPOSTURE prototype using a hardware board with an
ARM processor with TrustZone, and evaluated its performance
and security.

I. INTRODUCTION

Mobile devices have gradually become an integral part of
our daily lives. Currently, financial and healthcare institutions
offer services to their clients using smartphone applications.
Although this is convenient, it also leads people to rely on
these applications to access and process privacy-sensitive data,
e.g., financial data and medical records. Many of these appli-
cations run on Android, the most adopted mobile operating
system (OS) today [1]. However, the popularity of Android
and the open nature of its application marketplaces make it
a prime target for malware [2]–[5]. This situation puts data
stored in smartphones in jeopardy, as it can be stealthily stolen
or modified by malware that infects the device.

Several companies provide anti-malware software for mo-
bile OSs. Moreover, the research community has investigated
mechanisms for detecting malware on Android using static
and dynamic analysis [6], [7]. However, these tools and
mechanisms run in the device and assume that the mobile
OS is trusted, i.e., that it is part of the trusted computing
base (TCB) [8]. However, current malware often disables anti-
malware software when it infects a device or computer. For
mobile phones this trend started more than a decade ago with
malware such as the Metal Gear Trojan and Cabir.M [9] and
continues, e.g., with HijackRAT [10].

Introspection has been proposed in the context of PC
virtualization with hypervisors as a solution to protect anti-
malware and intrusion detection mechanisms from malware

and hackers [11]–[13]. The idea is to run these mechanisms in
a thin virtual machine (VM) isolated from the fat VM that runs
the OS and the applications. Yan and Yin applied this approach
to detect malware in Android smartphones using a customized
QEMU hypervisor [14]. However, the size and complexity of
hypervisors still make them a target for malware, similarly to
what happens with OSs.

TrustZone is a hardware security extension incorporated
into recent ARM processors [15]. This extension partitions
the system resources (e.g., memory, peripherals, etc.) in two
logical parts: the secure world and the normal world. The
secure world runs trusted applications on top of a small trusted
OS, whereas the normal world runs the normal applications on
top of a normal OS such as Android. TrustZone protects the
secure world resources from the normal world, whereas the
secure world can access resources of the normal world. This
hardware separation protects the confidentiality and integrity
of computation and data in the secure world, while permitting
the secure world to inspect the normal world.

Most uses of TrustZone in the literature are based on
measurements of the normal world, i.e., on hashes of the soft-
ware running in the normal world obtained using a collision-
resistant hash function. For example, some mechanisms pro-
vide login data [16] and sensor readings [17] together with
measurements of the normal world. Software in the normal
world obtains the login or sensor data, then calls the secure
world to get the measurements and a signature. The recipient
of this information can check if the normal world is in a trusted
state by checking if the values of the hashes correspond to
trusted configurations. This is a direct extension of remote
attestation mechanisms that have been proposed earlier for the
Trusted Platform Module, a simpler hardware module [18].

This way of using TrustZone is interesting, but the ver-
satility of TrustZone suggests it is possible to obtain richer
information about the normal world than just hashes, which
are simply numbers with limited semantics. An approach is
to analyze the posture or compliance of the device. The
notion of posture assessment was introduced in RFC 5209
[19] for network access control [20], which proposed having
a software agent running on endpoint devices (such as laptops
and desktops) to evaluate and report the posture/compliance
of the device to the network owners (e.g., anti-virus software
running on the device or not, updates installed or not). The



network owner has validation software that determines the
device’s compliance with the security policies, allowing it to
connect to the company’s network, to block it, or to connect
it to some lower trust VLAN (e.g., one that connects only to
the Internet).

This paper presents the design and implementation of
DROIDPOSTURE, a posture assessment service for mobile
devices. DROIDPOSTURE runs in the devices (e.g., smart-
phones) and evaluates the security status of their OS (e.g.,
Android) and applications. DROIDPOSTURE is protected from
the OS, applications, and malware by leveraging the TrustZone
extension and running in the secure world. DROIDPOSTURE
does introspection of the normal world and can be configured
with a variety of assessment mechanisms, e.g., static analysis
of applications and detection of rootkits. Posture data obtained
with DROIDPOSTURE can be sent to external service providers
like the above-mentioned financial and healthcare institutions,
which use it to decide if they provide their service to the device
or not (or in what conditions they provide it). We also present
a communication protocol for this purpose.

