In Proceedings of the The 1st International
Workshop on Dependability of Clouds, Data
Centers and Virtual Computing Environments
(DCDV, with DSN'11), Hong Kong, June 2011

Lucy in the SKky without Diamonds:
Stealing Confidential Data in the Cloud

Francisco Rocha*, Miguel Correial
*Universidade de Lisboa, Faculdade de Ciéncias and Carnegie Mellon University — Portugal/USA
VInstituto Superior Técnico / INESC-ID — Portugal
rocha.francisco@gmail.com, miguel.p.correia@ist.utl.pt

Abstract—Cloud Computing is a recent paradigm that is
creating high expectations about benefits such as the pay-
per-use model and elasticity of resources. However, with this
optimism come also concerns about security. In a public cloud,
the user’s data storage and processing is no longer done inside
its premises, but in data centers owned and administrated by
the cloud provider. This may be a concern for organizations
that deal with critical data, such as medical records.

We show that a malicious insider can steal confidential data
of the cloud user, so the user is mostly left with trusting the
cloud provider. The paper achieves this goal by showing a
set of attacks that demonstrate how a malicious insider can
easily obtain passwords, cryptographic keys, files and other
confidential data. Additionally, the paper shows that recent
research results that might be useful to protect data in the
cloud, are still not enough to deal with the problem. The paper
is a call to arms for research in the topic.

I. INTRODUCTION

Cloud Computing is seen by many as the next big
paradigm shift in information technology. The myriad of
new cloud commercial solutions indicates that the cloud is
being widely accepted. The benefits of moving to the cloud
have already been discussed in multiple texts, e.g., [3]. The
question that still needs to be answered is whether or not a
secure transition to the cloud is possible for organizations
that require data confidentiality.

Cloud security is a topic with many facets [7], but the
paper focus only on security from the perspective of the
user of a public cloud [15], a company, governmental
organization or other. More specifically, the paper is about
confidentiality of the user’s data, a concern of many potential
users. The reason of alarm has its root in the deep changes
that the cloud paradigm brings to information technology.
The most relevant change is that the user relinquishes control
of its data to the cloud provider, which stores and processes
it in its own data centers. The user may hesitate to trust the
cloud provider and/or the foggy legal situation of data in the
cloud.

The paper considers the problem of the malicious insider
in a cloud based on the Infrastructure as a Service (IaaS)
model [15]. A TaaS cloud offers the user computing re-
sources, i.e., a set of virtual machines in which the user
can run arbitrary software on top of an operating system

of its choice. The classical mechanism to protect the con-
fidentiality of data is to encrypt it. However, in an laaS
cloud, this procedure is not enough because data needs to
be arbitrarily manipulated in the virtual machines, which
are in the provider’s data center. These infrastructures are
managed by administrators that have at least remote access
to the servers in which the virtual machines run (see for
instance open source cloud infrastructures like Open Stack
[1] or Eucalyptus [17]). If an administrator goes rogue, an
example of the well-known security threat of a malicious
insider [13], he can leverage the entry in these machines to
gain access to the user’s data. This conspicuous problem lead
us to analyze the possible attack vectors such an attacker can
exploit and if it is currently possible to prevent it.

Cloud providers are aware of the malicious insider threat
and argue that they have solutions to mitigate the problem
[10]. A first solution is not to allow physical access to the
servers. However, all attacks presented in this paper are done
remotely, they do not require physical access. A second
mechanism is a zero tolerance policy for insiders that access
data stored in the cloud. This measure only takes place after
the attack has happened, which is not enough, for instance,
in the case of an attacker that was fired or left voluntarily.
The third mechanism consists in logging all accesses to
the servers where the users’ data is stored. These logs are
later used for internal audits, to find out if employees are
behaving according to privacy policies. Again, this solution
only detects the attack after it happened, which may be
too late. All these mechanisms are important and should
be deployed, but they are not enough to prevent any of the
attacks in the paper.

