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DEPSKY: Dependable and Secure Storage in a Cloud-of-Clouds
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The increasing popularity of cloud storage services has lead companies that handle critical data to think
about using these services for their storage needs. Medical record databases, large biomedical datasets, his-
torical information about power systems and financial data are some examples of critical data that could
be moved to the cloud. However, the reliability and security of data stored in the cloud still remain major
concerns. In this work we present DepSky, a system that improves the availability, integrity, and confiden-
tiality of information stored in the cloud through the encryption, encoding, and replication of the data on
diverse clouds that form a cloud-of-clouds. We deployed our system using four commercial clouds and used
PlanetLab to run clients accessing the service from different countries. We observed that our protocols im-
proved the perceived availability, and in most cases, the access latency, when compared with cloud providers
individually. Moreover, the monetary costs of using DepSky in this scenario is at most twice the cost of using
a single cloud, which is optimal and seems to be a reasonable cost, given the benefits.
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1. INTRODUCTION

The increasing maturity of cloud computing technology is leading many organizations
to migrate their IT infrastructure and/or adapt their IT solutions to operate completely
or partially in the cloud. Even governments and companies that maintain critical in-
frastructures (e.g., healthcare, telcos) are adopting cloud computing as a way of re-
ducing costs [Greer 2010]. Nevertheless, cloud computing has limitations related to
security and privacy, which should be accounted for, especially in the context of critical
applications.
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12:2 A. Bessani et al.

This article presents DEPSKY, a dependable and secure storage system that lever-
ages the benefits of cloud computing by using a combination of diverse commercial
clouds to build a cloud-of-clouds. In other words, DEPSKY is a virtual storage cloud,
which is accessed by its users to manage updatable data items by invoking equivalent
operations in a group of individual clouds. More specifically, DEPSKY addresses four
important limitations of cloud computing for data storage in the following way.

— Loss of availability. When data is moved from the company’s network to an external
datacenter, it is inevitable that service availability is affected by problems in the In-
ternet. Unavailability can also be caused by cloud outages, of which there are many
reports [Raphael 2011], or by denial-of-service attacks like the one that allegedly af-
fected a service hosted in Amazon EC2 in 2009 [Metz 2009]. DEPSKY deals with this
problem, exploiting replication and diversity by storing the data on several clouds,
thus allowing access to the data as long as a subset of them is reachable.

— Loss and corruption of data. There have been several cases of cloud services losing
or corrupting customer data. For example, in October 2009 a subsidiary of Microsoft,
Danger Inc., lost the contacts, notes, photos, and so on of a large number of users
of the Sidekick service [Sarno 2009]. The data was recovered several days later, but
the users of Ma.gnolia were not so lucky in February of the same year, when the
company lost half a terabyte of data that it never managed to recover [Naone 2009].
DEPSKY deals with this problem by using Byzantine fault-tolerant replication to
store data on several cloud services, allowing data to be retrieved correctly even if
some of the clouds corrupt or lose it.

— Loss of privacy. The cloud provider has access to both the stored data and how it is
accessed. The provider may be trustworthy, but malicious insiders are a wide-spread
security problem [Hanley et al. 2011]. This is a special concern in applications that
involve keeping private data like health records. An obvious solution is the customer
encrypting the data before storing it, but if the data is accessed by distributed ap-
plications this involves running protocols for key distribution (processes in different
machines need access to the cryptographic keys). DEPSKY employs a secret sharing
scheme and erasure codes to avoid storing clear data in the clouds and to improve
the storage efficiency, amortizing the replication factor on the cost of the solution.

— Vendor lock-in. When a customer hosts its data or services in a cloud, it has to com-
ply with the cloud service provider’s billing policy, service characteristics, and APIs.
In this scenario, there is always the concern that the coupling between the customer
and the provider become so high to a point that it is no longer economically viable
to move from one provider to another—the so-called vendor lock-in problem [Abu-
Libdeh et al. 2010]. This concern is specially prevalent in Europe, as the most con-
spicuous providers are not in the region. Even moving from one provider to another
one may be expensive because the cost of cloud usage has a component proportional
to the amount of data that is read and written. DEPSKY addresses this issue in
two ways. First, it does not depend on a single cloud provider, but on a few, so data
access can be balanced among the providers, considering their practices (e.g., what
they charge). Second, DEPSKY uses erasure codes to store only a fraction (typically
half) of the total amount of data in each cloud. In case the need for exchanging one
provider with another arises, the cost of migrating the data will be at most a fraction
of what it would be otherwise.

The way in which DEPSKY solves these limitations does not come for free. At first
sight, using, say, four clouds instead of one involves costs roughly four times higher.
One of the key objectives of DEPSKY is to reduce this cost, which in fact it does to about
1.2 to 2 times the cost of using a single cloud. This seems to be a reasonable cost, given
the benefits.

ACM Transactions on Storage, Vol. 9, No. 4, Article 12, Publication date: November 2013.
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The key insight of the article is that the limitations of individual clouds can be
overcome by using a cloud-of-clouds in which the operations (read, write, etc.) are
implemented using a set of Byzantine quorum systems protocols. The protocols re-
quire diversity of location, administration, design, and implementation, which in this
case comes directly from the use of different commercial clouds [Vukolic 2010]. There
are protocols of this kind in the literature, but they either require that the servers
execute some protocol-specific code [Cachin and Tessaro 2006; Goodson et al. 2004;
Malkhi and Reiter 1998a, 1998b; Martin et al. 2002], not possible in storage clouds,
or are sensitive to contention (e.g., Abraham et al. [2006]), which makes them difficult
to use for geographically dispersed systems with high and variable access latencies.
DEPSKY overcomes these limitations by not requiring specific code execution in the
servers (storage clouds), but still being efficient by requiring only two communication
round-trips for each operation. Furthermore, it leverages the previously mentioned
mechanisms to deal with data confidentiality and reduce the amount of data stored in
each cloud.

Although DEPSKY is designed for data replication on cloud storage systems, the
weak assumptions required by its protocols make it usable to replicate data on arbi-
trary storage systems such as FTP servers and key-value databases. This extended ap-
plicability is only possible because, as already mentioned, the DEPSKY protocols have
no server-side specific code to be executed, requiring only basic storage operations to
write, read and list objects.

In summary, the main contributions of the article are the following.

(1) The DEPSKY system, which is a storage cloud-of-clouds, overcomes the limitations
of individual clouds by using a set of efficient Byzantine quorum system protocols,
cryptography, secret sharing, erasure codes, and the diversity that comes from
using several clouds. The DEPSKY protocols require at most two communication
round-trips for each operation and store only approximately half of the data in
each cloud for the typical case.

(2) The notion of consistency proportional storage, is one in which the replicated stor-
age system provides the same consistency semantics as its base objects (the nodes
where the data is stored). DEPSKY satisfies this property for a large spectrum
of consistency models, encompassing most of the semantics provided by storage
clouds and popular storage systems.

(3) A set of experiments shows the costs and benefits (both monetary and in terms
of performance) of storing updatable data blocks in more than one cloud. The ex-
periments were made during one month, using four commercial cloud storage ser-
vices (Amazon S3, Windows Azure Blob Service, Nirvanix CDN, and Rackspace
Files) and PlanetLab to run clients that access the service from several places
worldwide.

The article is organized as follows. Section 2 describes some applications that can
make use of DEPSKY. Section 3 presents the core protocols employed in our system,
and Section 4 presents additional protocols for locking and management operations.
Sections 5 and 6 show how storage cloud access control can be employed to set up
DEPSKY cloud-of-clouds storage and how the system works with weakly consistent
clouds, respectively. The description of the DEPSKY implementation and its experi-
mental evaluation are presented in Sections 7 and 8. Finally, Section 9 discusses re-
lated work and Section 10 concludes the article. The article also contains a series of
appendixes describing some auxiliary functions used in our algorithms (Appendix A),
the correctness proofs for the storage (Appendix B) and locking protocols (Appendix C),
and a proof of DEPSKY consistency proportionality (Appendix D).

ACM Transactions on Storage, Vol. 9, No. 4, Article 12, Publication date: November 2013.
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12:4 A. Bessani et al.

2. CLOUD STORAGE APPLICATIONS

In this section we briefly discuss some examples of applications that can benefit from
a cloud-of-clouds storage system like DEPSKY.

Critical data storage. Given the overall advantages of using clouds for running large-
scale systems, many governments around the globe are considering the use of this
model. The US government already announced its interest in moving some of its com-
putational infrastructure to the cloud and started some efforts in understanding the
risks involved in doing these changes [Greer 2010]. The same kind of concerns are also
being discussed in Europe [Dekker 2012].

In line with these efforts, there are many critical applications managed by com-
panies that have no interest in maintaining a computational infrastructure (a dat-
acenter). For these companies, the cloud computing pay-per-use model is specially
appealing. An example would be power system operators. Considering only the case
of storage, power systems have operational historian databases that store events col-
lected from the power grid and other subsystems. In such a system, the data should
be always available for queries (although the workload is mostly write-dominated) and
access control is mandatory.

Another critical application that could benefit from moving to the cloud is a unified
medical records database, also known as electronic health records (EHR). In such an
application, several hospitals, clinics, laboratories, and public offices share patient
records in order to offer better service without the complexities of transferring patient
information between them. A system like this was deployed in the UK for some
years (EHS). Similar to our previous example, availability of data is a fundamental
requirement of a cloud-based EHR system, and privacy concerns are even more
important.

A somewhat related example comes from the observation that some biomedical com-
panies that generate high-value data would not put it on a third-party cloud with-
out ensuring confidentiality. In fact, some of these companies are actively stripping
biomedical data stored on several clouds to avoid complete confidentiality loss in case
of cloud compromise [May 2010].

All these applications can benefit from a system like DEPSKY. First, the fact that the
information is replicated on several clouds would improve the data availability and
integrity. Moreover, the DEPSKY-CA protocol (see Section 3.5) ensures the confiden-
tiality of stored data and therefore addresses some of the privacy issues so important
for these applications. Finally, these applications are prime examples of cases in which
the extra costs due to replication are affordable for the added quality of service since
the amount of data stored is not large when compared with Internet-scale services.

Content distribution. One of the most surprising uses of Amazon S3 is content distri-
bution [Henry 2009]. In this scenario, the storage system is used as distribution points
for data in such a way that one or more producers store the content on their account
and consumers read this content. A system like DEPSKY, which supports dependable
updatable information storage can help this kind of application when the content be-
ing distributed is dynamic and there are associated security concerns. For example,
a company can use the system to give detailed information about its business (price,
available stock, etc.) to its affiliates with improved availability and security.

Future applications. Many applications are moving to the cloud, so it is possible
to think of new applications that would use the storage cloud as a back-end storage
layer. Relational databases [Brantner et al. 2008], file systems [Vrable et al. 2012],
objects stores and key-value databases are examples of systems that can use the cloud
as storage layer as long as caching and weak consistency models [Terry et al. 1994;

ACM Transactions on Storage, Vol. 9, No. 4, Article 12, Publication date: November 2013.
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Fig. 1. Architecture of DEPSKY (with 4 clouds and 2 clients).