In this paper we propose two classes of assessment mecha-
nisms – application and kernel analysis mechanisms – and pro-
vide two example of each: signature-based detector, learning-
based detector, syscall table checker, and kernel integrity
checker. These mechanisms illustrate the forms of posture
analysis that can be implemented in DROIDPOSTURE, al-
though others may also be used.

The main contributions of this paper are: (1) the design
of DROIDPOSTURE, a posture assessment service for mobile
devices that is protected using the TrustZone extension and
that is configurable with a set of application and kernel
analysis mechanisms; (2) an implementation of DROIDPOS-
TURE for Android and in hardware, specifically on the NXP
Semiconductors i.MX53 Quick Start Board (QSB); (3) an
experimental evaluation of DROIDPOSTURE.

II. BACKGROUND

This section provides background on the technologies un-
derlying the design and implementation of DROIDPOSTURE.

A. ARM TrustZone

ARM TrustZone [15] is a security extension supported by
recent ARM processors, e.g., ARM Cortex-A and Cortex-
M. It provides two logically isolated execution domains: the
secure world for security-sensitive computation and storage,
and the normal world for conventional processing. A program
running in the normal world can make the processor switch to
the secure world using a special secure monitor call (SMC).
This technology is not yet widely-adopted, but it is used in
Samsung’s KNOX enterprise mobile security solution [21].

TrustZone partitions the system memory into two worlds,
i.e., each world has its own address space. The secure world
can see all the physical memory in the system, but the
normal world can see only its own. Cache memories are
tagged as secure or non-secure to protect them from accesses
from the normal world. Individual hardware peripherals can

be assigned to the secure world, and for these peripherals
hardware interruptions are configured to be directly routed to,
and handled by, the secure world. As a result, it is possible to
secure peripherals such as memory, storage (e.g., an SD card),
keyboard and screen to ensure they are protected from software
attacks. In general, TrustZone protects the confidentiality and
integrity of any computation and data in the secure world,
so untrusted code running in the normal world cannot access
these resources [22], [23].

B. Android Architecture

Android is a Linux-based open source software stack for
mobile devices. It consists of a modified Linux kernel, a
middleware layer, and an application layer. The Linux ker-
nel provides OS services like memory management, process
scheduling, device drivers, file system support and network
access. The middleware layer consists of native Android li-
braries, the Android run-time environment, and an application
framework. The application framework consists of applications
that provide system services, e.g., the Activity Manager that
manages the life cycle of applications, the Application Installer
that installs new applications, and the Package Manager that
maintains information about all applications loaded in the
system.

Android applications are implemented in Java, but they can
also incorporate C/C++ native libraries through the Java native
interface (JNI). Java code is compiled to a custom bytecode
format, the Dalvik EXecutable (DEX) format. Android appli-
cations are comprised of four basic types of components: Ac-
tivities, Services, Content Providers and Broadcast Receivers.

Android applications are distributed in files in the Android
Application Package format (APK or .apk). An APK file
is essentially a zip archive containing all the application
resources: bytecodes (.dex), manifest file, media files, etc.
After a successful installation of an application, its APK file is
stored in the file system (in /data/app/). For static analysis
of an Android application, one has to unzip the APK file, then
decompile the .dex file or translate it into Java source code
using appropriate tools (e.g., dex2jar, APKtool). Every APK
file includes a manifest file (AndroidManifest.xml) with
essential information about the application: list of components
that compose it; permissions that the application needs to
run; permissions that other applications must have in order
to interact with the application’s components.

III. DROIDPOSTURE ARCHITECTURE AND DESIGN

DROIDPOSTURE gives external service providers a mech-
anism to evaluate the posture of a smartphone and restrict
access to critical data based on posture. DROIDPOSTURE
is a software component that runs in the secure world of
a mobile device. The posture information is requested by
external services when smartphone applications request to use
a service or by local application to understand the posture of
the smartphone.



A. Use Cases

In this section, we describe two use cases for DROIDPOS-
TURE in order to help understand how it can be used.

