
Clouds-of-Clouds for Dependability and
Security: Geo-Replication meets the Cloud

Miguel Correia

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal
miguel.p.correia@ist.utl.pt

Abstract. The complexity of large cloud offerings makes it extremely
hard to guarantee their dependability and security. This paper extracts
lessons from some years of research on the notion of using several clouds –
instead of a single one– with the objective of achieving high dependability
and security. We show that using such clouds-of-clouds it is possible
for services to continue to operate correctly despite dependability and
security issues in a subset of the clouds. We show this approach with
three cases: clouds-of-clouds for storage with the DepSky system; cloud-
of-clouds for data processing with MapReduce; the execution of arbitrary
services in clouds-of-clouds with the EBAWA algorithm.

1 Introduction

The complexity of large cloud offerings makes it extremely hard to guarantee
their dependability and security. In relation to dependability, that difficulty is
clear from the outages suffered by essentially all major offerings in the past few
years. Examples are the disruption of an Amazon EC2 region for almost one
week in May 2011, and the February 29 2012 disruption of Windows Azure.
These two problems alone left the two services much below the often promised
availability of five nines. In both cases the problem was a subtle bug that led to
a cascade of failures. Security events are less visible than outages, but several
studies and news suggest that the problem is equally serious. An alarming case
was that of a Google engineer who spied upon user Gmail/Gtalk communication.
Other examples are the case of CyberLynk in which an ex-employee deleted a
TV series from which there was no other copy (March 2011).

We have been exploring the notion of clouds-of-clouds as a solution to this
chaos of accidental failures and security events. A cloud-of-clouds is a set of cloud
offerings that are used by a consumer to run some service or application. A cloud-
of-clouds is a virtual cloud, formed of real, physical, clouds. The notion is strongly
related to the term federated clouds that also designates virtual clouds formed
of real clouds [7]. However, the word “federation” suggests something created
by the owners of the clouds, whereas cloud-of-clouds has a weaker semantics,
usually associated to something created by cloud consumers: they can create
their own cloud-of-clouds for having high security and/or dependability on top
of cloud offerings they do not trust enough. Needless to say, the two abstractions



involve solving some of the same problems, such as dealing with heterogeneity
of management interfaces and access control mechanisms.

Clouds-of-clouds are an approach for dependability and security because they
explore the redundancy and diversity provided by different cloud offerings, from
different companies. The diversity of different clouds can avoid common mode
failures, i.e., failures that affect the whole cloud, which was what led to the two
above-mentioned disruptions. The bugs that led to the two disruptions did not
exist in other clouds (to the best of our knowledge), so a virtual cloud formed
of one of those plus other clouds would not fail.

This idea can be better understood by considering some of the dependability
and security attributes [4]. A cloud-of-clouds can provide availability because
most of the clouds will continue to provide their service even if there is a disrup-
tion in one (or a few) of them. It can provide integrity because most clouds will
continue to provide correct data and execution even if one of them does not. A
cloud-of-clouds can provide disaster-tolerance because clouds can be scattered
through the globe, so most clouds will continue to operate even if one is physi-
cally destroyed by a natural disaster (earthquake, storm, tsunami, etc.). Finally,
a cloud-of-clouds prevents vendor lock-in because services must support cloud
diversity, although this is not exactly a dependability/security attribute.

We considerer that clouds can fail arbitrarily (Byzantine faults), not only by
stopping delivering their service (crash faults). There is considerable evidence of
the existence of accidental Byzantine faults that can corrupt data and software
execution. Two examples: a study in Google datacenters found more than 8%
DIMMs affected by errors yearly [18]; a Microsoft study found frequent CPU
and core chipset faults in consumer PCs [13]. In relation to malicious Byzantine
faults, a malicious insider with access to servers’ management virtual machines is
known to be able to obtain consumer passwords, private RSA keys, and files [16],
thus to modify arbitrarily data and software executed in the cloud. The existence
of malicious insiders is clear from the mentioned Google and CyberLynk cases.