The objective of the paper is to show that a malicious
insider can steal confidential data of the cloud user, there-
fore, currently, the user is mostly left with trusting the cloud
provider. The paper achieves this goal in two steps. The first
step, and main contribution of the paper, is the presentation
of four attacks showing that a malicious insider can easily
compromise passwords, cryptographic keys, files, and other
confidential data. Second, the paper discusses how a set of
recent research mechanisms fail to protect data from the
previous attacks. This does not mean that these mechanisms
are not useful, they are, but only that they do not solve the

mpc
Text Box
In Proceedings of the The 1st International Workshop on Dependability of Clouds, Data Centers and Virtual Computing Environments (DCDV, with DSN'11), Hong Kong, June 2011

problem we consider here. In a nutshell, the paper is a call
to arms to more research in the topic.

II. VIRTUALIZATION AND IAAS CLOUD COMPUTING

The foundation of the IaaS cloud service model is native
virtualization [18]. In native virtualization, a hypervisor or
virtual machine monitor provides an abstraction of the hard-
ware resources to a set of virtual machines (VM) executing
on top of it (see Figure 1). A VM includes its own operating
system that runs above the hypervisor.

Management VM
User's VM
User's VM

Management VM
User's VM
User's VM

Management VM
User's VM
User's VM

Hypervisor Hypervisor
Hardware Hardware

[Nefwork |

Figure 1. Abstract architecture of an IaaS service, with servers running
an hypervisor and users’ virtual machines

As already mentioned, the paper focus on the IaaS cloud
service model, as provided by Amazon EC2 or Open Stack /
Eucalyptus. In this service model, the user runs its systems
in a set of VMs in a set of physical servers. Each server has a
management VM that is responsible for the administration of
the VMs of the cloud users (on the left of the servers in the
figure). The attacks were executed using the Xen hypervisor,
in which the management VM is denominated dom 0 [4].

III. ATTACKING CONFIDENTIALITY IN THE CLOUD

This section presents four attacks that a malicious insider
can perform to access the user’s data. These attacks clearly
demonstrate that it is currently possible to violate the confi-
dentiality of the cloud user’s data. The attacks are available
as short videos in YouTube (links in the description of each
attack).

The test environment was a single machine, with an Intel
Core 2 vPro processor and 4GB RAM. The machine had
a Trusted Platform Module (TPM) version 1.2, a module
that provides certain security services [21]. The cloud in-
frastructure was emulated by the Xen 4.0.1-rc4 hypervisor.
The management VM was dom O running Ubuntu Server
10.04 with Xen-enabled kernel version 2.6.32.15. There was
a single user VM running Ubuntu Server 10.04 and Apache
version 2. The Apache web server had a private key used
for authentication and establishing secure channels with the
clients (browsers).

In the attacks we assume the following basic model. The
attacks are performed by a malicious insider that has root
access to the management VM of the servers that compose
the cloud, i.e., to dom O in our environment. We also assume
that, on the contrary, the attacker has no credentials that
allow him to authenticate himself on the user’s VM.

A. Cleartext passwords in memory snapshots

The first attack is quite simple. It takes advantage from
how easily an administrator can obtain a memory dump, or
snapshot, of any VM. To obtain the memory dump he needs
to issue a single command while logged as root in the dom
0. It has already been shown that it is possible to extract
passwords in clear text from a Linux memory dump [8].
We demonstrate that this is also possible against cloud user
VMs.

To perform the attack, a malicious insider obtains a
memory dump from the target VM using the dump-core
command that is part of the Xen management user interface
(xm). The dump-core command performs a dump of the
memory region reserved to the targeted VM. The attacker
only needs to identify the VM in the command. In our case,
to confirm the presence of passwords in the dump file, we
used the cat command to send the dump into the standard
output that was redirected to the strings and grep commands
in order to locate the known password.

These two steps are illustrated in Figure 2. The passwords
found were those used for a user to login and by Apache
to allow using an RSA key (suggestively named loginpwd
and apachersapwd in the figure). A video that shows the
attack is available online (http://www.youtube.com/watch?
v=FJryJ3gYSkc).

In a real attack the malicious insider has no previous
knowledge about the password. In this scenario, the attacker
simply needs to devise a method to take advantage of the
information contained in the dump file filtered by the strings
command. It has already been demonstrated that for some
applications, e.g., TrueCrypt, it is even possible to automate
the search for passwords once the attacker obtains a memory
dump. However, the important here is to show that the
passwords are available to the attacker.