In the first scenario, an employee of an enterprise that has
adopted BYOD (Bring Your Own Device) uses his smartphone
to connect to the corporate network and access corporate
data (the enterprise is the external service provider). This
scenario is quite realistic as it is essentially an example
of network access control [19], [20], frequently used today
in large companies, except that we consider mobile devices
instead of laptops and that the component running in the device
is DROIDPOSTURE, so it is protected using TustZone. The
enterprise security policies restrict access to its assets, so it
requires adequate posture/compliance of the smartphone in
order to ensure that this device conforms to these policies.
The security policies may include various combinations of data
such as location of the device, OS version, device information
(serial number, model, open ports, etc.), and security status of
the smartphone. The posture assessment involves four actors:
the employee, the enterprise, the smartphone application that
allows the employee to connect, and the DROIDPOSTURE
service. The employee sends an access request to the enterprise
via the application. The enterprise communicates with the
DROIDPOSTURE service and requests the smartphone posture.
The DROIDPOSTURE service sends a signed block of data
with posture data to the enterprise. The enterprise checks the
compliance of the smartphone against its security policies and,
if needed, sends remediation instructions for the employee to
fix the smartphone.

In the second scenario, a bank customer uses a mobile
banking application on the smartphone to do a transaction.
Depending on the sensitivity of the data, the bank, which is
the external service provider, requires the posture information
to determine whether the data passed to the smartphone will
be compromised by malware residing in the smartphone. This
mobile transaction scenario involves four actors: a customer,
a bank, a bank application, and the DROIDPOSTURE service.
To start the transaction, the customer sends a service request
to the bank via the bank application. In order to ensure
the security of privacy-sensitive data, the bank communicates
with the DROIDPOSTURE service via the bank application
to request posture information. DROIDPOSTURE performs a
posture assessment, sends the signed posture to the bank, and
the bank sends the data (or not).

B. Threat Model and Assumptions

We assume that DROIDPOSTURE runs in an ARM processor
with TrustZone. We assume that in the normal world the
mobile OS and the applications it executes are untrusted, i.e.,
that they may be malicious or compromised by malware or
hackers. In contrast, we assume that the software running in
the secure world, including the DROIDPOSTURE software, is
trustworthy. In order to reduce the size of the TCB, the size of
the software executed in the secure world has to be as small as
possible, so it should not include for example a network stack.
The size of the API is also as small as possible to reduce the
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Fig. 1. Architecture of a mobile device running DROIDPOSTURE. The grey
boxes are components of the DROIDPOSTURE service.

attack surface, and all inputs are validated. These measures
make software attacks against the secure world unlikely to
be successful, so in this paper we assume they are not. We
also assume that the device (i.e., the normal world) is not yet
compromised when DROIDPOSTURE is first installed (it can
come pre-installed with the device).

Each DROIDPOSTURE instance in a device has an identifier
id and a public-private key pair (Ku,Kr) for some public-
key cryptographic scheme (e.g., RSA). It has also a certificate
containing the public key, signed by some trusted certification
authority (CA). We also assume the existence of a collision-
resistant hash function (e.g., SHA-256).

C. Architecture

Figure 1 represents a mobile device running DROIDPOS-
TURE and communicating with some external services. The
normal world runs the usual mobile device software: a mobile
OS and applications. It includes also a driver (TZ_Driver)
that allows software in the normal world to call functions in
the secure world, DROIDPOSTURE in our case. This driver
allocates a shared memory zone that is used for the application
to pass inputs to DROIDPOSTURE, and for DROIDPOSTURE
to return outputs to the application (assessment results in our
case).

The secure world runs the DROIDPOSTURE service. This
world includes a small trusted OS that provides basic functions
for software running in that world (processes, file access, etc.).
Besides its private memory space, it is also configured to
have a private persistent storage partition (either part of the
internal memory or of an SD card). DROIDPOSTURE itself
is composed of two modules, for detecting and reporting the
posture of the normal world. The detection module is further
divided in two modules that we implemented in our prototype
– application analysis and kernel analysis – although others
may be designed and used (others in the figure). The reporting
module provides an interface between the normal world and
the detection modules. The posture monitor receives, validates
(for protection against buffer overflows and other input at-
tacks), and replies to requests for posture data from the normal
world. The posture collector collects information from the
detection module(s) and signs it.