Vogels 2009] are used to avoid paying the price of cloud access in terms of latency and
monetary costs per operation.

3. THE DEPSKY SYSTEM

As mentioned before, since clouds are used for storage without the capacity of execut-
ing users’ code, they are accessed using their standard interface without modifications.
The DEPSKY algorithms are implemented as a software library in the clients. This li-
brary offers an object store interface [Gibson et al. 1998], similar to what is used by
parallel file systems (e.g., Ghemawat et al. [2003]; Weil et al. [2006]), allowing reads
and writes in the back-end (in this case, the untrusted clouds). Figure 1 presents the
architecture of DEPSKY.

In the remainder of this section, we present our data and system models, the proto-
col design rationale, the two main protocols (DEPSKY-A and DEPSKY-CA), and some
optimizations.

3.1. Data Model

The use of diverse clouds requires the DEPSKY library to deal with the heterogeneity
of the interfaces of different cloud providers. An aspect that is specially important is
the format of the data accepted by each cloud. The data model allows us to ignore these
details when presenting the algorithms.

Figure 2 presents the DEPSKY data model with its three abstraction levels. In the
first (left), there is the conceptual data unit, which corresponds to the basic storage
object with which the algorithms work (a register in distributed computing parlance
[Lamport 1986; Malkhi and Reiter 1998a]). A data unit has a unique name (X in the
figure), a version number (to support updates on the object), verification data (usually
a cryptographic hash of the data), and the data stored on the data unit object. In the
second level (middle), the conceptual data unit is implemented as a generic data unit
in an abstract storage cloud. Each generic data unit, or container, contains two types of
files: a signed metadata file and the files that store the data. Metadata files contain the
version number and the verification data, together with other information that appli-
cations may demand. Notice that a data unit (conceptual or generic) can store several
versions of the data, i.e., the container can contain several data files. The name of the
metadata file is simply metadata, while the data files are called value-〈Version〉, where
〈Version〉 is the version number of the data (e.g., value-1, value-2, etc.). Finally, in the

ACM Transactions on Storage, Vol. 9, No. 4, Article 12, Publication date: November 2013.
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12:6 A. Bessani et al.

Fig. 2. DEPSKY data unit and the 3 abstraction levels.

third level (right) there is the data unit implementation, i.e., the container translated
into the specific constructions supported by each cloud provider (Bucket, Folder, etc.).
Notice that the one-container-per-data-unit policy may be difficult to implement in
some clouds (e.g., Amazon S3 has a limit of 100 buckets per account, limiting the sys-
tem to 100 data units). However, it is possible to store several data units on the same
container as long as the data unit name is used as a prefix of their file names.

The data stored on a data unit can have arbitrary size, and this size can be different
for different versions. Each data unit object supports the usual object store operations:
creation (create the container and the metadata file with version 0), destruction (delete
or remove access to the data unit), and write and read.

3.2. System Model

We consider an asynchronous distributed system composed of three types of parties:
writers, readers, and cloud storage providers. The latter are the clouds 1–4 in Figure 1,
while writers and readers are roles of the clients, not necessarily different processes.

Readers and writers. Readers can fail arbitrarily, i.e., they can crash, fail intermit-
tently, or present some other deviation from correct behavior. Writers, on the other
hand, are assumed to fail only by crashing. We do not consider that writers can fail
arbitrarily because, even if the protocol tolerated inconsistent writes in the replicas,
faulty writers would still be able to write wrong values in data units, effectively cor-
rupting the state of the application that uses DEPSKY. Moreover, the protocols that
tolerate malicious writers are much more complex (e.g., Cachin and Tessaro [2006],
Liskov and Rodrigues [2006]), with active servers verifying the consistency of writer
messages, which cannot be implemented on general storage clouds (Section 3.3).

All writers of a data unit, du, share a common private key Kdu
rw

used to sign some
of the data written on the data unit (function sign(DATA, Kdu

rw
)), while readers of du

have access to the corresponding public key Kdu
uw

to verify these signatures (function
verify(DATA, Kdu

uw
)). This public key can be made available to the readers through

the storage clouds themselves. Moreover, we also assume the existence of a collision-
resistant cryptographic hash function H.

Cloud storage providers. Each cloud is modeled as a passive storage entity that sup-
ports five operations: list (lists the files of a container in the cloud), get (reads a file),
create (creates a container), put (writes or modifies a file in a container), and remove
(deletes a file). By passive storage entity, we mean that no protocol code other than
what is needed to support the aforementioned operations is executed. We assume that
access control is provided by the clouds in order to ensure that readers are only allowed
to invoke the list and get operations (more about this in Section 5).

ACM Transactions on Storage, Vol. 9, No. 4, Article 12, Publication date: November 2013.



�

�

�

�

�

�

�

�

DepSky: Dependable and Secure Storage in a Cloud-of-Clouds 12:7

Fig. 3. DEPSKY read and write protocols.

Since we do not trust clouds individually, we assume they can fail in a Byzantine
way [Lamport et al. 1982]: stored data can be deleted, corrupted, created, or leaked
to unauthorized parties. This is the most general fault model and encompasses both
malicious attacks/intrusions on a cloud provider and arbitrary data corruption (e.g.,
due to accidental events like the Ma.gnolia case). The protocols require a set of n =
3f + 1 storage clouds, at most f of which can be faulty. Additionally, the quorums
used in the protocols are composed of any subset of n − f storage clouds. It is worth
noticing that this is the minimum number of replicas to tolerate Byzantine servers in
asynchronous storage systems [Martin et al. 2002].

Readers, writers, and clouds are said to be correct if they do not fail.
The register abstraction provided by DEPSKY satisfies a semantics that depends on

the semantics provided by the underlying clouds. For instance, if the n clouds provide
regular semantics, then DEPSKY also satisfies regular semantics: a read operation
that happens concurrently with a write can return the value being written or the ob-
ject’s value before the write [Lamport 1986]. We discuss the semantics of DEPSKY in
detail in Section 6.

Notice that our model hides most of the complexity of the distributed storage sys-
tem employed by the cloud provider—it just assumes that this system is object storage
prone to Byzantine failures and supports very simple operations. These operations are
accessed through RPCs (Remote Procedure Calls) with the following failure semantics.
The operation keeps being invoked until a reply is received or the operation is can-
celed (possibly by another thread, using the cancel pending operation to stop request
retransmissions). This means that we have at most once semantics for the operations
being invoked. Repeating the operation is not a problem because all storage cloud op-
erations are idempotent, that is, the state of the cloud becomes the same irrespective
of the operation being executed only one or more times.

3.3. Protocol Design Rationale

Quorum protocols can serve as the backbone of highly available storage systems
[Chockler et al. 2009]. There are many quorum protocols for implementing Byzantine
fault-tolerant (BFT) storage [Cachin and Tessaro 2006; Goodson et al. 2004; Hendricks
et al. 2007; Liskov and Rodrigues 2006; Malkhi and Reiter 1998a, 1998b; Martin
et al. 2002], but most of them require that the servers execute protocol-specific code, a
functionality not available on storage clouds. In consequence, cloud-specific protocols
need to assume passive storage replicas, supporting only (blind) reads and writes. This
leads to a key difference between the DEPSKY protocols and these classical BFT quo-
rum protocols: metadata and data are written and read in separate quorum accesses.
Moreover, these two accesses occur in different orders on read and write protocols, as
depicted in Figure 3. This feature is crucial for the protocol correctness and efficiency.

ACM Transactions on Storage, Vol. 9, No. 4, Article 12, Publication date: November 2013.
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Supporting multiple writers for a register (a data unit in DEPSKY parlance) can be
problematic due to the lack of server code able to verify the version number of the data
being written. To overcome this limitation, we implement a single-writer multi-reader
register, which is sufficient for many applications, and we provide a lock/lease protocol
to support several concurrent writers for the data unit.

There are also some quorum protocols that consider individual storage nodes as pas-
sive shared memory objects (or disks) instead of servers [Abraham et al. 2006; Attiya
and Bar-Or 2003; Chockler and Malkhi 2002; Gafni and Lamport 2003; Jayanti et al.
1998]. Unfortunately, most of these protocols require many steps to access the shared
memory, or are heavily influenced by contention, which makes them impractical for ge-
ographically dispersed distributed systems such as DEPSKY, due to the highly variable
latencies involved. As shown in Figure 3, DEPSKY protocols require two communica-
tion round-trips to read or write the metadata and the data files that are part of the
data unit, independent of the existence of faults and contention.

Furthermore, as will be discussed later, many clouds do not provide the expected
consistency guarantees of a disk, something that can affect the correctness of these
protocols. The DEPSKY protocols provide consistency-proportional semantics, i.e., the
semantics of a data unit is as strong as the underlying clouds allow, from eventual to
regular consistency semantics. We do not try to provide atomic (linearizable) semantics
[Herlihy and Wing 1990; Lamport 1986] due to the fact that all known techniques
require server-to-server communication [Cachin and Tessaro 2006], servers sending
update notifications to clients [Martin et al. 2002], or writebacks [Basescu et al. 2012;
Goodson et al. 2004; Malkhi and Reiter 1998b]. The first two mechanisms are not
implementable using general purpose storage clouds (passive storage), while the last
requires giving readers permission to write, nullifying our access control model.

To ensure the confidentiality of the data stored in the clouds we encrypt it using sym-
metric cryptography. To avoid the need of a key distribution service, which would have
to be implemented outside of the clouds, we employ a secret sharing scheme [Shamir
1979]. In this scheme, a dealer (the writer in the case of DEPSKY) distributes a secret
(the encryption key) to n players (clouds in our case), but each player gets only a share
of this secret. The main property of the scheme is that at least f + 1 ≤ n − f different
shares of the secret are needed to recover it and that no information about the secret is
disclosed with f or less shares. The scheme is integrated in the basic replication proto-
col in such way that each cloud stores just a share of the key used to encrypt the data
being written. This ensures that no individual cloud will have access to the encryption
key. On the contrary, clients that have authorization to access the data will be granted
access to the key shares of (at least) f +1 different clouds, so they will be able to rebuild
the encryption key and decrypt the data.

The use of a secret sharing scheme allows us to integrate confidentiality guarantees
to the stored data without using a key distribution mechanism to make writers and
readers of a data unit share a secret key. In fact, our mechanism reuses the access
control of the cloud provider to control which readers are able to access the data stored
on a data unit.

Although it may seem questionable whether avoiding key distribution methods is
useful for a large spectrum of applications, our previous experience with secret shar-
ing schemes [Bessani et al. 2008] suggests that the overhead of using them is not a
deterrent, specially if one considers the communication latency of accessing a cloud
storage provider. Nevertheless, the protocol can be easily modified to use a shared key
for confidentiality if an external key distribution method is available.