This paper argues that clouds-of-clouds are a valid mechanism for cloud
dependability and security. The argument is supported by three of our recent
works1. The first – DepSky – exemplifies the use of clouds-of-clouds for storage
[5]. The second shows the use of a cloud-of-clouds for data processing using
MapReduce [9]. The third illustrates how clouds-of-clouds can be used to execute
arbitrary services (e.g., file systems, databases, coordination services) in clouds-
of-clouds using state machine replication and the EBAWA algorithm [20].

The three involve replication in different clouds. Although clouds-of-clouds
might be used differently, this is the generic mechanism we consider in the paper.
We use the term geo-replication because the individual clouds will be typically
scattered geographically, interconnected by the Internet [15].

The paper starts by presenting opportunities and challenges of geo-replication
for clouds-of-clouds (Section 2). Then, DepSky, BFT MapReduce, and EBAWA
are discussed respectively in Sections 3, 4, and 5. Section 6 summarizes the
lessons learned and concludes the paper.

1 Full details about those works can be found on the papers here cited.



Fig. 1. Geographical redundancy and diversity of Amazon EC2’s regions and availabil-
ity zones.

2 Opportunities and challenges

This section discusses some of the opportunities and challenges of geo-replication
for clouds-of-clouds taking Amazon’s Elastic Cloud Computing (EC2) service as
case of study. A cloud-of-clouds can, and from the dependability point of view
should, be based on a set of different offerings from different providers to achieve
best diversity. However, it is simpler to consider the case of a single company,
which is also adequate as it has a world-wide operation. The discussion that
follows is substantiated by a set of experimental data. We run one virtual server
(an instance in Amazon’s lingo) per Amazon region from August 2–15, 2013
(two weeks). We used Micro instances, i.e., the cheapest. We extracted round-
trip times (RTT), throughput values, and information about Internet service
providers (ISPs) and Autonomous Systems (ASs) crossed between every pair of
nodes2.

A first opportunity is the existence of geographical redundancy and diversity.
This becomes clear in Figure 1 that shows Amazon EC2’s 8 regions and the
number of availability zones (AZs) per region (2 or 3). According to Amazon,
“each region is completely independent” (which is coherent with the console that
requires accessing one region at a time) and “each availability zone is isolated”
[2]. The meaning of “independent” and “isolated” is not entirely clear but from
the dependability point of view it suggests a considerable independence between
AZs and a higher independence between regions. AZs in a region are connected
through low-latency links, but regions are connected by the Internet.

A second opportunity is network redundancy and diversity. To understand
this aspect, we run lft (a variation of traceroute) between every pair of instances
we placed in EC2 regions and observed the ISPs and ASs crossed. The informa-
tion about the ISPs for some of the pairs as of August 2nd, 2013, is shown in
Figure 2 (we do not show all because they are many). All instances are in ASs
from Amazon, which are not displayed, except in the case of the 3 US nodes
that are entirely connected by Amazon ASs. Generically it can be observed that

2 The raw data is available at http://homepages.gsd.inesc-id.pt/∼mpc/paper-
data/amazon-ec2-aug2013.rar



Asia Pacific (Sydney)

US East (N. Virginia)

US West (Oregon)

US West (N. California)

EU (Ireland)

South America (São Paulo)

Asia Pacific (Singapore)

Asia Pacific (Tokyo)
AMAZON

NTT
Level3

SeaBone
Tinet

Telefonica

QWest
Level3

NTT
Telefonica

NTT
Level3

Tinet

Telia
NTT

Level3

Tinet
QWest

Telia
NTT

Level3
BTN

Telia
NTT

Level3
NTT

Tinet
NTT

Tinet
TelStra

TelStra
KDD

NTT

NTT

NTT

Tata

NTT
SeaBone

Tata
SeaBone

SeaBone
TelStra

SeaBone
NTT

Fig. 2. ISP redundancy and diversity in some of the Amazon EC2 region interconnec-
tions in August 2nd, 2013.