The bootstrapping of the device starts by running the kernel
of the secure world, so this kernel is the static root of
trust for measurement [24]. Before passing the control to
the normal world and starting the execution of the normal
world, the kernel analysis module calculates and stores a hash
(measurement) of the normal world operating system. This
is process is denominated trusted boot [24] and may involve
storing hashes of other modules, if needed.

D. Posture Reports

DROIDPOSTURE provides information about the posture of
the device in the form of a posture report. The format of a
posture report is: 〈id , posture data,nonce〉SKr

, where id is
the identifier of the DROIDPOSTURE instance, posture data
the posture data itself, nonce a nonce (a random number used
only once for replay protection) that comes with the request for
posture data, and SKr a signature obtained using the instance
private key.

Posture reports can be delivered to applications or trans-
ferred to external services via the normal world. In both cases
an application running in the normal world requests posture
data from the posture monitor module. This request contains
the above-mentioned nonce. The module then invokes the
posture collector module that requests the detection modules
to collect the posture of the device. The posture collector gets
the result, creates and signs the posture report, and sends it
to the posture monitor. The latter sends the posture report to
the application, which may optionally send it to an external
service.

As the mobile OS and the applications may be compro-
mised, we do not trust them to deliver the posture report
unmodified to the application or external service that requested
it. The authenticity and integrity of the report are verified
using the digital signature SKr calculated using the private
key of the DROIDPOSTURE instance in the device. Such an
attacker might still do a denial of service attack by deleting
or modifying all reports, but this would be understood by the
service provider as consequence of a compromised device.

Figure 2 illustrates the steps for providing a posture report to
an external service. An application starts the interaction with
the external service, e.g., the backend of the application (step
1). The external service replies and provides a nonce (step
2). The application forwards the nonce to DROIDPOSTURE
in the secure world and asks for posture assessment (step 3).
DROIDPOSTURE performs the posture assessment, creates and
signs the posture report, then sends it to the application (step
4). The application sends this report to the external service
(step 5). Finally, the external service verifies the nonce and
the signature, using the certificate of that DROIDPOSTURE
instance (Section III-B). If they are correct, it then interprets
the posture data. If it finds the posture acceptable it continues
to interact the application, e.g., sending it some data (step 6).

E. Application Analysis

We designed two detection modules, although others may be
used. As mentioned before, these mechanisms illustrate how
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Fig. 2. DROIDPOSTURE providing a posture report to an external service.

posture analysis may be implemented in DROIDPOSTURE.
This section is about the application analysis module (Fig-

ure 1). This module provides two static analysis mechanisms
to detect the presence of malware in Android applications:
signature-based detector and learning-based detector.

By static analysis we mean analysis of code, without
executing it. The application analysis module first unpacks
the application APK and obtains the bytecodes. Then, the
bytecode file is passed as input to the signature-based and
learning-based detection mechanisms. Prior to this process,
the hash of the APK file is compared with the hashes of the
APKs already analyzed stored in the secure world persistent
storage partition, in order to avoid re-executing the analysis.
If it has already been analyzed, the result obtained previously
is returned. Notice that if the APK changes, then its hash also
changes (collision resistance property of the hash function).

1) Signature-Based Detector: The first and simplest mal-
ware detection technique is based on pattern matching. Mal-
ware detectors have a database of distinctive patterns –
signatures – of malicious code and they look for them in
applications. Malware has to be public for a period of time
so that signatures can be generated for that specific malware
family.

Our signature-based mechanism detects malicious appli-
cations or injected malicious code based on similarities of
control flow graphs (CFGs). A control flow graph represents
the control flow of a program. The signature-based mecha-
nism takes the bytecode file and converts each function in
the bytecode into a string that represents the CFG of the
function. The comparison of similarity of the CFGs is done by
using a similarity algorithm such as Kolmogorov distance and
normalized compression distance (NCD). The CFG string of
each function is compared against the CFGs (the signatures)
of known malware in the database to verify if they are similar.

