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Abstract

This paper proposes a variation of the Byzantine generals problem (or Byzantine consen-

sus). Each general has a set of good plans and a set of bad plans. The problem is to make all

loyal generals agree on a good plan proposed by a loyal general, and never on a bad plan.
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1 Introduction

The Byzantine generals problem is one of the most well-known problems in dis-

tributed systems (Lamport et al., 1982). The idea is to make a set of loyal Byzantine

generals (distributed processes) agree on a plan to attack an enemy city or retreat

(a binary value). The decision must be unanimous among loyal generals, but there

can be some traitors that try to break this unanimity. Solutions for this problem,

later called Byzantine agreement or binary consensus, have been shown to be suf-

ficient to solve other forms of consensus (e.g. (Correia et al., 2006)) and consensus

has been show to be equivalent to many important distributed systems problems

(e.g. (Hadzilacos and Toueg, 1994)).
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This paper proposes a variation of the Byzantine generals problem, which we call

the Byzantine Generals with Alternative Plans problem (BGAP). Suppose we have

generals that are “smarter” than the original ones. They can devise several good

plans, instead of only attack/retreat, and they can also devise a set of bad plans.

The problem is to make all loyal generals agree on a good plan proposed by a loyal

general. There are four flavors of the problem that depend on the creativity and

technical knowledge we assume for the generals: loyal generals may have equal or

different sets of good plans and equal or different sets of bad plans.

Our interest in this problem is not merely theoretical. On the contrary: the pur-

pose is to provide an expressive abstraction that simplifies the solution of problems

that involve Byzantine agreement and that would be harder to solve using other

flavors of consensus, like multi-valued consensus. The BGAP problem appeared

recently when we were designing Byzantine fault-tolerant tuple spaces (Bessani

et al., 2006b, 2007, 2008), using both Byzantine quorum systems (Malkhi and

Reiter, 1998) and state machine replication (Schneider, 1990). A tuple space is

a shared memory object that provides operations for storing and retrieving ordered

data sets called tuples (finite sequences of values) (Gelernter, 1985). When a pro-

cess wants to read or remove a tuple from the tuple space it provides a template

and one of the tuples in the space that matches the template is returned. Therefore,

a tuple space is a sort of (shared) associative memory: tuples are accessed through

their contents, not through their address. The original motivation for defining and

studding the BGAP problem was that when a process wants to remove a tuple, the

servers (Byzantine generals) have to choose a tuple in the space (a good plan) and

never a tuple that has already been removed from the space (a bad plan).

We believe the BGAP problem is usually the problem we want solved for the co-

ordination of distributed processes that can fail in a Byzantine way. The problem is

quite generic: each process can have several initial values (in extreme cases, only

one or all), and also a set of values it can not accept to be the decision. The no-

tions of good and bad plans reflect the idea that processes may have several views
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about what to do in a certain situation, but also that some actions are unaccept-

able. Therefore, many coordination problems can be solved using an algorithm that

solves BGAP. In a sense BGAP tackles a limitation of other variations of the prob-

lem. Many distributed applications require that the plan decided is one of those

proposed by loyal generals, while in practice most algorithms can only ensure that

in special cases (if plans are binary, if all loyal generals propose the same plan).

For clarity, from now on we present the problem in terms of distributed systems

and processes, not in terms of battles and Byzantine generals.

2 System Model

The system is composed by a set of n processes Π = {p1, p2, ...pn}. The processes

communicate by passing messages. A process is said to be correct if it follows its

algorithm. Otherwise it is said to be faulty. We assume at most t = bn−1
3 c processes

can fail, so n ≥ 3t + 1. These failures can be Byzantine, meaning that faulty pro-

cesses can stop, omit messages, send incorrect messages, send several messages

with the same identifier, etc., either alone or in collusion with other faulty pro-

cesses. We use the predicate correct(i) in logic expressions, to say that process pi

is correct. Π, n and t are known by all processes in Π.