nv-or nv-nc nv-ir nv-si nv-to nv-sy nv-sp or-nv or-nc or-ir or-si or-to or-sy or-sp

RTT avg. 83.9 81.2 98.2 261.3 168.9 259.6 148.5 82.1 21.9 178.2 217.1 122.5 197.4 214.8
RTT std. dev. 14.2 13.3 11.3 11.3 12.4 9.2 26.2 5.0 6.6 8.2 12.3 8.5 23.2 9.2
Tput avg. 22.7 23.4 18.9 7.1 10.8 7.1 11.9 21.9 67.5 11.0 8.9 14.5 9.3 7.9
Tput std. dev. 3.0 2.8 3.7 1.2 1.8 0.9 2.8 4.1 20.5 2.5 1.3 2.6 1.7 1.6

Table 1. Average and standard deviation of round-trip time (ms) and throughput
(Mbps) between some pairs of instances placed in different Amazon EC2 regions.

several ISPs interconnect the regions, so there is diversity. Moreover, in most
cases the ISPs crossed depend on the direction of the communication, indicated
in the figure by two sets of ISPs in a link. For instance, when an IP datagram
is sent from US West (Oregon) to South America (São Paulo) it crosses NTT
and Level3; if sent the other way around it crosses Telefonica and NTT. This
suggests the existence of a lot of redundancy. The ASs provide another level of
diversity as most ISPs have several. These are not shown in the figure as it would
become hard to read.

In relation to challenges, a first one is the high and variant latencies between
sites. Table 1 shows the RTT between a few pairs of nodes. The regions are
represented by the initials of the Country/State (e.g., or for Oregon). Even the
two closest regions, US West (N. California) and US West (Oregon), show RTTs
around 20 ms, which is 100 times more than, say, around 0.2 ms that can be
observed in Ethernet LANs. The variation is also considerable.

A second challenge is the low and variant throughput between sites, as also ob-
served in Table 1. It is important to note that Amazon provides better through-
put to better (more expensive) instances, as shown in [19].

A third challenge is the economic cost of sending data out of the cloud. Ama-
zon, as several other offerings, charges nothing for receiving data into its cloud
from the Internet, only to send it out. The price for sending data out is zero
for the first GB, then starts at 0.12 dollars per GB (up to 10 TB per month)
and goes down until 0.05 dollars per GB (for around 500 TB per month) [1].
The cost of sending data out is far from being the only cost of cloud computing:



others are for instance the cost of storing data and the cost of running virtual
machines (instances).

A fourth challenge is the CAP theorem that states the impossibility of having
consistency, availability, and partition-tolerance at the same time [6,11]. The
existence of high network diversity suggests that network partitions may not be
an issue if best of breed clouds offerings like Amazon AWS are used. Nevertheless,
partitions should probably be accounted for and a relaxed consistency may be
offered when an partition actually occurs. This is a current topic of research that
we, however, do not address more in this paper.

3 Storage – DepSky

DepSky is a software library for implementing storage clouds-of-clouds [5]3. With
DepSky, a consumer can implement a virtual storage cloud. Such a service pro-
vides file storage with operations such as create file, read, write, delete file, etc.
A DepSky cloud-of-clouds is built on top of a set of legacy, unmodified, storage
clouds. Many storage clouds can be used but currently the library has an abstrac-
tion layer that supports only four: Amazon S3, Google Storage, Rackspace Files,
and Windows Azure Blob Storage. DepSky provides all the properties mentioned
in the introduction – availability, integrity, disaster-tolerance, no vendor lock-in
– plus confidentiality (file content cannot be disclosed at a cloud).