2) Learning-Based Detector: As the signature-based de-
tection mechanism only detects malware for which it has
signatures, we propose a complementary mechanism to detect
malware in applications. The learning-based detection mech-
anism relies on a machine learning classifier. This mechanism
has two phases. In the first phase, training, the mechanism
statically examines and extracts selected features from known
malware samples and benign applications to build feature
vectors; then, these features are used to train a machine



learning classifier to distinguish malware from normal code.
In the second phase, detection, the classifier is used to check
applications for malware. Notice that the detection phase
is the one that is executed by DROIDPOSTURE itself; the
training phase is executed beforehand, by whoever manages
the DROIDPOSTURE service.

The selection of features is essential for the efficiency
of the detection mechanism. Redundant or relevant fea-
tures may present several problems such as misleading the
learning algorithm, and increasing model complexity and
run time. We use the features below, extracted from the
AndroidManifest.xml file and the .dex file. All features
are binary, i.e., either the application has it or not:

• Requested permissions. Android uses permissions for re-
stricting access to the device resources. Permissions are
granted by the user during application installation, or later
in the latest versions of Android. Malicious applications
request certain permissions (e.g., SEND_SMS, READ_SMS)
more often than benign applications. Requesting a security
sensitive permission is a feature.

• Sensitive function calls. Among thousands of Android API
functions, we consider API calls invoked by applications
that allow to access sensitive data or resources. For example,
APIs for accessing the user’s personal information, network
details, device ID, and sending SMSs.

• Suspicious intents. An intent is an abstract
description of an operation to be performed.
Application components are activated using intents.
We consider intents that perform sensitive actions
as features (e.g., android.intent.action.CALL,
android.intent.action.DIAL).

• Suspicious content URI. A content URI is used to locate
data in a content provider. It can be used to leak users
personal data or to access another applications data. For
example, content://sms/inbox can be used to read SMS
messages from inbox.

• Arbitrary code execution. Execution of native
code using JNI or Linux commands. For example,
Ljava/lang/Runtime;->exec() executes command
exec() in a separate process.

In the training phase, to construct feature vectors, we
retrieve the selected features from each malware sample and
benign application and store them as binary numbers, 1 or 0,
respectively for presence or absence of the feature. Further-
more we assign a class to each feature vector, M for malware
and B for benign application. Feature vectors are then provided
to the machine learning classifier.

We use the k-Nearest Neighbours (kNN) algorithm as clas-
sifier [25]. Given vectors of N classes as training samples,
kNN classifies an unknown sample by searching the entire
set of training samples for the k nearest based on a distance
metric, then the unknown sample is assigned to the class most
common among its k nearest. k is a positive integer and if
k = 1, then the unknown sample is simply assigned to the
class of the single nearest sample.

F. Kernel Analysis

This section presents the kernel analysis module of Figure
1. Again, this module provides two kinds of analysis.

A rootkit is a piece of malware that gains privileged access
to a system, hides itself from the user and the OS, then
stealthily carries out some kind of malicious activity. Rootkits
may be roughly classified in two classes. User-level rootkits
replace system binaries and libraries with customized versions.
Kernel-level rootkits modify the kernel, for example by adding
code into the running kernel memory image (/dev/mem) or
by injecting a Loadable Kernel Module (LKM).

The kernel analysis module starts by calculating a hash of
the normal world kernel and by comparing it with the hash
obtained during the boot of the device (Section III-C). If the
hashes are different, the kernel analysis fails immediately.

1) Syscall Table Checker: The Android kernel provides
system calls (syscalls) that allow applications in user mode to
interact with the kernel. Syscalls are one of the primary targets
for kernel-level rootkit writers. The kernel uses a syscall
table, an array of pointers mapping each syscall number to
the corresponding function in kernel memory. Modifying a
syscall table entry is a popular way to intercept the execution
flow of any system service. Kernel-level rootkits often modify
syscall table entries to point to new, malicious, system calls.
Therefore, in order to detect a kernel-level rootkit, the first
step is to verify the integrity of the system call table.

Each time the kernel is compiled, a file containing the map
of kernel symbols and addresses is created (System.map).
Comparing the addresses of syscalls in the System.map with
the addresses in the syscall table during runtime detects if
system calls have been redirected, which may be an indication
that the kernel has been compromised by a rootkit.