If we simply replicate the data on n clouds, the monetary costs of storing data us-
ing DEPSKY would increase by a factor of n. In order to avoid this, we compose the
secret sharing scheme used on the protocol with an information-optimal erasure code

ACM Transactions on Storage, Vol. 9, No. 4, Article 12, Publication date: November 2013.



�

�

�

�

�

�

�

�

DepSky: Dependable and Secure Storage in a Cloud-of-Clouds 12:9

Table I. Functions used in the DEPSKY-A Protocols (Implementation in Appendix A)

Function Description

queryMetadata(du)
Obtains the correctly signed file metadata stored in the container du
of n − f clouds used to store the data unit and returns it in an array.

writeQuorum(du, name, value)
For every cloud i ∈ {0, ..., n − 1}, writes the value[ i] on a file named
name on the container du in that cloud and waits for write confirma-
tions from n − f clouds.

algorithm, reducing the size of each share by a factor of n
f+1 of the original data [Rabin

1989]. This composition follows the original proposal of Krawczyk [1993], where the
data is encrypted with a random secret key, the encrypted data is encoded, the key is
divided using secret sharing, and each server receives a block of the encrypted data
and a share of the key.

Common sense says that for critical data it is always a good practice to not erase
all old versions of the data unless we can be certain that we will not need them any-
more [Hamilton 2007]. An additional feature of our protocols is that old versions of the
data are kept in the clouds unless they are explicitly deleted.

3.4. DEPSKY-A—Available DepSky

The first DEPSKY protocol is called DEPSKY-A. It improves the availability and in-
tegrity of cloud-stored data by replicating it on several clouds using quorum tech-
niques. Algorithm 1 presents this protocol. We encapsulate some of the protocol steps
in the functions described in Table I. We use the ‘.’ operator to denote access to meta-
data fields, e.g., given a metadata file m, m.ver and m.digest denote the version number
and digest(s) stored in m. We use the ‘+’ operator to concatenate two items into a string,
e.g., “value-”+new ver produces a string that starts with the string “value-” and ends
with the value of variable new ver in string format. Finally, the max function returns
the maximum among a set of numbers.

The key idea of the write algorithm (lines 1–13) is to first write the value in a quo-
rum of clouds (line 8), then write the corresponding metadata (line 12), as illustrated
in Figure 3(a). This order of operations ensures that a reader will only be able to
read metadata for a value already stored in the clouds. Additionally, when a writer
first writes a data unit du (lines 3–5, max verdu initialized with 0), it first contacts
the clouds to obtain the metadata with the highest version number, then updates the
max verdu variable with the current version of the data unit.

The read algorithm starts by fetching the metadata files from a quorum of clouds
(line 16) and choosing the one with highest version number (line 17). After that, the
algorithm enters into a loop where it keeps looking at the clouds until it finds the data
unit version corresponding to this version number and the cryptographic hash found in
the chosen metadata (lines 18–26). Inside of this loop, the process fetches the file from
the clouds until either it finds one value file containing the value matching the digest
on the metadata or the value is not found in at least n−f clouds1 (lines 20–24). Finally,
when a valid value is read, the reader cancels the pending RPCs, exits the loop and
returns the value (lines 25–27). The normal case execution (with some optimizations
discussed in Section 3.6) is illustrated in Figure 3(b).

The rationale of why this protocol provides the desired properties is the following
(proofs in Appendix B). Availability is guaranteed because the data is stored in a quo-
rum of at least n − f clouds and our assumption is that at most f clouds can be faulty.
The read operation has to retrieve the value from only one of the clouds (line 22), which

1This is required to avoid the process from being blocked forever while awaiting for replies from f faulty
clouds.

ACM Transactions on Storage, Vol. 9, No. 4, Article 12, Publication date: November 2013.



�

�

�

�

�

�

�

�

12:10 A. Bessani et al.

ALGORITHM 1: DEPSKY-A read and write protocols.
1 procedure DepSkyAWrite(du,value)
2 begin
3 if max verdu = 0 then
4 m ←− queryMetadata(du)
5 max verdu ←− max({m[i].ver : 0 ≤ i ≤ n − 1})
6 new ver ←− max verdu + 1
7 v[0 .. n − 1] ←− value
8 writeQuorum(du,“value-”+new ver, v)
9 new meta ←− 〈new ver, H(value)〉

10 sign(new meta, Kdu
rw )

11 v[0 .. n − 1] ←− new meta
12 writeQuorum(du,“metadata”, v)
13 max verdu ←− new ver

14 function DepSkyARead(du)
15 begin
16 m ←− queryMetadata(du)
17 max id ←− i : m[i].ver = max({m[i].ver : 0 ≤ i ≤ n − 1})
18 repeat
19 v[0 .. n − 1] ←−⊥
20 parallel for 0 ≤ i < n − 1 do
21 tmpi ←− cloudi.get(du,“value-” +m[max id].ver)
22 if H(tmpi) = m[max id].digest then v[i] ←− tmpi
23 else v[i] ←− ERROR

24 wait until (∃i : v[i] 
=⊥ ∧ v[i] 
= ERROR) ∨ (|{i : v[i] 
=⊥}| ≥ n − f )
25 for 0 ≤ i ≤ n − 1 do cloudi.cancel pending()

26 until ∃i : v[i] 
=⊥ ∧v[i] 
= ERROR
27 return v[i]

is always available because (n − f ) − f > 1 . Together with the data, signed metadata
containing its cryptographic hash is also stored. Therefore, if a cloud is faulty and cor-
rupts the data, this is detected when the metadata is retrieved. Moreover, the fact that
metadata files are self-verifiable (signed) and quorums overlap in at least f + 1 clouds
(one correct) ensures the last written metadata file will be read. Finally, the outer loop
of the read ensures that the read of a value described in a read metadata will be re-
peated until it is available, which will eventually hold, since a metadata file is written
only after the data file is written.

3.5. DEPSKY-CA—Confidential and Available DepSky

The DEPSKY-A protocol has two main limitations. First, a data unit of size S consumes
n × S storage capacity of the system and costs on average n times more than if it was
stored in a single cloud. Second, it stores the data in cleartext, so it does not give
confidentiality guarantees. To cope with these limitations we employ an information-
efficient secret-sharing scheme [Krawczyk 1993] that combines symmetric encryption
with a classical secret-sharing scheme and an optimal erasure code to partition the
data in a set of blocks in such a way that (1) f + 1 blocks are necessary to recover
the original data, and (2) f or less blocks do not give any information about the stored
data.2 The overall process is illustrated in Figure 4.

2Erasure codes alone cannot satisfy this confidentiality guarantee.
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Fig. 4. The combination of symmetric encryption, secret sharing, and erasure codes in DEPSKY-CA.

The DEPSKY-CA protocol integrates these techniques with the DEPSKY-A proto-
col (Algorithm 2). The additional cryptographic and coding functions needed are in
Table II. The differences between the DEPSKY-CA protocol and DEPSKY-A are the
following: (1) the encryption of the data, the generation of the key shares, and the en-
coding of the encrypted data on DepSkyCAWrite (lines 7–10) and the reverse process
on DepSkyCARead (lines 33–35), as shown in Figure 4; (2) the data stored in cloudi is
composed of the share of the key s[ i] and the encoded block v[i] (line 12); and (3) f + 1
replies are necessary to read the data unit’s current value instead of one on DEPSKY-
A (lines 30 and 32). Additionally, instead of storing a single digest on the metadata
file, the writer generates and stores n digests, one for each cloud. These digests are
accessed as different positions of a vector stored in the digest field of a metadata. If a
key distribution infrastructure is available, or if readers and writers share a common
key k for each data unit, the secret sharing scheme can be removed (lines 7, 9, and 34
are not necessary).

The rationale of the correctness of the protocol is similar to the one for DEPSKY-A
(proofs in Appendix B). The main differences are those already pointed out: encryption
prevents individual clouds from disclosing the data; secret-sharing allows storing the
encryption key in the cloud without f faulty clouds being able to reconstruct it; the
erasure code scheme reduces the size of the data stored in each cloud.

3.6. Optimizations

This section introduces two optimizations that can make the protocols more efficient
and cost-effective. In Section 8 we evaluate the impact of these optimizations on the
protocols.

Write. In the DEPSKY-A and DEPSKY-CA write algorithms, a value file is written
using the function writeQuorum (see Table I). This function tries to write the file on all
clouds and waits for confirmation from a quorum. A more cost-effective solution would
be to try to store the value only on a preferred quorum, resorting to extra clouds only if
the reception of write confirmations from the quorum of clouds is not received before a
timeout. This optimization can be applied both to DEPSKY-A and DEPSKY-CA to make
the data be stored only in n−f out-of n clouds, which can decrease the DEPSKY storage
cost by a factor of n−f

n , possibly with some loss in terms of availability and durability
of the data.

Read. The DEPSKY-A algorithm, described in Section 3.4, tries to read the most
recent version of the data unit from all clouds and waits for the first valid reply to
return it. In the pay-per-use model this is far from ideal because the user will pay for n

ACM Transactions on Storage, Vol. 9, No. 4, Article 12, Publication date: November 2013.
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ALGORITHM 2: DEPSKY-CA read and write protocols.
1 procedure DepSkyCAWrite(du,value)
2 begin
3 if max verdu = 0 then
4 m ←− queryMetadata(du)
5 max verdu ←− max({m[i] .version : 0 ≤ i ≤ n − 1})
6 new ver ←− max verdu + 1
7 k ←− generateSecretKey()
8 e ←− E(value, k)
9 s[0 .. n − 1] ←− share(k, n, f + 1)

10 v[0 .. n − 1] ←− encode(e, n, f + 1)
11 for 0 ≤ i < n − 1 do
12 d[i] ←− 〈s[i] , v[i] 〉
13 h[i] ←− H(d[i] )

14 writeQuorum(du,“value-”+new ver, d)
15 new meta ←− 〈new ver, h〉
16 sign(new meta, Kdu

rw )

17 v[0 .. n − 1] ←− new meta
18 writeQuorum(du,“metadata”, v)
19 max verdu ←− new ver

20 function DepSkyCARead(du)
21 begin
22 m ←− queryMetadata(du)
23 max id ←− i : m[i] .ver = max({m[i] .ver : 0 ≤ i ≤ n − 1})
24 repeat
25 d[0 .. n − 1] ←−⊥
26 parallel for 0 ≤ i ≤ n − 1 do
27 tmpi ←− cloudi.get(du, “value-” +m[max id] .ver)
28 if H(tmpi) = m[max id] .digest[i] then d[i] ←− tmpi
29 else d[i] ←− ERROR

30 wait until (|{i : d[i] 
=⊥ ∧d[i] 
= ERROR}| > f ) ∨ (|{i : d[i] 
=⊥}| > n − f )
31 for 0 ≤ i ≤ n − 1 do cloudi.cancel pending()

32 until |{i : d[i] 
=⊥ ∧d[i] 
= ERROR}| > f
33 e ←− decode(d.e, n, f + 1)
34 k ←− combine(d.s, n, f + 1)
35 return D(e, k)

data accesses. A lower-cost solution is to use some criteria to sort the clouds and try to
access them sequentially, one at time, until the value is obtained. The sorting criteria
can be based on access monetary cost (cost-optimal), the latency of queryMetadata on
the protocol (latency-optimal), a mix of the two, or any other more complex criteria
(e.g., a history of the latency and faults of the clouds).