The system is asynchronous, which means that there are no bounds on the process-

ing times or communication delays 1 . Consensus has been proved to have no deter-

ministic solution in an asynchronous system if even a single process is allowed to

stop (Fischer et al., 1985). Therefore we also assume that the asynchronous system

is extended with an oracle or a timing assumption that circumvents that limita-

tion of strictly asynchronous systems. We do not specify which oracle or assump-

tion it is because instead we extend the basic system model with a multi-valued

1 Contrary to the original Byzantine generals problem that assumed synchrony (Lamport
et al., 1982).
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consensus primitive, whose implementation includes the oracle/time assumption.

Therefore, instead of presenting algorithms built from scratch, we present transfor-

mations (Hadzilacos and Toueg, 1994) from multi-valued consensus to BGAP, i.e.,

algorithms that convert any implementation of multi-valued consensus into BGAP.

The objective is to simplify the presentation allowing us to put the emphasis on the

problem itself.

2.1 Multi-valued Consensus

Suppose each process proposes a value, i.e., gives an initial value to the algorithm.

Multi-valued consensus makes agreement on one of the values proposed, i.e., de-

cides a value. There are a few different definitions of the problem. The definition

we consider, taken from Correia et al. (2006), is given in terms of the following

properties (⊥ is a value outside the range of values that can be proposed):

• MVC1 Validity 1. If all correct processes propose the same value v, then any

correct process that decides, decides v.

• MVC2 Validity 2. If a correct process decides v, then v was proposed by some

process or v =⊥.

• MVC3 Validity 3. If a value v is proposed only by faulty processes, then no correct

process that decides, decides v.

• MVC4 Agreement. No two correct processes decide differently.

• MVC5 Termination. Every correct process eventually decides.

This definition has three Validity properties. Most definitions of the problem have

only MVC1 or MVC2, while MVC3 is taken from the classical Byzantine generals

problem (Lamport et al., 1982). Defining multi-valued consensus in terms of all

these properties, makes it easier to use it for solving other problems, which is what

we are interested in this paper. An algorithm that solves the problem in terms of the

five properties above is given by Correia et al. (2006).
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We consider that the multi-valued consensus algorithm is implemented by the func-

tion m v consensus, which takes a proposal and a consensus identifier as input pa-

rameters and returns the value decided.

2.2 Reliable Broadcast

Besides multi-valued consensus, we use a second primitive to implement BGAP:

reliable broadcast (Bracha, 1984). This primitive ensures essentially that all correct

processes deliver the same messages, which is an important restriction to what can

be done by faulty processes. The problem can be defined in terms of the following

properties:

• RB1 Validity: If a correct process broadcasts a message M, then some correct

process eventually delivers M.

• RB2 Agreement: If a correct process delivers a message M, then all correct pro-

cesses eventually deliver M.

• RB3 Integrity: For any identifier ID, every correct process p delivers at most one

message M with identifier ID, and if sender(M) is correct then M was previously

broadcast by sender(M) 2 .

The reliable broadcast primitive (e.g., the one by Bracha (1984)) is called using the

function r broadcast, which takes the message to disseminate as input.

3 Problem Definition

Each process pi has a finite (but potentially large) set of good values Gi = {vi1, ...,viki}

(good plans) and a finite (but potentially large) set of bad values Bi = {v′i1, ...,v′ili}

(bad plans), where vi j ∈ V and v′i j ∈ V , ∀i, j. Each process decides a value. The

2 The predicate sender(M) gives the field of the message header that identifies its sender.
We consider that the sender also delivers the messages it broadcasts.

5



BGAP problem is defined in terms of the following properties:

• BGAP1 Validity 1. If there is a value v such that for any correct process pi, v∈Gi,

then any correct process that decides, decides a value v′ such that v′ ∈ G j for a

correct process p j.

• BGAP2 Validity 2. No correct process pi decides a value v if there is a correct

process p j with v ∈ B j.

• BGAP3 Agreement. No two correct processes decide differently.

• BGAP4 Termination. Every correct process eventually decides.