When DROIDPOSTURE is installed, our kernel analysis
mechanism starts by making a copy of the addresses of system
calls in System.map and storing them in the secure world.
Then during runtime the mechanism simply compares that
copy with the values in the syscall table in the normal world.
Recall that we assume that the system is not compromised
when DROIDPOSTURE is installed.

2) Kernel Integrity Checker: Besides syscall table integrity
checking, the kernel analysis module is capable of checking
the kernel code for modifications to detect rootkits. As the
kernel is not supposed to change during runtime, changes are
probably a sign of malware. For example, a rootkit can replace
the first few bytes of some system call functions with a jmp

instruction that redirects the execution to malicious code.
In order to verify the kernel integrity, the kernel integrity

checker calculates a hash of the kernel code memory pages of
the Android OS running in the normal world and compares it
against a hash calculated when the system was in a pristine
state, which is stored in the secure world persistent storage
partition. To calculate a hash value, the start address and length
of the target memory pages are required. The kernel integrity
checker finds the virtual address of the kernel code in the
copy of the System.map file stored in the secure world and



translates this address to the secure world address space before
evaluating the hash value.

IV. DROIDPOSTURE IMPLEMENTATION

We implemented a prototype on an i.MX53 QSB board
equipped with a Cortex-A8 single core 1 GHz processor, 1
GB DDR memory, and a 4GB MicroSD card. Most TrustZone-
enabled smartphones are locked in such a way that it is not
possible to use the secure world, so we opted for this board.

A. Runtime Environment

Genode is a framework for building special-purpose oper-
ating systems [26]. It provides a collection of OS building
blocks, e.g., kernels, device drivers, and protocol stacks. Gen-
ode can reduce OS complexity for security-sensitive scenarios,
which makes it an appealing foundation for an OS to run in the
secure world. Genode Labs has released a TrustZone virtual
machine monitor (VMM) demo for our board, which enables
the execution of Genode in the secure world, while a guest
OS such as Linux, monitored by a Genode hypervisor, runs
in the normal world. We used this demo as a starting point to
implement our prototype.

In the secure world, we implemented DROIDPOSTURE
based on a program called tz_vmm that runs on top of
the Genode kernel. In the normal world, we run An-
droid for the i.MX53 series from Adeneo, previously
freescale (http://witekio.com/cpu/i-mx-53/). We used
the Linux/Android kernel modified by Genode Labs for this
board. The kernel is modified so as to prevent the normal world
from directly accessing certain resources such as hardware,
persistent storage and memory that are set as secure within
the central security unit (CSU) initialization. To create the
secure world persistent storage partition, we used the Genode
partition manager (part_blk) that supports partition tables
and provides a block session for each partition of a SD card.
This allows the partitions to be addressable as separate block
sessions and makes it is easy to grant or deny access. We used
this scheme to reserve a partition for the secure world.

We run TZ_Driver in the kernel for an application in the
normal world to issue a hypercall to exit the normal world
and trap into the secure world, using the SMC instruction. A
shared buffer in RAM allows passing data between the two
worlds. Some of the general purpose CPU registers are used
to store information about the shared buffer between the two
worlds, including its address and length.

In our prototype we used components written in Python,
which required installing Python 2.6 in the secure world using
the Genode libports repository. This is undesirable because it
increases the size of the TCB. However, this is not a limitation
of our proposal, but of the current prototype. DROIDPOSTURE
itself does not need to use Python code.

B. DroidPosture Modules

Table I shows the code size of each module implemented
in the DROIDPOSTURE service.

TABLE I
LINES OF CODE FOR THE DROIDPOSTURE MODULES.

Modules Code Size (LOC)
Application Analysis 30484
Kernel Analysis 142
Posture Collector 86
Posture Monitor 121

The application analysis module is based on Androguard
[27], an open source tool written in Python. It is able to unzip
an APK file, obtain its metadata and bytecodes. Androguard
has a module to create the control flow graph (CFG) for each
function in a bytecode file. In addition, Androguard has several
built-in signatures that are able to detect known malicious
applications. Since Androguard is a complete feature-rich
framework, we use its modules to disassemble an application’s
Dalvik bytecode, then create a CFG for each function, and
compare these CFGs with the malware CFGs (the signatures)
that are stored in the secure world persistent storage partition.
In addition to Androguard, we modified Androwarn [28] to
extract the features (Section III-E2) from malware and benign
applications to build feature vectors for the learning-based
detector.