This optimization can also be used to decrease the monetary cost of the DEPSKY-CA
read operation. The main difference is that instead of choosing one of the clouds at a
time to read the data, f + 1 of them are chosen.

4. DEPSKY EXTENSIONS

In this section we present a set of additional protocols that may be useful for imple-
menting real systems using DEPSKY.
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Table II. Functions used in the DEPSKY-CA Protocols

Function Description

generateSecretKey() Generates a random secret key.
E(v, k)/D(e, k) Encrypts v and decrypts e with key k.
encode(d, n, t) Encodes d on n blocks in such a way that t are required to recover it.
decode(db, n, t) Decodes array db of n blocks, with at least t valid, to recover d.

share(s, n, t)
Generates n shares of s in such a way that at least t of them are required to
obtain any information about s.

combine(ss, n, t)
Combines shares on array ss of size n containing at least t correct shares to
obtain the secret s.

4.1. Supporting Multiple Writers—Locking with Storage Clouds

The DEPSKY protocols presented do not support concurrent writes, which is sufficient
for many applications where each process writes in its own data units. However, there
are applications in which this is not the case. An example is a fault-tolerant stor-
age system that uses DEPSKY as its back-end object store. This system could have
more than one node with the writer role writing in the same data unit(s) for fault-
tolerance reasons. If the writers are in the same network, coordination services like
ZooKeeper [Hunt et al. 2010] or DepSpace [Bessani et al. 2008], can be used to elect a
leader and coordinate the writes. However, if the writers are scattered through the In-
ternet this solution is not practical without trusting the site in which the coordination
service is deployed (and even in this case, the coordination service may be unavailable
due to network issues). Open coordination services such as WSDS [Alchieri et al. 2008]
can still be used, but they require an Internet deployment.

The solution we advocate is a low contention lock mechanism that uses the cloud-
of-clouds itself to maintain lock files on a data unit. These files specify which is the
writer and for how much time it has write-access to the data unit. However, for this
solution to work, two additional assumptions must hold. The first is related to the
use of leases. The algorithm requires every contending writer to have synchronized
clocks with a precision of �. This can be ensured in practice by making all writers that
want to lock a data unit synchronize their clocks with a common NTP (Network Time
Protocol [Mills 1992]) server with a precision of �

2 . The second assumption is related
to the consistency of the clouds. We assume regular semantics [Lamport 1986] for the
creation and listing of files on a container. Although this assumption appears to be too
strong, object storage services like Amazon S3 already ensure this kind of consistency
for object creation, sometimes called read-after-write [Amazon 2011]. In Section 6, we
discuss the effects of weakly consistent clouds on this protocol.

The lock protocol is described in Algorithm 3, and it works as follows. A process c
that wants to be a writer (and has permission to be), first lists files on the data unit
container on a quorum of clouds and tries to find a valid file called lock-c’-T’, with
c′ 
= c and local time on the process smaller than T′ + � (lines 5–10). If such a file
is found in some cloud, it means that some other process c′ holds the lock for this
data unit and c will sleep for a random amount of time before trying to acquire the
lock again (line 21). If the file is not found, c can write a lock file named lock-c-T con-
taining a digital signature of the file name on all clouds (lines 11 and 12), being T =
local clock + LEASE TIME. In the last step, c again lists all files in the data unit con-
tainer searching for valid and unexpired lock files from other processes (lines 13–17).
If a file like that is found, c removes the lock file it wrote from the clouds and sleeps for
a small random amount of time before trying to run the protocol again (lines 18–21).
Otherwise, c becomes the single writer for the data unit until T.
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The protocol also uses the predicate valid, which verifies if the lock file was not
created by a faulty cloud. The predicate is true if the lock file is either returned by
f + 1 clouds or its contents are correctly signed by its owner (line 28).

ALGORITHM 3: DEPSKY data unit locking by writer c.
1 function DepSkyLock(du)
2 begin
3 lock id ←⊥
4 repeat

// list lock files on all clouds to see if the du is locked
5 L[0 .. n − 1] ←−⊥
6 parallel for 0 ≤ i ≤ n − 1 do
7 L[i] ←− cloudi.list(du)

8 wait until (|{i : L[i] 
=⊥}| > n − f )
9 for 0 ≤ i ≤ n − 1 do cloudi.cancel pending()

10 if 
 ∃i : ∃lock-c’-T’∈ L[i] : c′ 
= c ∧ valid(L,lock-c’-T’, du) ∧ (T′ + � > local clock) then
// create a lock file for the du and write it in the clouds

11 lock id ←“lock-”+c+“-”+(local clock + LEASE TIME)

12 writeQuorum(du, lock id, sign(lock id, Kdu
rc ))

// list the lock files again to detect contention
13 L[0 .. n − 1] ←−⊥
14 parallel for 0 ≤ i ≤ n − 1 do
15 L[i] ←− cloudi.list(du)

16 wait until (|{i : L[i] 
=⊥}| > n − f )
17 parallel for 0 ≤ i ≤ n − 1 do cloudi.cancel pending()

18 if ∃i : ∃lock-c’-T’∈ L[i] : c′ 
= c ∧ valid(L,lock-c’-T’, du) ∧ (T′ + � > local clock)
then

19 DepSkyUnlock(lock id)
20 lock id ←⊥
21 if lock id =⊥ then sleep for some time
22 until lock id 
=⊥
23 return lock id

24 procedure DepSkyUnlock(lock id)
25 begin
26 parallel for 0 ≤ i < n − 1 do
27 cloudi.delete(du,lock id)

28 predicate valid(L,lock-c’-T’, du) ≡ (|{i : lock-c’-T’∈ L[i]}| > f ∨ verify(lock-c’-T’, Kdu
uc ))

Several remarks can be made about this protocol. First, the backoff strategy is neces-
sary to ensure that two processes trying to become writers at the same time never suc-
ceed. Second, locks can be renewed periodically to ensure existence of a single writer
at every moment of the execution. Unlocking can be easily done through the removal
of the lock files (lines 24–27). Third, this lock protocol is only obstruction-free [Herlihy
et al. 2003]; if several process try to become writers at the same time, it is possible that
none of them is successful. However, due to the backoff strategy used, this situation
should be very rare on the envisioned deployments. Finally, it is important to notice
that the unlock procedure is not fault-tolerant: in order to release a lock, the lock file
has to be deleted from all clouds; a malicious cloud can still show the removed lock
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file, disallowing lock acquisition by other writers. However, given the finite validity of
a lock, this problem can only affect the system for a limited period of time, after which
the problematic lock expires.

The proof that this protocol satisfies mutual exclusion and obstruction-freedom is
presented in Appendix C.

4.2. Management Operations

Besides read, write, and lock, DEPSKY provides other operations to manage data units.
These operations and underlying protocols are briefly described in this section.

Creation and destruction. Creating a data unit can be easily accomplished by invok-
ing the create operation in each individual cloud. In contention-prone applications, the
creator should execute the locking protocol of the previous section before executing the
first write to ensure it is the single writer of the data unit.

The destruction of a data unit is done in a similar way: the writer simply removes all
files and the container that stores the data unit by calling remove in each individual
cloud.

Garbage collection. As already discussed in Section 3.3, we choose to keep old ver-
sions of the value of the data unit on the clouds to improve the dependability of the
storage system. However, after many writes the amount of storage used by a data unit
can become very high and thus some garbage collection is necessary. The protocol for
doing that is very simple: a writer just lists all files named “value-version” in the data
unit container and removes all those with version smaller than the oldest version it
wants to keep in the system.

Cloud reconfiguration. Sometimes one cloud can become too expensive or too unre-
liable to be used for storing DEPSKY data units. For such cases DEPSKY provides a
reconfiguration protocol that substitutes one cloud by another. The protocol is the fol-
lowing: (1) the writer reads the data (probably from the other clouds and not from the
one being removed); (2) creates the data unit container on the new cloud; (3) executes
the write protocol on the clouds not removed and the new cloud; (4) deletes the data
unit from the cloud being removed. After that, the writer needs to inform the readers
that the data unit location was changed. This can be done by writing a special file on
the data unit container of the remaining clouds informing the new configuration of the
system. A process will accept the reconfiguration if this file is read from at least f + 1
clouds. Notice that this protocol only works if there are no writes being executed dur-
ing the reconfiguration, which might imply the use of the locking protocol described in
Section 4.1 if the data unit has multiple writers.

5. CLOUD-OF-CLOUDS ACCESS CONTROL

In this section we briefly discuss how cloud storage access control can be used to set
up the access control for management, writers, and readers of DEPSKY data units.

Management. The management operations described in Section 4.2 can only be ex-
ecuted by writers of a data unit, with the exception of the creation and destruction of
a data unit, that needs to be carried on by the data unit’s owner, that has write rights
on the data unit container parent directory.

Writers. If a data unit has more than one possible writer, all of them should have the
write rights on the data unit container. Moreover, all writers first write their public
keys on the DU container before trying to acquire the lock for writing on the data
unit. Notice that it is possible to have a single writer account, with a single shared
writer private and public key pair, being used by several writer processes (e.g., for
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Table III. Consistency Models Supported by DEPSKY

Consistency Model Brief Description

Eventual [Vogels 2009] Written values will be eventually reflected in read operations.
Read-your-writes [Terry et al. 1994] Read operations reflect previous writes.
Monotonic reads [Terry et al. 1994] Successive reads reflect a nondecreasing set of writes.
Writes-follow-reads [Terry et al. 1994] Writes are propagated after reads on which they depend.
Monotonic writes [Terry et al. 1994] Writes are propagated after writes that logically precede

them.
Read-after-write [Lamport 1986] After a write completes, it will be reflected in any posterior

read.

fault tolerance reasons). Finally, when a writer does not need to write in a data unit
anymore, it removes its public key from the data unit container on all clouds.

Readers. The readers of a data unit are defined by the set of accounts that have
read access to the data unit container. It is worth mentioning that some clouds such
as Rackspace Files and Nirvanix CDN do not provide this kind of rich access control.
These clouds only allow a file to be confidential (accessed only by its writer) or public
(accessed by everyone that knows its URL). However, other popular storage clouds like
Amazon S3, Windows Azure Blob Service, and Google Drive, support ACLs for giving
read (and write) access to the files stored in a single account. We expect this kind of
functionality to be available in most storage clouds in the near future.

Finally, all readers of a data unit consider that a metadata or lock file is correctly
signed if the signature was produced with any of the writer keys available on the data
unit container of f + 1 clouds.