Property BGAP1 is a variation of a common validity property used to define multi-

valued consensus (MVC1 in Section 2.1). The property states the minimal condi-

tion in which the value decided must be a value v′ of a correct process’ G set: that

there is at least one value v that exists in all G sets in correct processes (v can either

be equal to v′ or another value). The reader might expect the property to impose the

value decided to be v, but this is not possible. For instance, if Π = {p1, p2, p3, p4},

G1 = G2 = G3 = {50,270}, G4 = {270}, then a value in a correct process’ G set

will be decided as all contain 270, but the value decided can be 50 (e.g., if pro-

cess p4 is very slow). Generically, there can be a value v′ (or more) in several G

sets in correct processes but not in all; even existing a value v in all sets, a proto-

col that solves the BGAP problem may decide v′ since it is usually not possible to

distinguish if the value is in all or only some of the G sets in correct processes.

Property BGAP2 states that no value that exists in a correct process’ B set can

be decided. In fact, BGAP2 is the more innovative aspect of the BGAP problem,

the statement that no “bad values” can be decided by correct processes. Proper-

ties BGAP3 and BGAP4 are the standard agreement and termination properties of

consensus.

We formalize an assumption about the relation between Gi and Bi in a correct pro-

cess:
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• Assumption 1: For any correct process pi, Gi
⋂

Bi = /0.

Table 1 shows the four variations of the problem depending on restrictions on

the relation among the processes sets G and B. Each variation adds an assump-

tion/restriction to the problem, except variation (4) which is the problem without

restrictions.

Equal B sets Possibly different B sets

Equal G sets [1] ∀i, j,(correct(i)∧ correct( j))⇒ [2] ∀i, j,(correct(i)∧ correct( j))⇒

(Gi = G j ∧Bi = B j) (Gi = G j)

Possibly [3] ∀i, j,(correct(i)∧ correct( j))⇒ [4]

diff. G sets (Bi = B j)
Table 1
Four variations of the BGAP problem expressed in terms of additional assumptions

Notice that the definitions of Gi and Bi above seems to imply that G and B sets are

defined by enumeration. However, this is not necessarily true, as they usually can

also be defined in terms of domains and predicates (e.g., G = {v : v ∈N∧v < 10}).

4 Solutions for the problem

The four variations of the problem were ordered in terms of difficulty. We address

each of the variations in this order. Each solution is a function bgap(Gi,Bi) that is

invoked locally by each process pi and returns the value decided v.

4.1 Variations (1) and (2)

Variation (1) has a trivial solution since all G sets are equal and all B sets are also

equal. Let us define a function f which, if applied to a set of values S = {v1, ...,vm}

returns one of the values deterministically, i.e., if the function is applied to the same

set S in different processes, the value returned is the same. Also, f ( /0) =⊥. Getting
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momentarily back to the Byzantine generals metaphor, the function can return, e.g.,

the best plan in terms of expected number of casualties.

The pseudo-code for process pi is in Algorithm 1. Variables take a subscript i to

indicate that they are local variables of process pi. The solution requires no com-

munication.

Algorithm 1 BGAP solution for variations (1) and (2) (pseudo-code for proc. pi).
1: function bgap(Gi,Bi)
2: return f (Gi)

This solution can be easily shown to satisfy also variation (2) due to Assumption

1. We skip the proofs due to the simplicity of the algorithm.

4.2 Variation (3)

Variation (3) is more interesting since it allows different processes to have different

G sets. Therefore, in general, i 6= j ⇒ f (Gi) 6= f (G j) and the simple algorithm

above does not solve the problem.

A simple algorithm that solves this variation is the following. The basic idea is to

run in parallel one instance of binary consensus for each potential decision value.

The algorithm executed by each process pi is: for each possible decision value

v ∈ V \Bi, if v ∈ Gi then propose 1 (true), otherwise propose 0 (false) to a binary

consensus with identifier v; build a vector with the decisions of all consensus ex-

ecutions; decide deterministically one of the values for which the decision was 1

(true).

The time complexity of this algorithm is identical to the complexity of one binary

consensus, as they are all executed in parallel, which is extremely interesting. The

message complexity is that of one consensus multiplied by the size of V , so the

performance of the algorithm depends on this size. However, this message com-

plexity can be much reduced by merging and piggy-backing the messages sent in
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parallel by the several consensus executions.