The core of DepSky are a pair of protocols for reading and writing files in
the clouds. These protocols have to tolerate unresponsive clouds, so they have
to reason in terms of quorums of clouds, i.e., of subsets of the group of clouds
that implements the cloud-of-clouds. Moreover, these protocols have to tolerate
Byzantine faults for the reasons mentioned in the introduction. Therefore, Dep-
Sky is based on Byzantine quorum (replication) protocols [12]. In the following
discussion we consider n clouds at most f of which can fail. DepSky requires
n > 3f (e.g., n = 4 with f = 1).

The key idea of the protocols is simple. To write a file in the cloud-of-clouds,
the client (i.e., the DepSky library at the user node) first writes the file in
(at least) n − f clouds, then writes a file with metadata in the same clouds.
The metadata file contains information such as a cryptographic signature and a
version. To read a file, the client first reads the metadata file from n− f clouds,
picks one of the metadata files with the highest version and gets the file from
that cloud. If the signature does not correspond to the file retrieved, the file may
have been corrupted, so the user retrieves the file from some of the other clouds.

This basic scheme has two limitations: files are stored in clear in all clouds,
so confidentiality is worse than if stored in a single cloud; the storage used is
n times more than if a single cloud was used, so the cost is on average also n
times more. A solution to both problems is for each file: (1) to disperse it in n
parts using erasure codes; (2) to generate a random secret key; (3) to encrypt
each part of the file with a symmetric encryption algorithm (e.g., AES) and the

3 Online at https://code.google.com/p/depsky/



key; (4) to split the key in n shares using a secret sharing algorithm; and (5) to
store one pair {file part, key share} in each cloud. This way individual clouds
(more precisely, a collusion of up to f clouds) cannot disclose the key or rebuild
the file, so confidentiality is enforced. Moreover, storage space is approximately
two times the size of the file.

We did an extensive experimental evaluation of DepSky using four commer-
cial clouds and clients placed around the world in PlanetLab nodes. The more
interesting results are the latency, i.e., the time to complete a read or write
operation. We compared DepSky’s latency with the latencies of the individual
commercial clouds. On the negative side, we observed that DepSky’s write la-
tency is close to the one of the cloud with worst latency, which was to be expected
as DepSky writes in all clouds (or at least n−f). DepSky’s read latency is close
to the latency provided by the cloud with lowest latency, which is good because
clouds are often used to distribute content (i.e., more for reading than for writing
files).

Our experience with DepSky provides several insights about the design of
clouds-of-clouds: (1) The protocols should be based on Byzantine quorum sys-
tems to allow reasoning about subsets of clouds and tolerating Byzantine faults.
(2) Signed files can be verified so they can be read from a single cloud, possibly
the fastest, which typically provides the lowest latency (but not always). (3)
Erasure codes are a valuable mechanism to reduce the size of data stored so also
the cost involved. (4) Secret sharing can be used to store cryptographic keys in
clouds (and avoid a key distribution scheme).

4 Data processing – BFT MapReduce

Storage is probably the simplest service provided by clouds as it can be ab-
stracted in terms of a simple set of operations: read, write, create, etc. Process-
ing data is arguably more complicated. MapReduce is a programming model and
an execution environment for processing large data sets made public by Google
in 2004 [10]. BFT MapReduce is a modification of Hadoop MapReduce [21] for
clouds-of-clouds that aims to provide the attributes mentioned in the introduc-
tion: availability, integrity, disaster-tolerance, no vendor lock-in [9]. However,
on the contrary to DepSky and EBAWA, it tolerates only accidental Byzantine
faults, not malicious Byzantine faults.

Hadoop MapReduce is built to tolerate the most common faults. The job
tracker detects and recovers crashed map/reduce tasks and files are stored with
checksums to allow detecting their corruption. However, Byzantine faults can
corrupt task executions, so these tasks can return wrong outputs. Moreover, if
a job is executing in a cloud and there is an outage, the job has to be restarted
somewhere else (if the input splits are available somewhere else).