6. CONSISTENCY PROPORTIONALITY

Both DEPSKY-A and DEPSKY-CA protocols implement single-writer multi-reader reg-
ular registers if the clouds being accessed provide regular semantics [Lamport 1986].
However, several clouds do not guarantee this semantics, but instead provide read-
after-write (which is similar to safe semantics [Lamport 1986]) or eventual consis-
tency [Vogels 2009] for the data stored (e.g., Amazon S3 [Amazon 2011]).

In fact, the DEPSKY read and write protocols are consistency-proportional in the
following sense: if the underlying clouds support a consistency model C , the DEP-
SKY protocols provide consistency model C . This holds for any C among the following:
eventual [Vogels 2009], read-your-writes, monotonic reads, writes-follow-reads, mono-
tonic writes [Terry et al. 1994] and read-after-write [Lamport 1986]. These models are
briefly described in Table III. A proof that DEPSKY provides consistency proportional-
ity can be found in Appendix D.

Notice that if the underlying clouds are heterogeneous in terms of consistency guar-
antees, DEPSKY provides the weakest consistency among those provided. This comes
from the fact that the consistency of a read directly depends on the reading of the last
written metadata file. Since we use read and write quorums with at least f + 1 clouds
in their intersections, and since at most f clouds may be faulty, the read of the most
recently written metadata file may happen in the single correct cloud in such an inter-
section. If this cloud does not provide strong consistency, the whole operation will be
weakly consistent, following the consistency model of this cloud.

A problem with not having regular consistent clouds is that the lock protocol may
not work correctly. After listing the contents of a container and not seeing a file, a pro-
cess cannot conclude that it is the only writer. This problem can be minimized if the
process waits a while between lines 12 and 13 of Algorithm 3. However, the mutual
exclusion guarantee will only be satisfied if the wait time is greater than the time for
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a written data to be seen by every other reader. Unfortunately, no eventually consis-
tent cloud of our knowledge provides this kind of timeliness guarantee, but we can
experimentally discover the amount of time needed for a read to propagate on a cloud
with the desired coverage and use this value in the aforementioned wait. Moreover, to
ensure some safety even when two writes happen in parallel, we can include a unique
ID of the writer (e.g., the hash of part of its private key) as the decimal part of its
timestamps, just like it is done in most Byzantine quorum protocols (e.g., Malkhi and
Reiter [1998a]). This simple measure allows the durability of data written by concur-
rent writers (the name of the data files will be different), even if the metadata file may
point to different versions on different clouds.

7. DEPSKY IMPLEMENTATION

We have implemented a DEPSKY prototype in Java as an application library that sup-
ports the read and write operations. The code is divided into three main parts: (1) data
unit manager, which stores the definition and information of the data units that can
be accessed; (2) system core, which implements the DEPSKY-A and DEPSKY-CA read
and write protocols; and (3) cloud drivers, which implement the logic for accessing the
different clouds. The current implementation has 5 drivers available (the four clouds
used in the evaluation—see next section—and one for storing data locally), but new
drivers can be easily added. The overall implementation comprises about 2900 lines of
code, with 1100 lines for the drivers. The most recent version of the code is available
at http://code.google.com/p/depsky/.

The DEPSKY code follows a model of one thread per cloud per data unit in such a way
that the cloud accesses can be executed in parallel (as described in the algorithms). All
communications between clients and cloud providers are made over HTTPS (secure
and private channels) using the REST APIs supplied by the storage cloud providers.
Some of the clouds are accessed using the libraries available from the providers. To
avoid problems due to the differences in implementation, in particular with different
retransmission timeouts and retry policies, we disabled this feature from the drivers
and implemented it on our code. The result is that all clouds are accessed using the
same timeout and number of retries in case of failure.

The prototype employs speculation to execute the two phases of the read protocols in
parallel. More precisely, as soon as a metadata file is read from a cloud i, the system
starts fetching the data file from i, without waiting for n − f metadata to find the one
with greatest version number. The idea is to minimize access latency (which varies
significantly in the different clouds) under the assumption that contention between
reads and writes is rare and Byzantine faults seldom happen.

Our implementation makes use of several building blocks: RSA with 1024 bit keys
for signatures, SHA-1 for cryptographic hashes, AES for symmetric cryptography,
Shoenmakers’ PVSS scheme [Schoenmakers 1999] for secret sharing with 192 bit se-
crets and the classic Reed-Solomon for erasure codes [Plank 2007]. Most of the im-
plementations used come from the Java 6 API, while Java Secret Sharing [Bessani
et al. 2008] and Jerasure [Plank 2007], were used for secret sharing and erasure codes,
respectively.

8. EVALUATION

In this section we present an evaluation of DEPSKY that tries to answer three main
questions: What is the additional cost in using replication on storage clouds? What are
the advantages and drawbacks in terms of performance and availability of using mul-
tiple clouds to store data? What are the relative costs and benefits of the two DEPSKY
protocols?
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Table IV. Estimated Costs per 10,000 Operations (in US Dollars)

DEPSKY-A (DS-A) and DEPSKY-CA (DS-CA) costs are computed for the realistic case of 4 clouds (f = 1). The “DS-A opt”
and “DS-CA opt” setups consider the cost-optimal version of the protocols with no failures.
Operation DU DS-A DS-A opt DS-CA DS-CA opt Amazon Rackspace Azure Nirvanix

10000
Reads

100kB 0.64 0.14 0.32 0.14 0.14 0.21 0.14 0.14
1MB 6.55 1.47 3.26 1.47 1.46 2.15 1.46 1.46

10MB 65.5 14.6 32.0 14.6 14.6 21.5 14.6 14.6

10000
Writes

100kB 0.60 0.32 0.30 0.17 0.14 0.08 0.09 0.29
1MB 6.16 3.22 3.08 1.66 1.46 0.78 0.98 2.93

10MB 61.5 32.2 30.8 16.6 14.6 7.81 9.77 29.3

The evaluation focuses on the case of n = 4 and f = 1, which we expect to be the
common deployment setup of our system for two reasons: (1) f is the maximum number
of faulty cloud storage providers, which are very resilient and so faults should be rare;
(2) there is additional complexity in setting up a great number of accounts in different
clouds to be used in DEPSKY. Our evaluation uses the following cloud storage services
with their default configurations: Amazon S3, Windows Azure Blob Store, Nirvanix
CDN, and Rackspace Files.

8.1. Monetary Cost Evaluation

Storage cloud providers usually charge their users based on the number of operations
executed and the amount of data uploaded, downloaded, and stored on them. Table IV
presents the cost in US Dollars of executing 10,000 reads and writes using the DEPSKY
data model (with metadata and supporting many versions of a data unit) considering
three data unit sizes: 100kB, 1MB, and 10MB. This table includes only the costs of the
operations being executed (invocations, upload, and download), not the data storage,
which will be discussed later. All estimations presented in this section were calculated
based on the values charged by the four clouds on September 25th, 2010.

In the table, the columns “DS-A”, “DS-A opt”, “DS-CA”, and “DS-CA opt” present the
costs of using the DEPSKY protocols with the optimizations discussed in Section 3.6
disabled and enabled, respectively. The other columns present the costs for storing the
data unit (DU) in a single cloud.

The table shows that the cost of DEPSKY-A with n = 4 and without optimizations
is roughly the sum of the costs of using the four clouds, as expected. However, if the
read optimization is employed, the less expensive cloud cost dominates the cost of
executing reads (only one out of four clouds is accessed in fault-free executions). If the
optimized write is employed, the data file will be written only on a preferred quorum,
excluding the most expensive cloud (Nirvanix), and thus the costs will be substantially
smaller. For DEPSKY-CA, the cost of reading and writing without optimizations is
approximately 50% of DEPSKY-A’s due to the use of information-optimal erasure codes
that make the data stored on each cloud roughly 50% of the size of the original data.
The optimized version of DEPSKY-CA also reduces the read cost to half of the sum
of the two less costly clouds due to its access to only f + 1 clouds in the best case,
while the write cost is reduced since Nirvanix is not used. Recall that the costs for the
optimized versions of the protocol account only for the best case in terms of monetary
costs: reads and writes are executed on the less expensive clouds. In the worst case,
the more expensive clouds will also be used.

The storage costs of a 1MB data unit for different numbers of stored versions are
presented in Figure 5. We present the curves only for one data unit size because other
size costs are directly proportional.

The results depicted in Figure 5(a) show that the cost of DEPSKY-CA storage without
employing preferred quorums is roughly half the cost of using DEPSKY-A and twice
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Fig. 5. Storage costs of a 1MB data unit for different numbers of stored versions in different DEPSKY setups
and clouds.

the cost of using a single cloud. This is no surprise since the storage costs are directly
proportional to the amount of data stored on the cloud, and DEPSKY-A stores 4 times
the data size, while DEPSKY-CA stores 2 times the data size, and an individual cloud
just stores a single copy of the data.

Figure 5(b) shows some results considering the case in which the data stored using
DEPSKY-CA is stored only on a preferred quorum of clouds (see Section 3.6). The figure
contains values for the less expensive preferred quorum (Amazon S3, Windows Azure,
and Rackspace) and the most expensive preferred quorum (Nirvanix, Windows Azure,
and Rackspace) together with Amazon S3 and DEPSKY-CA writing on all clouds for
comparison. The results show that the use of preferred quorums decreases the storage
costs between 15% (most expensive quorum) and 38% (less expensive quorum) when
compared to the full replicated DEPSKY-CA. Moreover, in the best case, DEPSKY-CA
can store data with an additional cost of only 23% more than the average cost to store
data on a single cloud and twice the cost of the least expensive cloud (Amazon S3).

Notice that the metadata costs are almost irrelevant when compared with the data
size, since its size is less than 500 bytes.

8.2. Performance and Availability Evaluation

In order to understand the performance of DEPSKY in a real deployment, we used
PlanetLab to run several clients accessing a cloud-of-clouds composed of popular stor-
age cloud providers. This section explains our methodology and presents the results in
terms of read and write latency, throughput, and availability.

Methodology. The latency measurements were obtained using a logger application
that tries to read a data unit from six different clouds: the four storage clouds individ-
ually and the two clouds-of-clouds implemented with DEPSKY-A and DEPSKY-CA.

The logger application periodically executes a measurement epoch, which comprises:
read the data unit (DU) from each of the clouds individually, one after another; read
the DU using DEPSKY-A; read the DU using DEPSKY-CA; sleep until the next epoch.
The goal is to read the data through different setups within a small as possible time
period in order to minimize the impact of Internet performance variations.

We deployed the logger on eight PlanetLab machines across the Internet, on five
continents. In each of these machines, three instances of the logger were started for
different DU sizes: 100kB (a measurement every 5 minutes), 1MB (a measurement
every 10 minutes), and 10MB (a measurement every 30 minutes). These experiments
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Fig. 6. 50th/90th-percentile latency (in seconds) for 100kB, 1MB, and 10MB DU read operations with Plan-
etLab clients located on different parts of the globe. The bar names are S3 for Amazon S3, WA for Windows
Azure, NX for Nirvanix, RS for Rackspace, A for DEPSKY-A, and CA for DEPSKY-CA. DEPSKY-CA and
DEPSKY-A are configured with n = 4 and f = 1.

took place during two months, but the values reported correspond to measurements
done between September 10, 2010 and October 7, 2010.