$ xm dump-core 2 -L lucidomu.dump

Dumping core of domain: 2 ...

$ cat lucidomu.dump | strings | grep loginpwd
loginpwd

loginpwd

$ cat lucidomu.dump | strings | grep apachersapwd
apachersapwd

apachersapwd

apachersapwd

Figure 2. Attack that finds cleartext passwords in the memory of a VM

B. Obtaining private keys using memory snapshots

The objective of the second attack is to obtain the private
key of a private-public key pair. In the example of this attack
that we demonstrate, the key is the one used by the Apache
server to establish secure channels with its clients. With this
key, the attacker can impersonate the server before its clients.

Apache keeps the private key in memory, so it can be
found in a memory dump, just like the passwords in the
previous attack. However, the key is only a number, e.g.,

http://www.youtube.com/watch?v=FJryJ3gYSkc
http://www.youtube.com/watch?v=FJryJ3gYSkc

1024 or 2048 bits if RSA is used. Apparently, this fact
provides a sort of security by obscurity, because all the
memory is a sequence of numbers with an unclear semantics
at first sight. This attack shows that this obscurity provides
no security.

To execute the attack, the malicious insider first obtains
a memory dump of the target VM, like in the previous
section. After this first step, the attacker has the keys,
but they are hidden in at least hundreds of megabytes.
We used the same technique to find keys that obtained
good results in the cold boot attack [11]. Cryptographic
keys are typically stored in memory in a format that is
recognizable. The most used format is PKCS#1 [19] that
represents keys as an ASN.1 object. Such objects have a
structure in memory that is known. It includes the sequence
identifier (the byte 0x30) followed by several bytes and
the 0x02 01 00 02 pattern. There is a tool denominated
rsakeyfind (part of a package with the same name available
for several Linux distributions) that performs this type of
search, so the attacker can use it on the dump file and
extract the keys. This search mechanism can lead to false
positives, but we did not obtain any while using the tool.
The attack is illustrated in Figure 3 and in the video online
(http://www.youtube.com/watch?v=8xKhS5ZGRS5s).

$ xm dump-core 2 -L lucidomu.dump

Dumping core of domain: 2 ...

$ rsakeyfind lucidomu.dump

found private key at 1b06lde8

version =

00

modulus =

00 dO 66 f8 9d e2 be 4a 2b 6d be 9f de 46 db 5a

publicExponent =
01 00 01
privateExponent =
primel =

prime2 =

Figure 3. Attack that finds RSA private keys in the memory of a VM

C. Extracting confidential data from the hard disk

The motivation for this third attack is an hypothetical
scenario in which a cloud user is aware of the dangers
of memory snapshots, so it only accepts to use a service
in which the ability to create them is disabled. The attack
leverages the fact that the user’s data has to be stored in
disk, which is controlled by the management VM, or dom
0 in the Xen case.

In the specific attack that we demonstrate, we consider
that Linux’s Logical Volume Manager (LVM) is used. LVM
creates logical volumes on top of the physical storage
in a machine. LVM uses three levels of abstraction. The
first handles the physical storage resources, called physical
volumes. The second handles volume groups, which are sets

of physical volumes. The third level handles logical volumes.
It is at this level that we can mount or create file systems.

The process to extract confidential information from disk
volumes is similar to performing a backup copy of the disk
partition owned by the victim VM. To obtain the backup
copy, the malicious insider runs the following sequence of
steps in the dom 0. First, the attacker creates a snapshot of
the victim VM drive using the LVM’s lvcreate command,
which creates a new logical volume. In the second step,
the attacker uses the kpartx utility to add the partition
mappings from the partition table existent on the newly
created snapshot volume. The kpartx utility, derived from the
partx command, is responsible for reading partition tables
existent on devices and to create the respective device maps.
In the third step, the attacker performs a scan with LVM’s
vgscan command to find all available LVM physical volumes
and volume groups. The objective of the malicious insider is
to locate the volume groups that belong to the victim VM.
After finding the desired volume group, the attacker activates
the logical volumes existing in it. To do this he can use the
vgchange command with the -ay option.