The kernel analysis module needs to access the normal
world memory. TrustZone configuration within Genode parti-
tions the DDR RAM between the secure world and the normal
world using the multi-master multi-memory interface (M4IF)
[26]. tz_vmm is able to read the normal world’s RAM via
an IOMEM session during its start-up routine. The memory
is mapped as uncached to the secure world’s address space,
thus the whole normal world memory can be accessed by the
kernel analysis module in the secure world.

V. PERFORMANCE EVALUATION

To evaluate the performance of DROIDPOSTURE, we used
a set of micro- and macro-benchmarks by considering calls
to the DROIDPOSTURE service that: (i) return immediately
(baseline); (ii) do application analysis, only signature-based;
(iii) do application analysis, only learning-based; (iv) do
application analysis, both mechanisms; (v) do kernel analysis,
only syscall table checker; (vi) do kernel analysis, only kernel
integrity checker; (vii) do kernel analysis, both mechanisms;
(viii) do all the detection mechanisms.

In the micro-benchmarks, an application (in the normal
world) sends a request for posture and gets a reply back
from DROIDPOSTURE (in the secure world). The macro-
benchmarks are used to evaluate the posture assessment
transmission protocol. For this purpose, we used a remote
server which runs on a standard laptop. The server listens for
incoming requests from the application in the normal world
and sends requests for posture to the DROIDPOSTURE service
running in the secure world of our board via the application.

A. Micro-benchmarks: mechanism performance

We used the calls mentioned above to evaluate the overhead
of DROIDPOSTURE. To measure the time for the baseline (i),



TABLE II
DROIDPOSTURE DELAY WHEN CALLED LOCALLY (IN SECONDS).

Size Calls
APK .dex ii iii iv v vi vii viii

12KB 5KB 1.81 0.8 2.23 0.15 1.64 1.75 4.01
19MB 39KB 14.12 1.51 14.92 0.14 1.63 1.77 16.26
4MB 67KB 31.84 1.57 32.26 0.14 1.63 1.77 33.19

250KB 103KB 29.03 1.55 29.70 0.14 1.63 1.77 30.40
803KB 153KB 66.28 5.85 69.96 0.14 1.63 1.77 71.21
401KB 305KB 206.21 7.86 206.54 0.14 1.63 1.77 208.42
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Fig. 3. DROIDPOSTURE delay when called locally with emphasis on the
applications analysis modules (in seconds).

the application in the normal world sends a request for posture
to the DROIDPOSTURE service in the secure world that does
not execute any analysis module. We repeated the experiment
1000 times and obtained an average of 0.082 ms, with standard
deviation of 0.0061.

For the rest of the calls the process is similar, except that
DROIDPOSTURE executes a subset of the analysis modules.
We expected calls to the application analysis modules to
depend on the size of the applications, so we considered
a set of applications with different sizes (downloaded from
Google Play Store). We did experiments for the combinations
of calls (ii) to (viii) and all bytecode sizes. The results of these
experiments are shown in Table II. Moreover, in Figure 3 we
represent the same values but only for the combinations of
application analysis modules and the total.

These results allow us to extract several conclusions. First,
in the table it is clear that calls to the kernel module have
a delay that is independent of the size of the application, as
expected (columns v-vii). Second, both the table and the figure
show that delay of the signature-based analysis grows with the
size of the dex file, to the point of becoming unusable (column
ii). This was expectable as it converts all the functions in the
bytecodes into CFGs, which increase with the size of the code.
Third, the table and the figure also show that learning-based
analysis grows slowly with the size of the dex file, showing
that this form of analysis is much simpler and faster than the
signature-based (column iii). Fourth, they also show that these
two delays depend on the size of the dex files, not on the size
of the APK files, which often contain many files that are not
analyzed, e.g., images and video (columns ii-iii). Fifth, all
mechanisms and their combination seem to be usable, except
the form of signature-based analysis we considered.

B. Macro-benchmarks: DroidPosture in a company

To evaluate the performance of the DROIDPOSTURE service
in the context of a realistic use case, we measured the total

TABLE III
DROIDPOSTURE DELAY WHEN CALLED BY A REMOTE SERVICE (SEC.).