Algorithm 2 solves the variation (3) of the problem with a higher number of steps,

but without the need of a large number of consensus instances if the size of V is

large. The algorithm uses an operator |S| that gives the number of elements in the

set S. It also uses a second value > outside the range of values that can appear in G

or B sets, but that can be proposed and decided by the multi-valued consensus.

Algorithm 2 BGAP solution for variation (3) (pseudo-code for process pi).
1: function bgap(Gi,Bi)
2: wi← n− t
3: r broadcast(〈INIT,Gi, i〉)
4: repeat
5: wait until (at least wi INIT nessages have been delivered)
6: ∀ j: if (〈INIT,G j, j〉 has been delivered) then VGi[ j]← G j else VGi[ j]←⊥
7: Si←{v : |{ j ∈ {1, ...,n} : v ∈ VGi[ j]}| ≥ t +1}
8: if (Si 6= /0) then ri← f (Si) else ri←>
9: vi← m v consensus(ri,wi)

10: wi← wi +1
11: switch (vi)
12: case vi 6=> and vi 6=⊥:
13: return(vi)
14: case vi =>:
15: GGi← VGi[1]

⋃
...

⋃
VGi[n]

16: ri← f (GGi\Bi)
17: vi← m v consensus(ri,wi)
18: return(vi)
19: case vi =⊥:
20: {continue the loop}
21: end switch
22: until (wi > n)
23: return ⊥

The algorithm is reasonably straightforward. Processes start by broadcasting their

G sets to the others (line 3) and waiting until at least wi = n− t of these sets are

delivered (line 5). Then, they build a vector with these sets (line 6) and build a

set Si with the values they received in sets from at least t + 1 processes (line 7).

Next, the algorithm does a multi-valued consensus (line 9). The initial value (ri)

for process pi is f (Si) if Si is not empty, or > if it is (line 8). The outcome of the

consensus is handled by the switch (lines 11-21). There are three cases. (1) If the
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decision is neither > nor ⊥ (line 12), then it must be one of the initial values from

correct processes due to property MVC3, so it must be in a G set from a correct

process and can not be in a B set from any correct process (they are all equal), so

it is returned by the algorithm (line 13). (2) If the decision is > then at least one

correct process (say pk) proposed > (property MVC3), so Sk was empty, so there

is no value v in all G sets from correct processes. In that case, what remains to be

done is to try do do consensus on a value in some of the correct processes G sets,

and not in B sets (lines 15-18). The decision of the algorithm can be either a value

v that appears in some of the G sets or⊥ if that is not possible. (3) If the decision is

⊥, then no agreement on a value was possible (properties MVC1, MVC2, MVC3).

This is only possible if not all correct processes had the same vectors VG, meaning

that they did not get the G sets from the reliable broadcast in the same order (lines

5-6). However, all processes eventually get the same messages, so it is safe to wait

for one more message, i.e. for wi = n− t + 1 messages (line 10), and do another

consensus (line 9). The repeat loop in the algorithm does precisely that, one or

more times until there are no more values to wait for.

4.2.1 Correctness

Theorem 1 The Algorithm 2 solves variation (3) of the BGAP problem.

Proof (sketch): The algorithm solves variation (3) of the BGAP problem if it sat-

isfies properties BGAP1-4 given the assumption corresponding to this variation in

Table 1.

BGAP1 Validity 1: Assume pi is a correct process. If there is a value v in the con-

dition stated in the property, then at least n− t processes broadcast G sets with

v (line 3), and at least n− 2t of the G sets inserted in VGi contain v (line 6). As

n−2t ≥ t +1, v is inserted in Si in line 7, and f (Si) 6=⊥, so a value different from

> is proposed for the multi-valued consensus in line 9 (by pi and all other correct

processes). The value decided by this consensus is either ⊥ or one of the values
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proposed by correct processes (properties MVC1-MVC3), so either that valued is

decided by BGAP in line 13 or the loop continues (lines 19-20). If the loop con-

tinues, exactly the same happens: no correct process proposes > and either a value

different from ⊥ is decided by BGAP or the loop continues. The loop can continue

more times but the reliable broadcast delivers the same messages to all correct pro-

cesses so eventually all correct processes will have the same VG sets, will propose

the same value – which is at least in a G set – to the multi-valued consensus and

this value will be decided by this consensus and also by BGAP.