With the logical volumes activated, the attacker can mount
them at will and extract the desired information using
arbitrary commands. For example, he can simply use the
rsync file copying utility to copy as many files as he desires
to another machine. To get the system back to its initial
state, the attacker starts by un-mounting and deactivating
the logical volumes with the vgchange command. Then, he
removes the partition mappings with the kpartx command
and removes the snapshot logical volume using the lvremove
command.

This sequence of steps is depicted in Figure 4 and
the video of the attack is online (http://www.youtube.com/
watch?v=wvInlA49spY).

$ lvcreate -L 2G -s -n lv_st /dev/main_vol/domu
Logical volume ’1lv_st’ created
$ kpartx —av /dev/main_vol/lv_st

$ vgscan

Found volume group ’LucidDomU’

$ vgchange -ay LucidDomU

$ mount /dev/LucidDomU/root /mnt/
$ rsync -avhp /mnt/ /media/backup

umount /mnt/

vgchange —an LucidDomU

kpartx -d /dev/main_vol/lv_st
lvremove /dev/main_vol/lv_st

WA v

Figure 4. Backup a VM’s LVM logical volume

D. Virtual machine relocation

The fourth and last attack considers a hypothetical cloud
with a security level much higher than what we consid-
ered so far. This cloud uses integrity-protected hypervisors,
i.e., hypervisors that have a certain configuration and are
protected against modification [23], [20]. This protection is

http://www.youtube.com/watch?v=8xKhS5ZGR5s
http://www.youtube.com/watch?v=wvlnIA49spY
http://www.youtube.com/watch?v=wvlnIA49spY

obtained by using a trusted boot process that involves the
Trusted Platform Module (TPM) to assure the user that a
certain hypervisor and software configuration was started.
This allows the cloud to prove that the hypervisor is a special
version in which, e.g., snapshots of memory and accesses to
the disk area were disabled.

Despite these protections, relocating users’ VMs in dif-
ferent servers is a basic functionality of IaaS clouds that we
believe cannot be disabled in practice. The attack consists
in using this functionality to escape from the protections we
just mentioned, then executing some of the previous attacks.
This attack was first presented in [20], so our contribution
is only to demonstrate it.

This attack can be divided in two main phases. In the
first, the objective of the malicious insider is to assure
the user that the server where it is about to launch its
VM is using an integrity-protected hypervisor, just like the
cloud would normally do. The attacker will do this by
using remote attestation. This attestation is possible due
to the TPM hardware module present in the servers. In
our case, we are going to demonstrate the attack using a
direct proof mechanism based on the PrivacyCA [2]. We
designate rather informally by secure server a machine with
an integrity-protected hypervisor and by malicious server a
machine controlled by the attacker and that does not have
an integrity-protected hypervisor. Please use Figures 5 and
6 as companions to understand the steps of the attack.

Cloud Infrastructure

Secure Server

3 s
Secure Server

1
S
Cloud user

2

Figure 5. Virtual machine relocation attack

To perform the attestation, the attacker first needs to
obtain the endorsement key certificate from the TPM of
the machine the user (challenger) wants to verify, i.e.,
of the secure server. This is achieved using the getcert
command. This certificate is part of the certificate chain
to the root certification authority (CA), which is passed
to the aikpublish application! that generates an attestation
identity key pair (AIK). The private key of the pair is used to
sign PCRs quotations sent to the user (details below). This
application also generates a proof file that can later be used
by the user to verify that the AIK is valid.

In Figure 5, arrow 1 represents the stage when the proof
file is used by the user to authenticate the secure server.

IThe aik* commands are provided by the PrivacyCA [2].

PCR-02:
PCR-04:

ED DF ...

59 91 ...

PCR-05: 97 99 ...

PCR-07: BA C3 ...