In the experiments, the local costs, which the protocols incur due to the use of cryp-
tography and erasure codes, are negligible for DEPSKY-A and account for at most 5%
of the read and 10% of the write latencies on DEPSKY-CA.

Reads. Figure 6 presents the 50% and 90% percentile of all observed latencies of
the reads executed (the values in which 50% and 90% of the observations fell below).
These experiments were executed without the monetary read optimization described
in Section 3.6. The number of reads executed on each site is presented on the second
column of Table VII.

Based on the results presented in the figure, several points can be highlighted. First,
DEPSKY-A presents the best latency in all cases but one. This is explained by the fact
that it waits for 3 out of 4 copies of the metadata but only one of the data, and it usually
obtains it from the best cloud available during the execution. Second, DEPSKY-CA’s
latency is closely related to the second best cloud storage provider, since it waits for at
least 2 out of 4 data blocks. Finally, there is a huge variance between the performance
of the cloud providers when accessed from different parts of the world. This means that
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Table V. Percentage of Reads in which the Required Data Blocks were Fetched from a
Specific Cloud (or Pair of Clouds) for Different Locations

The cloud names are S3 for Amazon S3, WA for Windows Azure, NX for Nirvanix
and RS for Rackspace. Results for single clouds stand for DEPSKY-A reads while
results for a pair of clouds correspond to the 2 blocks read in DEPSKY-CA to rebuild
the data.
Cloud(s) Brazil US-PA US-CA New Z. Japan China Spain UK

S3 4 3 0 1 0 1 65 59
NX 0 2 0 14 45 2 2 0
RS 94 94 99 84 55 97 31 0
WA 1 1 0 0 - 0 2 40

S3-RS 53 61 2 3 1 3 67 2
S3-NX 0 1 0 0 0 1 3 0
S3-WA 0 1 - 0 - 0 2 81
NX-WA 0 1 0 0 0 1 1 6
NX-RS 30 20 87 97 99 81 15 0
RS-WA 17 16 11 0 0 14 12 10

no provider covers all areas in the same way, and highlights another advantage of the
cloud-of-clouds: we can adapt our accesses to use the best cloud for a certain location.

The effects of optimizations. An interesting observation of our DEPSKY-A
(resp. DEPSKY-CA) read experiments is that in a significant percentage of the reads,
the cloud that replied metadata faster (resp. the two faster in replying metadata) is
not the first to return the data (resp. the two first in returning the data). More pre-
cisely, in 17% of the 60768 DEPSKY-A reads and 32% of the 60444 DEPSKY-CA reads
we observed this behavior. A possible explanation for this could be that some clouds
are better at serving small files (DEPSKY metadata is around 500 bytes) and not so
good at serving large files (like the 10MB data unit of some experiments). This means
that the read optimizations of Section 3.6 will make the protocol latency worse in these
cases. Nonetheless we think this optimization is valuable since the rationale behind it
worked for more than 4/5 (DEPSKY-A) and 2/3 (DEPSKY-CA) of the reads in our exper-
iments, and its use can decrease the monetary costs of executing a read by a quarter
and half of the cost of the nonoptimized protocol, respectively.

Table V shows, for each cloud (DEPSKY-A) or pair of clouds (DEPSKY-CA), the per-
centage of read operations that fetched data files from these clouds (these clouds an-
swered first) for different client locations.

The first four lines of the table show that Rackspace was the cloud that provided the
data file faster for most DEPSKY-A clients, while Amazon S3 provided the data more
frequently for European clients. Interestingly, although these two clouds are consis-
tently among the most used in operations coming from different parts of the world, it
is difficult to decide between Windows Azure and Nirvanix to compose the preferred
quorum to be used. Nirvanix was fast for Asian clients (e.g., 45% of reads in Japan),
while Windows Azure provided excellent performance for the UK (e.g., 40% of reads
fetched data from it). This tie can be broken considering the expected client location,
the performance of writes, and the economical costs.

Considering DEPSKY-CA, where two data files are required to rebuild the original
data, one can see that there are three possible preferred quorums for different loca-
tions: S3-RS-NX (Brazil, US-PA, New Zealand, Japan, and Spain), NX-RS-WA (US-CA
and China) and S3-WA-RS (UK). Again, the choice of the quorum used initially needs
to be based on the other factors already mentioned. If one considers only the cost factor,
the choice would be S3-RS-WA for both DEPSKY-A and DEPSKY-CA, since Windows
Azure is much less expensive than Nirvanix (see Figure 5(b) in Section 8.1). On the
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Fig. 7. 50th/90th-percentile latency (in seconds) for 100kB, 1MB, and 10MB DU write operation for a Plan-
etLab client at the UK (a) and US-CA (b). The bar names are the same as in Figure 6. DEPSKY-A and
DEPSKY-CA are configured with n = 4 and f = 1.

other hand, as will be seen in the following, the perceived availability of Windows
Azure was worse than Nirvanix in our experiments.

Writes. We modified our logger application to execute writes instead of reads and
deployed it on the same machines with which we executed the reads. We ran it for
two days in October 2010 and collected the logs, with at least 500 measurements for
each location and data size. These experiments were executed without the monetary
read optimization described in Section 3.6. For the sake of brevity, we do not present
all of these results, but illustrate the costs of write operations for different data sizes
and locations, discussing only the observed results for UK and US-CA clients. The
other locations present similar trends. These experiments were executed without the
preferred quorum optimization described in Section 3.6. The 50% and 90% percentiles
of the latencies observed are presented in Figure 7.

The latencies in the figure consider the time of writing the data on all four clouds
(file sent to 4 clouds, wait for only 3 confirmations) and the time of writing the new
metadata. As can be observed in the figure, the latency of a write is of the same order
of magnitude as a read of a DU of the same size (this was observed on all locations). It
is interesting to observe that, while DEPSKY’s read latency is close to the cloud with
best latency, the write latency is close to the worst cloud. This comes from the fact that
in a write, DEPSKY needs to upload data blocks to all clouds, which consumes more
bandwidth at the client side and requires replies from at least three clouds.

The figure also illustrates the big differences between the performance of the system,
depending on the client location. This difference is specially relevant when looking at
the 90% values reported.

Secret sharing overhead. As discussed in Section 3.5, if a key distribution mecha-
nism is available, secret sharing could be removed from DEPSKY-CA. However, the
effect of this on read and write latencies would be negligible since share and combine
(lines 9 and 34 of Algorithm 2) account for less than 3 and 0.5 ms, respectively. It
means that secret sharing is responsible for less than 0.1% of the protocol’s latency in
the worst case.3

Throughput. Table VI shows the throughput in the experiments for two locations:
UK and US-CA. The values are of the throughput observed by a single client, not
by multiple clients as done in some throughput experiments. The table shows read
and write throughput for both DEPSKY-A and DEPSKY-CA, together with the values

3For a more comprehensive discussion about the overhead imposed by Java secret sharing see Bessani et al.
[2008].
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Table VI. Throughput Observed in kB/s on all Reads and Writes Executed for the Case of 4 Clouds (f = 1)

Operation DU Size
UK US-CA

DEPSKY-A DEPSKY-CA Amazon S3 DEPSKY-A DEPSKY-CA Amazon S3

100kB 189 135 59.3 129 64.9 31.5
Read 1MB 808 568 321 544 306 104

10MB 1479 756 559 780 320 147

100kB 3.53 4.26 5.43 2.91 3.55 5.06
Write 1MB 14.9 26.2 53.1 13.6 19.9 25.5

10MB 64.9 107 84.1 96.6 108 34.4

Table VII. The Perceived Availability of all Setups Evaluated from Different Points of the Internet. The Values

were Calculated as reads completed
reads tried

Location Reads Tried DEPSKY-A DEPSKY-CA Amazon S3 Rackspace Azure Nirvanix

Brazil 8428 1.0000 0.9998 1.0000 0.9997 0.9793 0.9986
US-PA 5113 1.0000 1.0000 0.9998 1.0000 1.0000 0.9880
US-CA 8084 1.0000 1.0000 0.9998 1.0000 1.0000 0.9996

New Zealand 8545 1.0000 1.0000 0.9998 1.0000 0.9542 0.9996
Japan 8392 1.0000 1.0000 0.9997 0.9998 0.9996 0.9997
China 8594 1.0000 1.0000 0.9997 1.0000 0.9994 1.0000
Spain 6550 1.0000 1.0000 1.0000 1.0000 0.9796 0.9995
UK 7069 1.0000 1.0000 0.9998 1.0000 1.0000 1.0000

observed from Amazon S3, just to give a baseline. The results from other locations and
clouds follow the same trends discussed here.

By the table it is possible to observe that the read throughput decreases from
DEPSKY-A to DEPSKY-CA and then to Amazon S3, at the same time that write
throughput increases for the same sequence. The higher read throughput of DEPSKY
when compared with Amazon S3 is due to the fact that it fetches the data from all
clouds at the same time, trying to obtain the data from the fastest cloud available. The
price to pay for this benefit is the lower write throughput since data should be written
at least on a quorum of clouds in order to complete a write. This trade-off appears to be
a good compromise since reads tend to dominate most workloads of storage systems.

The table also shows that increasing the size of the data unit improves through-
put. Increasing the data unit size from 100kB to 1MB improves the throughput by an
average factor of 5 in both reads and writes. On the other hand, increasing the size
from 1MB to 10MB shows fewer benefits: read throughput is increased only by an av-
erage factor of 1.5 while write throughput increases by an average factor of 3.3. These
results show that cloud storage services should be used for storing large chunks of
data. However, increasing the size of these chunks brings less benefit after a certain
size (1MB).

Notice that the observed throughputs are at least an order of magnitude lower than
the throughput of disk access or replicated storage in a LAN [Hendricks et al. 2007],
but the elasticity of the cloud allows the throughput to grow indefinitely with the num-
ber of clients accessing the system (according to the cloud providers). This is actually
the main reason that led us not to try measuring the peak throughput of services built
on top of clouds. Another reason is that the Internet bandwidth would probably be the
bottleneck of the throughput, not the clouds.

Faults and availability. During our experiments we observed a significant number
of read operations on individual clouds that could not be completed due to some error.
Table VII presents the perceived availability of all setups calculated as reads completed

reads tried
from different locations.
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The first thing that can be observed from the table is that the number of measure-
ments taken from each location is not the same. This happens due to the natural un-
reliability of PlanetLab nodes, which crash and restart with some regularity.

There are two key observations that can be taken from Table VII. First, DEPSKY-A
and DEPSKY-CA are the two single setups that presented an availability of 1.0000
in almost all locations.4 Second, despite the fact that most cloud providers advertise
providing 5 or 6 nines of availability, the perceived availability in our experiments
was lower. The main problem is that outsourcing storage makes a company not only
dependent on the provider’s availability, but also on the network availability, which
some studies show to have no more than two nines of availability [Dahlin et al. 2003].
This is a fact that companies moving critical applications to the cloud have to be fully
aware of.