BGAP2 Validity 2: The algorithm can only decide either a value decided by a multi-

valued consensus (in lines 13 and 18) or ⊥ (in line 23; ⊥ can not be in a B set by

definition). An inspection of the algorithm shows that no correct process proposes

a value in its B set – and all B sets of correct processes are the same in variation

(3) – and the multi-valued consensus never decides a value proposed only by faulty

processes (property MVC3).

BGAP3 Agreement: An inspection of the algorithm shows that the value decided

is obtained using deterministically the information returned by the multi-valued

consensus executions, so all correct processes decide the same value due to property

MVC4.

BGAP4 Termination: Correct processes might not decide only if they blocked: (1)

in the reliable broadcast or multi-valued consensus primitives, or (2) at line 5.

Case (1). If all correct processes call m v consensus (resp. r broadcast) this primi-

tive always terminate due to property MVC5 (resp. RB1/RB2). An inspection of the

algorithm shows that the sequence of lines that is executed in each correct process

can vary for a single reason: the outcome of the multi-valued consensus in line 9

(the switch depends on this value). However, the value returned in line 9 is the same

in all correct processes due to property MVC4, so all correct processes execute the

same sequence of multi-valued consensuses and they never block (the same for the

reliable broadcast, executed only once).
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Case (2). A correct process might block in line 5 if it tried to wait for more INIT

messages than would be delivered by the reliable broadcast primitive. That line

never tries to wait for more than n INIT messages due to line 22. However, the-

oretically it might wait, for instance, for n− t + 1 INIT messages, with t faulty

processes that would not execute line 3 so only n− t messages would be delivered.

The proof that this situation never happens if by induction. The basis: the line never

blocks when executed with wi = n− t, because there are always at leat n− t correct

processes (at most t can be faulty). The inductive step: if the line does not block

with wi = k it also does not block with wi = k+1 (for n− t ≤ k≤ n−1). The proof

of the inductive step is the following. Recall that all correct processes execute the

same sequence of lines. A correct process executes line 5 with wi = k + 1 only if

it did not decide in the previous round of the loop, which implies that not all cor-

rect processes proposed the same value in line 9 (if they did, that value would be

decided by the multi-valued consensus due to property MVC1, and BGAP would

decide in lines 13 or 18). If not all correct processes proposed the same in line 9

with wi = k, then at least k + 1 processes must have called the reliable broadcast

(line 3), or all correct processes would have the same vector VG (line 6) and would

propose the same value for the multi-valued consensus (lines 7-9). Therefore, no

correct process blocks in line 5 with wi = k +1. �

4.2.2 Efficiency

The objective of introducing the BGAP problem is not to do consensus more effi-

ciently, but to provide an expressive abstraction that simplifies the solution of prob-

lems that involve Byzantine agreement. However, the efficiency of an algorithm is

very important in practice, so this section discusses this issue.

A simple analysis of the performance of Algorithm 2 can be done by considering a

few cases:

• All correct processes have identical G sets. The algorithm runs one reliable
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broadcast and one multi-valued consensus. All correct processes propose the

same value to this multi-valued consensus, something that causes the fast ter-

mination of the protocol if it is optimized for that situation (Friedman et al.,

2005).

• All correct processes have disjunct G sets. The algorithm runs one reliable broad-

cast and two multi-valued consensuses (the first of which can terminate fast as

all correct processes propose the same value, >).

• Other cases. The algorithm runs one reliable broadcast and from one to t multi-

valued consensuses.

This solution is efficient in ‘nice’ cases in which all correct processes have identical

G sets or at least other favorable conditions occur like the existence of a common

value that is returned by the f function in all correct processes. In other cases it

runs more consensuses so it is not so efficient. A more efficient algorithm might

probably be obtained by using components simpler than reliable multicast, but our

purpose in this paper is to define the BGAP problem, its purpose and to provide a

simple solution.