SecureServer$./getcert ek_cert.crt

SecureServer$./aikpublish ek_cert.crt inter_ca_03.crt
root_ca.crt proof_file provider.out aik_blob.key

SecureServer$./aikrespond aik_blob.key
encrypted_challenge_client.out decrypted.out

SecureServer$ cat decrypted

Francisco Rocha

SecureServer$./aikquote aik_blob.key 2 4 5 7 pcrs_quote.out

CloudUser$ cat secret.in

Francisco Rocha

CloudUser$./aikchallenge secret.in
proof_file_provider.out encrypted_challenge.out
aik_rsa_pub.key

CloudUser$./aikqgverify aik_rsa_pub.key pcrs_quote.out
2 eddf...
4 5991...
5 9799...
7 bac3...

SecureServer$ ssh admin@MaliciousServer

MaliciousServer$ xm create lucidLAMP.cfg
MaliciousServer$ xm list

Name

Domain-0

LucidLAMP

Figure 6. Attack that relocates a VM

The process consists in the user running the aikchallenge
application to create an encrypted challenge using the public
AIK and sending it in the proof file to the secure server.
Then, the secure server uses the aikrespond application to
respond to the challenge, using the private AIK to decrypt
it and prove to the user that it is the owner of that public-
private AIK key pair.

After the authentication, the secure server uses the
aikquote application to create a quote of some of its TPM
platform configuration registers (PCRs), in the case of
Figure 6, PCRs 2 4 5 and 7, and sends it to the cloud user.
The PCRs are set during the boot process with hashes of
parts of the software, namely of the hypervisor and dom
0. Upon reception of the PCRs quote, the user uses the
aikqverify application with the public AIK to verify that it
came from the correct machine and that the configuration
is the one that should be. The hash that corresponds to
the hypervisor must match the one that the user knows to
correspond to the integrity-protected hypervisor in which it
trusts. The verification process is represented by arrow 2 in
Figure 5.

The second phase of the attack is the following. After
the attestation process is complete, the verifier trusts the
hypervisor. Then, the attacker relocates the VM about to be
launched into a different server: the malicious server. This
step is illustrated by arrow 3 in Figure 5 and by the last
three commands in Figure 6. This machine would be running
an insecure version of the hypervisor and dom 0, offering
resources to the attacker that can help him compromising
confidential data existent in the VMs, for example, the

snapshot command of the Xen management user interface
discussed in previous sections.

We provide an illustration of the attack in video (http:
/lwww.youtube.com/watch?v=7909-pAtSp0).

IV. PROTECTION MECHANISMS AND THEIR
LIMITATIONS

This section discusses how recent research mechanisms
fail to protect the confidentiality of users’ data from the
previous attacks. Notice that the authors of these mech-
anisms do not claim to solve the problem; we selected
these mechanisms because they seemed close enough to our
problem. Therefore, we also do not mean to say that these
mechanisms are not useful — they are — only that they do not
solve the problem we consider in the paper. Some of these
protection mechanisms can be seen as a solution trying to
solve the whole confidentiality problem inherent to cloud
computing [20], [6], whereas others are only mechanisms
that could be used as a part of a more complete solution
[5].

This section also points research directions that may be
pursued in order to solve the problem studied in the paper. If
cryptography seems problematic due to the negative result of
[22] (next section), trusted computing and distributing trust
seem to be promising directions (Sections IV-B and IV-C).

A. Cryptography

Cryptography may be seen at first sight as the solution
for data confidentiality in the cloud. However, data in
IaaS clouds has to be manipulated by the applications that
run in the user VMs, which normally can not happen if
the data is encrypted. For instance, a payroll processing
application cannot process payrolls if all data is encrypted.
There has been some discussion about fully homomorphic
encryption (FHE) as a solution for this problem, because
FHE allows certain operations, like addition, to be executed
over encrypted data [9]. However, currently the performance
of FHE makes this infeasible. Furthermore, van Dijk and
Juels have shown that even with FHE, cryptography can not
enforce privacy in the cloud if data from several clients is
processed [22].

B. Trusted Computing

Trusted computing is a promising technology to solve
the novel security challenges existent in cloud computing.
Having the TPM as hardware-based root of trust may
enable researchers to devise strong security solutions. This
subsection is about relevant work published in this area.

Virtual TPM (vIPM): The first mechanism is the vTPM
[5], which provides a set of virtual TPMs to be used in
virtualized environments, so that every VM can use its own
private TPM. The objective is for an operating system (OS)
running on a VM to have the same use model and TPM

command set as an OS that runs directly over the hardware
platform and takes advantage of the physical TPM.

