
Recent Advances on the Timely Computing Base Model∗

António Casimiro Miguel Correia

Faculdade de Cîencias da Universidade de Lisboa
Bloco C5, Campo Grande, 1749-016 Lisboa, Portugal

{casim,mpc}@di.fc.ul.pt

1. Introduction

The development of applications in large-scale real-time
systems is known to be a complex task. One of the main dif-
ficulties consists in reconciling timeliness expectations with
the uncertainty of the environment. The problem has been
addressed by several authors, each in its own way [3, 5, 6],
but all share the observation that synchronism or asynchro-
nism are not homogeneous properties of systems.

The lack of a generic model able to deal with this par-
tial synchrony problem in a systematic way was one of the
reasons that motivated our work around the definition of a
new model, which we called theTimely Computing Base
(TCB) model [7]. It assumes that systems, however asyn-
chronous they may be, and whatever their scale, can rely on
services provided by a special module, the TCB, which is
timely, that is, synchronous.

Since we devised the Timely Computing Base model, we
have taken systematic steps to validate it. In [8] we have
shown how to solve a fundamental problem: to interface
a payload system of any degree of asynchrony, to a syn-
chronous subsystem as the TCB. We have also discussed the
implementation of one of the application classes we propose
(fail-safe) on the TCB. In a recent work [2] we show how
to implement time-elastic applications on the TCB. Imple-
menting a TCB is a subject of its own. In [1], we describe
one of the possible implementations of the TCB, based on
RT-Linux, using Linux as the payload support system.

Recently, we have extended the TCB model with a set
of security properties to make it trusted not only in the time
domain but also in the value domain. The resultingTrusted
Timely Computing Base (TTCB) is presented in [4]. In
the present paper we present a brief report on all these ad-
vances.

∗This work was partially supported by the EC, through projects
IST-1999-11583 (MAFTIA) and IST-2000-26031 (CORTEX), and
by the FCT, though the Large-Scale Informatic Systems Labora-
toty (LASIGE) and projects Praxis/P/EEI/12160/1998 (MICRA) and
Praxis/P/EEI/14187/1998 (DEAR-COTS).
c©2001, Ant́onio Casimiro

2. Building a TCB

One of the main characteristics of the TCB model is that
it assumes the system to be composed of two parts: apay-
load part, where applications execute, and acontrol part,
made of local TCB modules. The set of all TCB mod-
ules, interconnected by a control channel, constitutes a dis-
tributed TCB. While the payload part can have any degree
of synchronism, possibly being completely asynchronous,
the control part is assumed to by synchronous. Therefore,
it is clear that in any implementation of a system with a
TCB, a small part of the system must have synchronous
properties. The Real-Time Linux (RT-Linux) system is an
extension to Linux, designed to allow the execution of real-
time tasks in parallel with the normal payload applications.
Therefore, RT-Linux was an obvious choice to implement a
TCB. For the infrastructure we used standard PCs, a Fast-
Ethernet switched network and standard Ethernet cards [1].

We have studied the practical implications of implement-
ing a RT-Linux version of the TCB. We took a pragmatic ap-
proach which consisted in investigating whether it would be
possible: a) to accurately predict the execution time of TCB
activities, which is needed for a schedulability analysis; b)
to allow the TCB to handle multiple service requests, ar-
riving at unpredictable instants, and still behave timely and
provide timely services; c) to implement a RT-Linux TCB,
following the basic construction principles ofInterposition,
ShieldingandValidation.

Our study showed that RT-Linux is clearly not a per-
fect real-time operating system, at least not for generic PC
hardware, but that it is possible to use special safety mech-
anisms to reduce the problem of occasional timing failures.
We then conducted some experiments to obtain practical
results for the timeliness of the RT-Linux system and of
the Fast-Ethernet switched network. They have shown that
RT-Linux is able to schedule real-time tasks with bounded
scheduling delays and that Fast-Ethernet switched networks
can provide fairly constant message delivery delays.

3. Timely Computing with the TCB

Our approach to the problem of dependable computing
with a TCB has always been based on the definition of



generic classes of applications, which would exploit par-
ticular abilities of the TCB to enjoy certain “good” prop-
erties. We have defined three of these application classes:
the fail-safe, the time-elasticand thetime-safeclass. How
practical are these application classes? Can one build real-
life applications based on the TCB? Since we first devised
the Timely Computing Base model [7], we have method-
ically addressed these issues. In [8] we have shown how
to interface a payload system of any degree of asynchrony,
to the TCB. We have also shown how a fail-safe application
would look like, when implemented on the TCB. In a recent
work [2] we have shown how to implement time-elastic ap-
plications on the TCB.