BFT MapReduce uses task replication to solve the first problem and replica-
tion in different clouds to solve the second. Consider again n clouds, at most f of
which can stop or corrupt tasks (the original scheme is more generic and allows
tasks to be corrupted in any cloud but this aspect complicates the presentation



so we omit it here). The scheme assumes that the splits are replicated in the n
clouds and that n > 2f . Every split is processed by a map task in all clouds and
all reduces are run in all clouds. The outputs of the replicas are voted and the
result of the majority is accepted as correct (which is true due to the assumption
of n > 2f). Even if a cloud fails the rest continue to execute the job.

This basic scheme has several performance and cost problems so we use three
mechanisms to improve it. The first mechanism is to have one job tracker per
cloud that controls the execution of tasks in its cloud. This solves the problem
of controlling the execution of tasks from another cloud being a bad idea: the
associated latency is high; the timeouts to detect if tasks failed have to be con-
siderably higher (to limit wrong detections); the job tracker is a single point of
failure.

The second mechanism is deferred execution: only f + 1 replicas of each
task are executed as long as they all return the same output; when there is
disagreement about the output, one or more additional replicas are executed (in
other clouds). This reduces the resources needed to execute a job that have to
be twice the original resources when there are no faults (if f = 1 then f + 1 = 2
replicas) or more (if f > 1).

The third mechanism is the one with the highest impact on the performance:
digest communication. All reduce tasks have to fetch the outputs of all map
tasks. When a reduce replica fetches the outputs of f + 1 replicas of the same
map task it compares them and either accepts that output (if they are equal)
or informs the job tracker that more replicas are needed. However, all map and
reduce tasks are replicated so the number of outputs to fetch is typically large
and fetching outputs through the Internet is slow. Moreover, these outputs can
be large, for instance, of the same size of the inputs, therefore not only the delay
but also the cost of taking this data out of a cloud will be high. The solution to
this problem is to avoid transferring outputs between clouds: reduces only fetch
cryptographic hashes (digests) of outputs from other clouds. These hashes are
small (e.g., 32 bytes with SHA-256) and the comparison of hashes is equivalent
to the comparison of the full outputs as they are collision-resistant [14].

Again our experience with BFT MapReduce provides several insights about
the design of clouds-of-clouds: (1) Tasks can be replicated in different clouds to
mask faulty executions and cloud failures. (2) Execution of some task replicas
can be deferred to spare the resources used in some of the clouds. (3) Control
components (the job tracker in this case) should be distributed to avoid control
operations and failure detection between clouds and the associated high delays.
(4) Whenever possible cryptographic hashes should be sent through the Inter-
net instead of large messages, reducing communication latency and the cost of
sending data out of the cloud.

5 Service replication – EBAWA

Data storage (Section 3) and data processing using MapReduce (Section 4) are
important but somewhat specific services for a cloud-of-clouds. EBAWA is a



Byzantine fault-tolerant state machine replication (SMR) algorithm for clouds-
of-clouds [20]4. SMR is a classical technique to make arbitrary services depend-
able (or fault-tolerant) through replication [17]. Example services that can be
made dependable using SMR are databases, authentication services, coordina-
tion services, and file systems. Storage services and frameworks like MapReduce
can also be made dependable this way but less efficiently than using the schemes
presented in the previous two sections (e.g., more communication steps, more
replicas). Similarly to BFT MapReduce, EBAWA provides availability, integrity,
disaster-tolerance, and no vendor lock-in, but it tolerates both accidental and
malicious Byzantine faults (as also does DepSky).

The idea of SMR is to replicate a service (a state machine) in n servers in
such a way that if f become faulty the service continues operational (availability)
and correct (integrity). For that to be possible the service has to be (or made)
deterministic. Moreover, all replicas have to start in the same state and have to
execute the same operations in the same order. The second aspect requires the
use of a total order multicast protocol, which is the core of any SMR algorithm.