The vTPM approach is not a complete solution for user
data confidentiality in the cloud. Having vITPMs for VMs
does not guarantee that the hypervisor is not vulnerable
or that the VMs are launched or migrated to a trustwor-
thy server. Furthermore, security issues in this technology
have been exposed [16]. The problem is that the lack of
communication between the libxc domain builder and the
vIPM software makes the vIPM vulnerable to a time-of-
check-time-of-use (TOCTOU) attack. A second problem is
the unpredictable size of the trusted computing base (TCB),
i.e., of the software that is critical in terms of security. The
size is unpredictable because with new VMs the system
will need to create the corresponding vIPM, so the size
of the TCB grows, which is problematic from the security
viewpoint [14].

PVI: The Private Virtual Infrastructure (PVI) is an attempt
to solve the security challenges of the cloud [12]. The main
idea is to have the cloud user control a PVI, while the cloud
provider controls the cloud fabric. The PVI architecture uses
the vTPM and the Locator Bot (LoBot) protocol as building
blocks. The vTPM provides the root of trust while the LoBot
protocol allows each virtual machine to be remotely verified
by its owner. Although the objective of the PVI is to provide
security for the cloud user, it has no specific mechanisms to
protect the confidentiality of the user’s data.

TCCP: The most relevant solution for the problem con-
sidered in the paper is the Trusted Cloud Computing Plat-
form (TCCP) [20]. The main purpose of the TCCP is to
provide a closed box environment for guest VMs running in
the cloud, i.e., to prevent administrators from inspecting or
tampering with the contents of the users’ VMs. The TCCP
also offers remote attestation to a cloud user wishing to
launch a VM in an untrusted cloud provider.

The trusted computing base (TCB) of the TCCP includes
two main components: the trusted virtual machine monitor
(TVMM) and the trusted coordinator (TC). The latter is
managed by a trusted third party, outside the cloud and
independent of the cloud provider. The TCCP operates by
creating a set of trusted nodes that run a TVMM (akin to
an integrity-protected hypervisor). The TVMMs are used to
run the user’s VMs and are managed by the TC. The TCCP
aims at protecting both the VM bootstrap and migration
operations, which are critical stages of VM management.

Although this solution is on the right track, the addition of
a TC maintained by an external trusted entity is problematic:
it requires trust in the third party and may be unacceptable
for the cloud provider.

C. Distributed trust

A different kind of solution consists in distributing trust
among several cloud providers. In this approach the user

http://www.youtube.com/watch?v=Z9o9-pAtSp0
http://www.youtube.com/watch?v=Z9o9-pAtSp0

does not need to trust the cloud provider and its adminis-
trators. Instead, it trusts that there is no collusion among
malicious insiders of more than a certain number of clouds,
which is a weaker assumption.

Currently this idea has been applied in the context of
cloud computing by a single system, DepSky [6]. The
purpose of DepSky is to guarantee confidentiality, integrity
and availability of data stored in the cloud. DepSky, however,
does not provide the IaaS model, but only a storage service
similar, e.g., to Amazon S3. DepSky scatters data in several
storage clouds of different cloud providers, e.g., in four.
It uses Byzantine quorum system algorithms to assure the
integrity and availability of data, even in the presence of
failures data losses or corruptions in some of the clouds.
The confidentiality of the data is assured by encrypting it
and storing the encryption key in all the clouds using secret
sharing. This solution allows the implementation of secure
storage clouds, but does not protect data in IaaS clouds that
provide VMs to the user. Therefore, it does not prevent the
attacks that we demonstrate in the paper.

V. CONCLUSION

Cloud Computing is a promising paradigm with growing
acceptance, but there is still much work to be done if we
want to achieve holistic security in the cloud. The paper
focused on the malicious insider threat. It demonstrated that
this type of attacker can violate data confidentiality without
the need of high technical skills. It also discussed the benefits
and limitations of current partial solutions for the problem.