3.1. Supporting Fail-Safe applications

Any class of applications with a fail-safe state can be
implemented using a TCB. This is because the TCB has
the ability of timely detecting timing failures. In fact, the
TCB provides a set of services that may be used by applica-
tions to behave timely. We have proposed an interface with
a set of basic services, including aduration measurement,
a timely executionand atiming failure detectionservice.
Fail-safe applications can use the TCB as follows. When a
timing failure occurs it is detected by the TCB in a bounded
amount of time, which possibly (timely) executes some fail-
safe procedure to bring the system into the fail-safe state. In
[8] we show how to use the interface and how these appli-
cations look like.

3.2. Supporting Adaptive applications

Another class of applications that may benefit from the
TCB services is the time-elastic class. Time-elastic applica-
tions are those whose bounds can be increased or decreased
dynamically, such as QoS-driven applications. These appli-
cations, unlike the fail-safe ones, are typically immune to
sporadic timing failures. However, since they cannot han-
dle unbounded failure rates, when a bound is assumed for
a given timing variable it is expected to hold with a cer-
tain probability. For the application to work correctly it is
necessary that the coverage of the assumed bounds keeps
stable. We have expressed this fact by introducing thecov-
erage stabilityproperty. In a recent paper [2] we show that
in open and unpredictable environments, where coverage
levels tend to vary during the execution, it is possible to
construct aQoS coverage serviceusing the TCB, to allow
time-elastic applications to achieve the coverage stability
property.

The basic idea consists in using the TCB duration mea-
surement service to collect timing information during an in-
terval of mission, which is used to build a probability dis-
tribution functionpdf of a timing variable. Then, with this
pdf it is possible to determine〈bound,coverage〉 pairs and
chose the one that best fits the requirements. In particular,
it is possible to know the bound that must be used to keep
the coverage constant.

In contrast with other solutions, we propose a rigorous
approach to the problem of (timing) QoS monitoring. Sev-
eral methods and assumptions can be used to obtain apdf ,
each with its own associated errors. In [2] we describe the
QoS coverage service, its interface, and a concrete method
to buildpdfs and implement the service.

4. Making the TCB a Trusted Component

The TCB model is well suited to environments with poor
baseline timeliness guarantees, such as the internet. It is
designed to provide timely services under benign fault as-
sumptions. However, these highly open environments are
prone to malicious attacks, which can eventually compro-
mise the robustness of the TCB. We have observed that sim-
ilarly to synchronism, which is not an homogeneous prop-
erty of systems, also security can vary in time (e.g. be-
fore and after an intrusion) and space (there are components
more secure than others). This observation suggests that it
may be possible to add simple, but fundamental security
services, to make the TCB a timely and highly secure com-
ponent. We call it theTrusted Timely Computing Base
(TTCB) . In [4] we describe the TTCB model, services and
interface. At this stage, we pay a special attention to the
problem of securing the interactions between processes liv-
ing in the payload part of the system and the TTCB.

References

[1] A. Casimiro, P. Martins, and P. Verı́ssimo. How to build a
timely computing base using real-time linux. InProceedings
of the 2000 IEEE Intl. Workshop on Factory Communication
Systems, pages 127–134, Porto, Portugal, Sept. 2000.

[2] A. Casimiro and P. Verı́ssimo. Using the timely computing
base for dependable qos adaptation. Submitted.

[3] T. Chandra and S. Toueg. Unreliable failure detectors for reli-
able distributed systems.Journal of the ACM, 43(2):225–267,
Mar. 1996.

[4] M. Correia, P. Veŕıssimo, and N. Neves. Supporting the exe-
cution of resilient non-byzantine intrusion-tolerant protocols.
Submitted.

[5] F. Cristian and C. Fetzer. The timed asynchronous distributed
system model.IEEE Transactions on Parallel and Distributed
Systems, pages 642–657, June 1999.

[6] P. Veŕıssimo and C. Almeida. Quasi-synchronism: a step
away from the traditional fault-tolerant real-time system mod-
els. Bulletin of the TCOS, 7(4):35–39, Winter 1995.

[7] P. Veŕıssimo and A. Casimiro. The timely computing base.
DI/FCUL TR 99–2, Department of Computer Science, Uni-
versity of Lisboa, Apr. 1999. Short version appeared in the
Digest of Fast Abstracts, The 29th IEEE Intl. Symposium on
Fault-Tolerant Computing, Madison, USA, June 1999.

[8] P. Veŕıssimo, A. Casimiro, and C. Fetzer. The timely comput-
ing base: Timely actions in the presence of uncertain timeli-
ness. InProceedings of the International Conference on De-
pendable Systems and Networks, pages 533–542, New York
City, USA, June 2000. IEEE Computer Society Press.


	-1em. Introduction
	-1em. Building a TCB
	-1em. Timely Computing with the TCB
	-1em. Supporting Fail-Safe applications
	-1em. Supporting Adaptive applications

	-1em. Making the TCB a Trusted Component