9. RELATED WORK

Byzantine quorum systems. DEPSKY provides a single-writer multi-reader read/
write register abstraction built on a set of untrusted storage clouds that can fail in
an arbitrary way. This type of abstraction supports an updatable data model, requir-
ing protocols that can handle multiple versions of stored data. This is substantially
different from providing write-once, read-maybe archival storage such as the one de-
scribed in Storer et al. [2007].

There are many protocols for Byzantine quorum systems for register implementa-
tion (e.g., Goodson et al. [2004]; Hendricks et al. [2007]; Malkhi and Reiter [1998a];
Martin et al. [2002]), however, few of them address the model in which servers are
passive entities that do not run protocol code [Abraham et al. 2006; Attiya and Bar-Or
2003; Jayanti et al. 1998]. DEPSKY differentiates from them in the following aspects:
(1) it decouples the write of timestamp and verification data from the write of the new
value; (2) it has optimal resiliency (3f + 1 servers [Martin et al. 2002]) and employs
read and write protocols requiring two communication round-trips independently of
the existence of contention, faults, and weakly consistent clouds; finally, (3) it is the
first single-writer multi-reader register implementation supporting efficient encoding
and confidentiality. Regarding (2), our protocols are similar to others for fail-prone
shared memory (or “disk quorums”), where servers are passive disks that may crash
or corrupt stored data. In particular, Byzantine disk Paxos [Abraham et al. 2006] also
presents a single-writer multi-reader regular register construction that requires two
communication round-trips both for reading and writing in the absence of contention.
However, there is a fundamental difference between this construction and DEPSKY: it
provides a weak liveness condition for the read protocol (termination only when there
is a finite number of contending writes) while our protocol satisfies wait-freedom. An
important consequence of this limitation is that reads may require several communi-
cation steps when contending writes are being executed. This same limitation appears
on Attiya and Bar-Or [2003], which additionally, does not tolerate writer faults. Re-
garding point (3), it is worth noticing that several Byzantine storage protocols support
efficient storage using erasure codes [Cachin and Tessaro 2006; Goodson et al. 2004;
Hendricks et al. 2007], but none of them mention the use of secret sharing or the pro-
vision of confidentiality. However, it is not clear whether information-efficient secret
sharing [Krawczyk 1993] or some variant of this technique could substitute the era-
sure codes employed on these protocols.

Perhaps the closest work to DEPSKY is the recent register emulation protocol suite
presented in Basescu et al. [2012]. This work uses a set of fail-prone key-value stores

4This is somewhat surprising since we were expecting to have at least some faults on the client network
that would disallow it to access any cloud.
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supporting put, get, delete, and list operations (which are equivalent to the untrusted
passive storage clouds we consider) in the crash fault model to implement multi-writer
multi-reader regular and atomic storage. Albeit with similar objectives, there are
many differences between this work and DEPSKY. Although it goes one step beyond
DEPSKY to provide genuine multi-writer storage, it assumes a simpler fault model
(crash), requires strong consistency from the key-value stores (linearizability), and
does not address privacy and cost-efficiency (does not integrate the register emulation
with secret sharing or erasure codes). Moreover, this work is also more theoretically-
oriented and does not provide a rich experimental evaluation as we do in DEPSKY.

Cloud storage availability. Cloud storage is a hot topic with several papers appear-
ing recently. However, most of these papers deal with the intricacies of implement-
ing a storage infrastructure inside a cloud provider (e.g., McCullough et al. [2010]).
Our work is closer to others that explore the use of existing cloud storage services
to implement enriched storage applications. There are papers showing how to effi-
ciently use storage clouds for file system backup [Vrable et al. 2009], implement a
database [Brantner et al. 2008], implement a log-based file system [Vrable et al. 2012]
or add provenance to the stored data [Muniswamy-Reddy et al. 2010]. However none
of these works provide guarantees like confidentiality and availability or considers a
cloud-of-clouds.

Some works along these lines deal with the high availability of stored data through
the replication of this data on several cloud providers, and thus are closely related to
DEPSKY. The SafeStore system [Kotla et al. 2007] provides an accountability layer for
using a set of untrusted third-party storage systems in an efficient way. There are at
least two features that make SafeStore very different from DEPSKY. First, it requires
specific server code on the storage cloud provider (both in the service interface and in
the internal storage nodes). Second, SafeStore does not support data sharing among
clients (called SafeStore local servers) accessing the same storage services. The HAIL
(High-Availability Integrity Layer) protocol set [Bowers et al. 2009] combines crypto-
graphic protocols for proof of recoveries with erasure codes to provide a software layer
to protect the integrity and availability of the stored data, even if the individual clouds
are compromised by a malicious and mobile adversary. HAIL has at least three limi-
tations when compared with DEPSKY: it only deals with static data (it is not possible
to manage multiple versions of data), it requires that the servers run some code, and
does not provide confidentiality guarantees for the stored data.

HAIL and SafeStore are examples of replicated storage systems that use auditing
protocols, usually based on algebraic signatures and erasure codes [Schwarz and Miller
2006], to verify that the storage server (or cloud) still has the data and that it is not
corrupted. DEPSKY could be extended to support such remote auditing operations if
the clouds could run a small portion of code to participate in the challenge-response
protocol involved in such auditing.

The RACS (Redundant Array of Cloud Storage) system [Abu-Libdeh et al. 2010]
employs RAID-like techniques (mainly erasure codes) [Patterson et al. 1988] to imple-
ment highly-available and storage-efficient data replication on diverse clouds. Differ-
ently from DEPSKY, RACS does not try to solve security problems of cloud storage,
but instead deals with “economic failures” and vendor lock-in. In consequence, the
system does not provide any mechanism to detect and recover from data corruption
or confidentiality violations. Moreover, it does not provide updates of the stored data.
Finally, it is worth mentioning that none of these works on cloud replication present
an experimental evaluation with diverse clouds as is presented in this article.

Cloud security. There are several works about obtaining trustworthiness from
untrusted clouds. Depot improves the resilience of cloud storage, making similar
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assumptions to DEPSKY, namely that storage clouds are fault-prone black boxes
[Mahajan et al. 2011]. However, it uses a single cloud, so it provides a solution that
is cheaper but does not tolerate total data losses and the availability is constrained
by the availability of the cloud on top of which it is implemented. Works like SPORC
[Feldman et al. 2010] and Venus [Shraer et al. 2010] make similar assumptions to im-
plement services on top of untrusted clouds. All these works consider a single cloud
(not a cloud-of-clouds), require a cloud with the ability to run code, and have limited
support for cloud unavailability, which makes them different from DEPSKY.

10. CONCLUSION

This article presents the design, implementation, and evaluation of DEPSKY, a storage
service that improves the availability and confidentiality provided by commercial stor-
age clouds. The system achieves these objectives by building a cloud-of-clouds on top of
a set of storage clouds, combining Byzantine quorum system protocols, cryptographic
secret sharing, erasure codes and the diversity provided by the use of several clouds.
Moreover, the notion of consistency proportionality introduced by DEPSKY allows the
system to provide the same level of consistency of the underlying clouds it uses for
storage.

We believe DEPSKY protocols are in an unexplored region of the quorum systems
design space and can enable applications sharing critical data (e.g., financial, medical)
to benefit from storage clouds. Moreover, the few and weak assumptions required by
the protocols allow them to be used to replicate data efficiently not only on cloud stor-
age services, but with any storage service available (e.g., NAS disks, NFS servers, FTP
servers, key-value databases).

The article also presents an extensive evaluation of the system. The key conclusion
is that it provides confidentiality and improved availability with an added cost as low
as 23% of the cost of storing data on a single cloud for a practical scenario, which seems
to be a good compromise for critical applications.

APPENDIXES

A. AUXILIARY FUNCTIONS

Algorithm 4 presents the two auxiliary functions described in Table I and used in
Algorithms 1 and 2. These two functions are similar and equally simple: the process
just accesses all of the n clouds in parallel to get or put data and waits for replies from
a quorum of clouds, canceling nonanswered RPCs.

B. STORAGE PROTOCOLS CORRECTNESS

This section presents correctness proofs of the DEPSKY-A and DEPSKY-CA proto-
cols. The first lemma states that the auxiliary functions presented in Appendix A are
wait-free.

LEMMA B.1. A correct process will not block executing writeQuorum or query-
Metadata.

PROOF. Both operations require n − f clouds to answer the put and get requests.
For writeQuorum, these replies are just acks and they will always be received since
at most f clouds can be faulty. For the queryMetadata, the operation is finished only
if one metadata file is available. Since we are considering only nonmalicious writers,
a metadata written in a cloud is always valid and thus correctly signed using Kdu

rw
. It
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ALGORITHM 4: DEPSKY-A and DEPSKY-CA auxiliary functions.
1 function queryMetadata(du)
2 begin
3 m[0 .. n − 1] ←− ⊥
4 parallel for 0 ≤ i ≤ n − 1 do
5 tmpi ←− cloudi.get(du, “metadata” )

6 if verify(tmpi, Kdu
uw ) then m[i] ←− tmpi

7 wait until |{i : m[i] 
=⊥}| ≥ n − f
8 for 0 ≤ i ≤ n − 1 do cloudi.cancel pending()
9 return m

10 procedure writeQuorum(du, name, value)
11 begin
12 ok[0 .. n − 1] ←− false
13 parallel for 0 ≤ i ≤ n − 1 do
14 ok[i] ←− cloudi.put(du, name[i] , value[i] )

15 wait until |{i : ok[i] = true}| ≥ n − f
16 for 0 ≤ i ≤ n − 1 do cloudi.cancel pending()

means that a valid metadata file will be read from at least n− f clouds and the process
will choose one of these files and finish the algorithm.

The next two lemmas state that if a correctly signed metadata is obtained from the
cloud providers (using queryMetadata) the corresponding data can also be retrieved
and that the metadata stored on DEPSKY-A and DEPSKY-CA satisfy the properties of
a regular register [Lamport 1986] (if the clouds provide this consistency semantics).

LEMMA B.2. The value associated with the metadata with greatest version number
returned by queryMetadata, from now on called outstanding metadata, is available on
at least f + 1 non-faulty clouds.

PROOF. Recall that only valid metadata files will be returned by queryMetadata.
These metadata will be written only by a nonmalicious writer that follows the Dep-
SkyAWrite (resp. DepSkyCAWrite) protocol. In this protocol, the data value is written
on a quorum of clouds on line 8 (resp. line 14) of Algorithm 1 (resp. Algorithm 2), and
then the metadata is generated and written on a quorum of clouds on lines 9–12 (resp.
lines 15–18). Consequently, a metadata is only put on a cloud if its associated value
was already put on a quorum of clouds. It implies that if a metadata is read, its asso-
ciated value was already written on n − f clouds, from which at least n − f − f ≥ f + 1
are correct.