The first correct and efficient Byzantine fault-tolerant (BFT) SMR algorithm
is known as PBFT [8]. This algorithm, however, was designed with LANs in
mind. It has several communication steps (expensive when latency is high) and
involves sending many messages. EBAWA is a BFT SMR algorithm like PBFT,
but with a set of mechanisms for making it efficient in WANs, which make it
adequate for clouds-of-clouds. In EBAWA replicas include a trusted module, the
Unique Sequential Identifier Generator service (USIG). This is a local module
that has to be implemented in such a way that it can be trusted, e.g., in hard-
ware. The USIG service allows improving several of the characteristics of PBFT
because it prevents certain kinds of faulty replica misbehavior: it prevents faulty
replicas to send two different messages with the same identifier (an inconsistent
fault). This allows to reduce the number of replicas from PBFT’s n > 3f to
n > 2f . It also allows to reduce the number of communication steps by 1.

EBAWA differs from PBFT and similar algorithms by rotating its primary:
the primary only orders one batch of requests, then the next replica becomes
the primary. This prevents certain performance attacks [3], which are critical
in WANs due to the need of using large timeouts (RTTs are much higher than
in LANs). It reduces latency as clients can access the replica closest to them.
Finally, it provides load balancing because the task of ordering messages is done
by all replicas. EBAWA uses a third mechanism for efficiency in WANs: asyn-
chronous views. The idea is that a replica starts an agreement as soon as it
receives a client request by sending a prepare message. Replicas without pend-
ing client requests skip their turn by sending a special message.

We performed an extensive experimental evaluation of EBAWA in a real
WAN (using PlanetLab), in an emulated WAN (Emulab), and in a LAN, showing
interesting improvements of performance in comparison to PBFT.

4 In fact EBAWA was designed before the trend on cloud computing so it was focused
on the challenge of Byzantine fault-tolerant replication in wide-area networks. This,
however, is the main challenge we are interested here in relation to clouds-of-clouds.



EBAWA provides several insights useful for the design of clouds-of-clouds: (1)
The USIG service can be used to reduce the number of communication steps and
improve the latency of the replicated service (by modifying the system model
to include a trusted component). (2) The USIG service can be used to reduce
the number of replicas, reducing the number of messages sent and the data sent
out of the cloud (reducing the latency and the cost of sending data out). (3)
Rotating the primary allows preventing performance attacks, client can access
closest replica (reducing the latency), and load balancing. (4) Asynchronous
views reduce waiting for the contacted replica to become the primary, so also
the latency. (5) Waiting for n− f replicas allows disregarding those with higher
RTT, improving the latency.

6 Conclusion

The main argument of the paper is that clouds-of-clouds are a solution for con-
sumers to create dependable and secure clouds on top of cloud offerings they do
not trust enough. We have shown this with three cases: storage, data processing,
and arbitrary services. A different question is if this solution is usable, due to its
time and economic costs. Latency is an issue with clouds-of-clouds but it is also
so with normal clouds. We have shown that it is possible to have cloud-of-cloud
services with a latency of a few RTTs which is similar to what exists in a nor-
mal cloud (think of the delay of a simple HTTP access: 1.5 RTTs for the TCP
3-way handshake plus 0.5 RTTs for the reply, if we consider that the request
goes with the last message of the handshake). In terms of costs, they are higher
due to the use of more resources, but dependability and security are never free.
Clouds-of-clouds seem to be a viable mechanism for dependability and security.
If they will be adopted, the future will tell.

Acknowledgments. The three works discussed in this paper was done together with
several colleagues and students: Fernando André, Alysson Bessani, Pedro Costa, Lau
Cheuk Lung, Marcelo Pasin, Bruno Quaresma, Fernando Ramos, Paulo Sousa, Paulo
Veŕıssimo, Giuliana Santos Veronese. This work was supported by national funds
through FCT - Fundação para a Ciência e a Tecnologia, under project PEst-OE/EEI/
LA0021/2013 (INESC-ID) and project PTDC/EIA-EIA/115211/2009 (RC-Clouds).