Size Calls
APK .dex ii iii iv v vi vii viii

12KB 5KB 1.85 0.89 2.29 0.17 1.67 1.78 4.59
19MB 39KB 14.27 1.56 14.94 0.16 1.65 1.78 16.74
4MB 67KB 31.86 1.60 32.38 0.16 1.65 1.78 34.05

250KB 103KB 29.07 1.57 29.77 0.16 1.65 1.78 31.24
803KB 153KB 66.39 5.87 69.12 0.16 1.65 1.78 72.32
401KB 305KB 206.61 7.88 207.11 0.16 1.65 1.78 208.89

time for the remote server to send a request for posture and
to get a reply back from the service (see Figure 2). We used a
LAN network to emulate the case of posture being provided
inside a company.

We measured a round trip time (RTT) between our board
and the remote server of 0.497 ms. We used the same calls
as before. In this case, the time for a baseline call was 1.92
ms, with standard deviation of 0.096. The results of these
experiments are shown in Table III. The trends are essentially
the same that were observed with the micro-benchmarks, with
the additional delay of the network.

VI. SECURITY EVALUATION

As previously mentioned, the specific modules we imple-
mented in DROIDPOSTURE serve mainly to demonstrate the
kinds of analysis it can make and that it can support several.
Nevertheless, we evaluated experimentally the quality of the
detection made by our four modules, which we present here.

We used 500 malware samples from the Drebin datasets
[29]. These datasets contain samples from 179 different mal-
ware families collected between August 2010 and October
2012. We balanced the number of samples from differ-
ent malware families. For benign applications, we randomly
downloaded 30 applications from 8 different categories on
Google Play Store and verified them through VirusTotal
that runs samples through around 10 anti-virus products,
in order to get some confidence that they had no malware
(https://www.virustotal.com).

To evaluate the detection performance of the learning-based
detection mechanism, we randomly split our datasets into a
training set (66%) and a test set (33%). The training set
was used to determine the classification model, whereas the
test set was used for measuring the detection performance.
We use as metric accuracy, which evaluates the ratio of
applications correctly classified (it is given by the number
of applications correctly classified as good or bad, divided
by the total number of applications evaluated). The result
shows that the learning-based mechanisms using kNN with
k = 3 had accuracy of 89.4% with a false positive rate (i.e.,
percentage of samples wrongly identified as malware) of 4%.
The detection performance is relatively good, although our
dataset is not large. This suggests that our features effectively
model malicious code.

The signature-based detector achieves better detection per-
formance for samples that have signatures in the database. To



test its performance, we created signatures from over 100 dif-
ferent malware families, such as DroidDream, DroidKungfu,
DogoWar and foncy. The signature-based detector was able to
detect malware samples from those malware families correctly
with approximately 100% accuracy. However, the learning-
based mechanism is more effective than the signature-based
mechanism for applications that contain unknown malware.

To illustrate the effectiveness of kernel analysis modules, we
deployed the Mindtrick kernel-level rootkit on our board [30].
The Mindtrick rootkit replaces the entry for the read syscall
(sys_read) to instead point to the address of a malicious
function injected into the kernel. It allows attackers to obtain
a reverse TCP shell on Android devices. Our kernel analysis
module in the secure world is able to detect this rootkit by
reading each address in the system call table from the normal
world memory, and compare it with each syscall address listed
in System.map. It inserts an error for the sys_read syscall
entry in the posture report.

VII. CONCLUSION

With the strong adoption of mobile devices, new malware
is emerging to steal or manipulate sensitive data processed
in mobile applications. Anti-malware applications have been
proposed to overcome this problem, but these applications
are often unprotected from the malware itself. This paper
presents the DROIDPOSTURE service, which is protected by
the ARM TrustZone extension. The service aims to securely
detect intrusions in an Android device and report posture
information for external services. We implemented a set of
application and kernel analysis mechanisms to exemplify the
kind of posture assessment that our service can do, although
the specific analysis to do are probably specific to different
scenarios. The performance of these mechanisms seems to
be adequate for many applications, with the exception of the
signature-based analysis that is slow for large applications.
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