ACKNOWLEDGMENTS

This work was partially supported by the European Union FP7/2007-
2013 under project TCLOUDS (grant agreement 257243), and by Fundagdo
para a Ciéncia e a Tecnologia through the RC-Clouds (PCT/EIA-
EIA/115211/2009) and the Multiannual and CMU-Portugal Programmes.
The title of the paper is partially taken from a song by Lennon/McCartney.

REFERENCES

[1] Open Stack. http://www.openstack.org.
[2] PrivacyCA. http://www.privacyca.com.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. A view of cloud computing. Communications
of the ACM, 53(4):50-58, April 2010.

[4] P. Barham, B. Dragovic, K. Fraiser, S. Hand, T. Harris, A. Ho,
R. Neugebaurer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles, pages 164—177, October 2003.

S. Berger, R. Céceres, K. A. Goldman, R. Perez, R. Sailer,
and L. van Doorn. vTPM: Virtualizing the trusted platform
module. In Proceedings of the 15th USENIX Security Sym-
posium, pages 305-320, August 2006.

A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa.
DepSky: Dependable and secure storage in a cloud-of-clouds.
In Proceedings of the European Conference on Computer
Systems (EuroSys), pages 31-46, April 2011.

Cloud Security Alliance. Top threats to cloud computing v1.0,
March 2010.

(5

—

[6

—_

[7

—

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

S. Davidoff. Cleartext passwords in Linux memory. http://phi-
losecurity.org/pubs/davidoff-clearmem-linux.pdf, July 2008.

C. Gentry. Fully homomorphic encryption using ideal lattices.
In Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, pages 169-178, 2009.

E. Grosse, J. Howie, J. Ransome, J. Reavis, and S. Schmidt.
Cloud computing roundtable. IEEE Security Privacy, 8(6):17
-23, 2010.

J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum,
and E. W. Felten. Lest we remember: Cold boot attacks on
encryption keys. In Proceedings of the 17th USENIX Security
Symposium, pages 45-60, August 2008.

F. J. Krautheim. Private virtual infrastructure for cloud
computing. In Proceedings of the Workshop on Hot Topics
in Cloud Computing, June 2009.

P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C.
Taylor, S. J. Turner, and J. F. Farrell. The inevitability
of failure: The flawed assumption of security in modern
computing environments. In Proceedings of the 21st National
Information Systems Security Conference, pages 303-314,
1998.

J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig. TrustVisor: Efficient TCB reduction and attestation.
In Proceedings of the IEEE Symposium on Security and
Privacy, pages 143-158, May 2010.

P. Mell and T. Grance. The NIST definition of cloud
computing, July 2009.

D. G. Murray, G. Milos, and S. Hand. Improving Xen
security through disaggregation. In Proceedings of the 4th
ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, pages 151-160, 2008.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov. The Eucalyptus open-
source cloud-computing system. In Proceedings of the IEEE
International Symposium on Cluster Computing and the Grid,
pages 124-131, 20009.

M. Rosenblum and T. Garfinkel. Virtual machine monitors:
Current technology and future trends. [IEEE Computer,
38(5):39-47, May 2005.

RSA Laboratories. PKCS #1 v2.1: RSA cryptography
standard. ftp://ftp.rsasecurity.com/pub/pkcs/pkces-1/pkcs-1v2-
1.pdf, June 2002.

N. Santos, K.P. Gummadi, and R. Rodrigues. Towards trusted
cloud computing. In Proceedings of the Workshop on Hot
Topics in Cloud Computing, June 2009.

Trusted Computing Group. Trusted computing platform
module main specification. version 1.2, revision 94. http:
/Iwww.trustedcomputinggroup.org, 2006.

M. van Dijk and A. Juels. On the impossibility of cryp-
tography alone for privacy-preserving cloud computing. In
Proceedings of the 5th USENIX Conference on Hot Topics in
Security, pages 1-8, 2010.

A. Vasudevan, J. M. McCune, N. Qu, L. van Doorn, and
A. Perrig. Requirements for an integrity-protected hypervisor
on the x86 hardware virtualized architecture. In Proceedings
of the 3rd International Conference on Trust and Trustworthy
Computing, pages 141-165, June 2010.

http://www.openstack.org
http://www.privacyca.com
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org