References

1. Amazon EC2 pricing, http://aws.amazon.com/ec2/pricing/, accessed August 15,
2013

2. Amazon EC2 user guide – regions and availability zones, http://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html,
accessed August 15, 2013

3. Amir, Y., Coan, B., Kirsch, J., Lane, J.: Byzantine replication under attack. In:
Proceedings of the IEEE/IFIP 38th International Conference on Dependable Sys-
tems and Networks. pp. 197–206 (Jun 2008)



4. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing 1(1), 11–33 (Jan-Mar 2004)

5. Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: DepSky: Depend-
able and secure storage in a cloud-of-clouds. In: Proceedings of the 6th ACM
SIGOPS/EuroSys European Systems Conference. pp. 31–46 (Apr 2011)

6. Brewer, E.: Towards robust distributed systems. In: Proceedings of the 19th ACM
Annual Symposium on Principles of Distributed Computing. pp. 7–10 (2000)

7. Cascella, R., Lorenzo, B., Jégou, Y., Coppola, M., Morin, C.: Contrail: Distributed
application deployment under SLA in federated heterogeneous clouds. In: Galis,
A., Gavras, A. (eds.) FIA book 2013, Lecture Notes in Computer Science, vol.
7858. Springer (May 2013)

8. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Proceedings of the
3rd USENIX Symposium on Operating Systems Design and Implementation. pp.
173–186 (Feb 1999)

9. Correia, M., Costa, P., Pasin, M., Bessani, A., Ramos, F., Verissimo, P.: On the fea-
sibility of Byzantine fault-tolerant MapReduce in clouds-of-clouds. In: Proceedings
of the 1st International Workshop on Dependability Issues in Cloud Computing
(Oct 2012)

10. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Proceedings of the 6th USENIX Symposium on Operating Systems Design and
Implementation. pp. 137–150 (Dec 2004)

11. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. ACM SIGACT News pp. 51–59 (Jun 2002)

12. Malkhi, D., Reiter, M.: Byzantine quorum systems. Distributed Computing 11(4),
203–213 (1998)

13. Nightingale, E.B., Douceur, J.R., Orgovan, V.: Cycles, cells and platters: an empir-
ical analysis of hardware failures on a million consumer PCs. In: Proceedings of the
6th ACM SIGOPS/EuroSys European Systems Conference. pp. 343–356 (2011)

14. NIST: FIPS 180-2, Secure Hash Standard (Aug 2002)
15. Rabinovich, M., Rabinovich, I., Rajaraman, R., A-Aggarwal: A dynamic object

replication and migration protocol for an internet hosting service. In: Proceedings
of the 19th IEEE International Conference on Distributed Computing Systems.
pp. 101–113 (1999)

16. Rocha, F., Correia, M.: Lucy in the sky without diamonds: Stealing confidential
data in the cloud. In: Proceedings of the 1st International Workshop on Depend-
ability of Clouds, Data Centers and Virtual Computing Environments (2011)

17. Schneider, F.B.: Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys 22(4), 299–319 (Dec 1990)

18. Schroeder, B., Pinheiro, E., Weber, W.D.: DRAM errors in the wild: a large-scale
field study. In: Proceedings of the 11th International Joint Conference on Measure-
ment and Modeling of Computer Systems. pp. 193–204 (2009)

19. Topchiy, S.: Testing Amazon EC2 network speed (Mar 2013), http://epamcloud.
blogspot.pt/2013/03/testing-amazon-ec2-network-speed.html, accessed August 15,
2013

20. Veronese, G.S., Correia, M., Bessani, A.N., Lung, L.C.: EBAWA: Efficient Byzan-
tine agreement for wide-area networks. In: Proceedings of the IEEE 12th Interna-
tional Symposium on High-Assurance Systems Engineering. pp. 10–19 (Nov 2010)

21. White, T.: Hadoop: The Definitive Guide. O’Reilly (2009)