LEMMA B.3. The outstanding metadata obtained on a DepSkyARead (resp.
DepSkyCARead) concurrent with zero or more DepSkyAWrites (resp. DepSkyCAWrites)
is the metadata written on the last complete write or being written by one of the concur-
rent writes.

PROOF. Assuming that a client reads an outstanding metadata m, we have to show
that m was written on the last complete write or is being written concurrently with
the read. This proof can easily be obtained by contradiction. Suppose m was written
before the start of the last complete write preceding the read and that it was the meta-
data with the greatest version number returned from queryMetadata. This is clearly
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impossible because m was overwritten by the last complete write (which has a greater
version number) and thus will never be selected as the outstanding metadata. It means
that m can only correspond to the last complete write or to a write being executed con-
currently with the read.

With the previous lemmas we can prove the wait-freedom of the DEPSKY-A and
DEPSKY-CA registers, showing that their operations will never block.

THEOREM B.4. All DEPSKY read and write operations are wait-free operations.

PROOF. Both Algorithms 1 and 2 use functions queryMetadata and writeQuorum.
As shown in Lemma B.1, these operations cannot block. Besides that, read opera-
tions make processes wait for the value associated with the outstanding metadata.
Lemma B.2 states that there are at least f + 1 correct clouds with this data, and thus
at least one of them will answer the RPC of lines 21 and 27 of Algorithms 1 and 2,
respectively, with values that match the digest contained on the metadata (or the dif-
ferent block digests in the case of DEPSKY-CA) and make d[i] 
=⊥, releasing itself from
the barrier and completing the algorithm.

The next two theorems show that DEPSKY-A and DEPSKY-CA implement single-
writer multi-reader regular registers.

THEOREM B.5. A client reading a DEPSKY-A register in parallel with zero or more
writes (by the same writer) will read the last complete write or one of the values being
written.

PROOF. Lemma B.3 states that the outstanding metadata obtained on lines 16–17
of Algorithm 1 corresponds to the last write executed or one of the writes being
executed. Lemma B.2 states that the value associated with this metadata is available
from at least f + 1 correct clouds, thus it can be obtained by the client on lines 20–24:
just a single valid reply will suffice for releasing the barrier of line 24 and returning
the value.

THEOREM B.6. A client reading a DEPSKY-CA register in parallel with zero or
more writes (by the same writer) will read the last complete write or one of the values
being written.

PROOF. This proof is similar to the one for DEPSKY-A. Lemma B.3 states that the
outstanding metadata obtained on lines 22–23 of Algorithm 2 corresponds to the last
write executed or one of the writes being executed concurrently. Lemma B.2 states that
the values associated with this metadata are stored on at least f + 1 non-faulty clouds,
thus a reader can obtain them through the execution of lines 26–30: all nonfaulty
clouds will return their values corresponding to the outstanding metadata, allowing
the reader to decode the encrypted value, combine the key shares, and decrypt the read
data (lines 33–35), inverting the processing done by the writer on DepSkyCAWrite
(lines 7–10).

C. LOCK PROTOCOL CORRECTNESS

This section presents correctness proofs for the data unit locking protocol. Recall from
Section 4.1 that this protocol requires two extra assumptions: (1) contending writers
have their clocks synchronized with precision �/2, and (2) the storage clouds provide
at least read-after-write consistency.

Before the main proofs, we need to present a basic lemma that shows that a lock file
created in a quorum of clouds is read in a later listing of files from a quorum of clouds.

ACM Transactions on Storage, Vol. 9, No. 4, Article 12, Publication date: November 2013.



�

�

�

�

�

�

�

�

DepSky: Dependable and Secure Storage in a Cloud-of-Clouds 12:29

LEMMA C.1. An object o created with the operation writeQuorum(du, o, v) and not
removed, will appear in at least one result of later list(du) operations executed on a
quorum of clouds.

PROOF. The writeQuorum(du, o, v) operation is only completed when the object is
created/written in a quorum of at least n − f clouds (line 15 of Algorithm 4). If a client
tries to list the objects of du on a quorum of clouds, at least one of the n − f clouds will
provide it since there is at least one correct cloud between any two quoruns ((n − f ) +
(n − f ) − n > f ).

In order to prove the mutual exclusion on lock possession we need to precisely define
what it means for a process to hold the lock for a given data unit.

Definition C.2. A correct client c is said to hold the write lock for a du at a given
time t if an object du-lock-c-T containing sign(du-lock-c-T, Kc) with T + � < t appears
in at least one list(du) result when this operation is executed in a quorum of clouds.

With this definition, we can prove the safety and liveness properties of Algorithm 3.

THEOREM C.3 (MUTUAL EXCLUSION). At any given time t, there is at most one
correct client that holds the lock for a data unit du.

PROOF. Assume this is false: there is a time t in which two correct clients c1 and c2
hold the lock for du. We will prove that this assumption leads to a contradiction.

If both c1 and c2 hold the write lock for du we have that both du-lock-c1-T1 and du-
lock-c2-T2 with T1 + � < t and T2 + � < t are returned in list(du) operations from a
quorum of clouds. Algorithm 3 and Lemma C.1 state that it can only happen if both c1
and c2 wrote valid lock files (line 12) and did not remove them (line 19). In order for
this to happen, both c1 and c2 must see only their lock files in their second list(du) on
the clouds (lines 14–16).

Two situations may arise when c1 and c2 acquire write locks for du: either c1 (resp.
c2) writes its lock file before c2 (resp. c1) lists the lock files the second time (i.e., either
w1 precedes r2 or w2 precedes r1) or one’s lock file is being written while the other is
listing lock files for the second time (i.e., either w1 is executed concurrently with r2 or
w2 is executed concurrently with r1).

In the first situation, when c2 (resp. c1) lists available locks, it will see both lock files
and thus remove du-lock-c2-T2 (resp. du-lock-c1-T1), releasing the lock (lines 14–20).

The second situation is more complicated because now we have to analyze the start
and finish of each phase of the algorithm. Consider the case in which c1 finishes writing
its lock file (line 12) after c2 executes the second list (lines 14–15). Clearly, in this
case c2 may or may not see du-lock-c1-T1 in line 18. However, we can say that the
second list of c1 will see du-lock-c2-T2 since it is executed after c1 lock file is written,
which happens, only after c2 starts its second list, and consequently after its lock file
is written. It means that the condition of line 18 will be true for c1, and it will remove
du-lock-c1-T1, releasing its lock. The symmetric case (c2 finishes writing its lock after
c1 executes the second list) also holds.

In both situations we have a contradiction, i.e., it is impossible to have an execution
and time in which two correct clients hold the lock for du.

THEOREM C.4 (OBSTRUCTION-FREEDOM). If a correct client tries to obtain the lock
for a data unit du without contention it will succeed.

PROOF. When there is no other valid lock in the cloud (i.e., the condition of line 10
holds), c will write du-lock-c-T on a quorum of clouds. This lock file will be the only
valid lock file read on the second list (the condition of line 18 will not hold) since, (1)
no other valid lock file is available on the clouds, (2) no other client is trying to acquire
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the lock, and (3) Lemma C.1 states that if the lock file was written it will be read. After
this, c acquires the lock and returns it.

D. CONSISTENCY PROPORTIONALITY

In this section we prove the consistency proportionality of the DEPSKY-A and DEPSKY-
CA protocols considering some popular consistency models [Lamport 1986; Terry et al.
1994; Vogels 2009].

In the following theorem we designate by the weakest cloud the correct cloud that
provides fewer guarantees in terms of consistency. In homogeneous environments, all
clouds will provide the same consistency, but in heterogeneous environments other
clouds will provide at least the guarantees of the weakest cloud.

THEOREM D.1. If the weakest cloud used in a DEPSKY-CA setup satisfies a con-
sistency model C , the data unit provided by DEPSKY-CA also satisfies C for any
C ∈ {eventual, read-your-writes, monotonic reads, writes-follow-reads, monotonic
writes, read-after-write}.

PROOF (SKETCH). Notice that cloud consistency issues only affect metadata read-
ings since in the DEPSKY-CA (Algorithm 2), after the max id variable is defined
(line 23), the clients keep reading the clouds until the data value is read (lines 24–32).
So, even with eventual consistency (the weakest guarantee we consider), if the meta-
data file pointing to the last version is read, the data will eventually be read.

Let Qw be the quorum of clouds in which the metadata of the last executed write
w was written and let Qr be the quorum of clouds where queryMetadata obtained
an array of n − f metadata files on a posterior read r. Let cloud ∈ Qw ∩ Qr be the
weakest cloud among the available clouds. For each of the considered consistency mod-
els, we will prove that if cloud provides this consistency, the register implemented by
DEPSKY-CA provides the same consistency.

For eventual consistency [Vogels 2009], if the outstanding metadata file was written
on cloud and no other write operation is executed, it will be eventually available for
reading in this cloud, and then its associated data will be fetched from the clouds. As a
consequence, the data described in the metadata file will be read eventually, satisfying
this model.

For read-your-writes consistency, if both w and r are executed by c, the fact that
cloud provides this consistency means that at least this cloud will return the metadata
written in w during r execution. Consequently, the result of the read will be the value
written in w, satisfying this model.

For monotonic reads consistency, assume c executed r and also another posterior
read r′. Let Qr′ be the quorum accessed when reading metadata file on r′. Let cloud′ ∈
Qr ∩ Qr′ be a correct cloud providing monotonic reads consistency. We have to prove
that r′ will return the same data as r or a value written in a posterior write. Since
cloud′ satisfies monotonic reads, the metadata file read in r′ will be either the one
read in r or another one written by a posterior write. In either of these two cases, the
corresponding value returned will satisfy the monotonic reads consistency.

For writes-follow-reads consistency, the result is trivial since, as long as we have no
contending writers, the metadata files are written with increasing version numbers.
Since the clouds provide at least this consistency, it is impossible to observe (and to
propagate) writes in a different order they were executed, i.e., to observe them in an
order different from the version numbers of their metadata.

The same arguments hold for monotonic writes: since the clouds provide at least
this consistency, it is impossible to observe the writes in a different order from that in
which they were executed.
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Finally, for read-after-write consistency,5 the safety properties proven in the previous
section (see Theorem B.6) can be easily generalized for any read-after-write model. If
the outstanding metadata file was written on a cloud satisfying this consistency model
during write w, and no other write operation is executed, any read succeeding w will
see this file, and its associated data will be fetched from the cloud.

Since the critical step of the proof of Theorem D.1 uses the intersection between
metadata’s reads and writes, the following corollary states that the result just proved
for DEPSKY-CA is also valid for DEPSKY-A. The key reason is that both protocols
read and validate metadata files in the same way, as can be seen in lines 16–17 of
Algorithm 1 and 22–23 of Algorithm 2).

COROLLARY D.2. If the weakest cloud used in a DEPSKY-A setup satisfies a con-
sistency model C , the data unit provided by DEPSKY-A also satisfies C for any C ∈
{eventual, read-your-writes, monotonic reads, writes-follow-reads, monotonic writes,
read-after-write}.
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