4.3 Variation (4)

Variation (4) does not impose any restriction on the relations between G sets and

B sets, therefore it is the problem in its pure form. The fact that the solution for

variations (1) and (2) is the same might give the idea that the same would happen

for variations (3) and (4), due to the symmetry in Table 1. However, quite on the

contrary: variation (4) can be shown to be unsolvable, i.e., the BGAP problem

can be shown to be unsolvable without further assumptions. The intuition is that

a protocol that solves the BGAP problem can not distinguish a value in a G set in a

correct process from a value given by a faulty process.

Theorem 2 The variation (4) of the BGAP problem is unsolvable.
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Proof (sketch): The proof consist in showing that there is a case in which a correct

process has to choose between two options and in both cases one of the proper-

ties BGAP1/2 is broken. Consider a process p1 with B1 = {v1}. Correct processes

should become aware of the content of B1 so that they do not decide v1 if p1 is

correct. The problem is that a correct process p2 has no way of knowing if p1 is

correct or faulty. Therefore, when p2 somehow becomes aware of the content of

B1, it can use whatever information it has available to do one of two things:

(1) Consider that p1 is correct so it can not possibly decide v1. However, if p1

is faulty and all correct processes have Gi = {v1} then property BGAP1 can

not be satisfied (there is no other value in the G sets in correct processes to be

decided).

(2) Consider that p1 is faulty so it may decide v1. However, if p1 is correct and

other correct processes have Gi = {v1} then v1 can be decided, violating prop-

erty BGAP2.

Both options may lead to the violation of the specification of the problem, so it is

unsolvable. �

What can be done about it? This impossibility result can be circumvented by mak-

ing any of the assumptions of variations (1), (2) or (3). Moreover, it can be inter-

esting to study other, possibly weaker, assumptions that allow the problem to be

solved. For instance, the following assumption is sufficient to solve it:

• Assumption 2: For any correct process pi and any value v, if v ∈ Bi then there are

at least n−2t correct processes p j such that v ∈ B j.

This assumption says that a bad plan for some correct process is a bad plan for at

least n−2t correct processes (t +1 if n = 3t +1). An intuition of how the problem

with this assumption might be solved is the following. The idea is to use a vector

consensus (Correia et al., 2006) to build a set with the values at least one correct

process has in its G set, and another set (BB) with the values any process has in its
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B set; clearly any value that appears in a B set of a correct process has to appear in

the B sets of at least t + 1 correct processes to ensure that it is put in BB (because

the vector consensus builds a vector with n− t values), which is what is guaranteed

by the assumption.

We believe there are other assumptions that can be used to make this variation of

the problem solvable. This one has the interest of being useful to solve the third

algorithm in Section 5.1.

5 Discussion

Consensus is an important problem in distributed systems, therefore many flavors

have been studied through the years, even if we think only in consensus tolerant

to Byzantine faults. Three important classes have to do with what is decided: bi-

nary consensus (decides 0 or 1), multi-valued consensus (decides a value v ∈ V ),

and vector consensus (decides a vector). The BGAP problem can be considered to

be closer to multi-valued consensus since it decides on a single non-binary value.

However, in multi-valued consensus each process proposes a value, while in BGAP

there are G sets and B sets.

Most flavors of consensus have the same Agreement and Termination properties as

those we gave above for multi-valued consensus and BGAP 3 . However, for multi-

valued consensus –which decides a value like BGAP– there are a few different

Validity properties, usually:

• If all correct processes propose the same value v, then any correct process that

decides, decides v (Dwork et al., 1988; Malkhi and Reiter, 1997; Kihlstrom et al.,

2003).

3 Exceptions are k-set consensus, which allows k different values to be decided (Chaud-
huri, 1993), and randomized consensus, which terminates with probability 1 (Bracha,
1984).

15



• If a correct process decides v, then v was previously proposed by some process

(Doudou et al., 2002; Baldoni et al., 2003).

Both validity properties have limitations. The first does not say anything about the

value decided when the correct processes do not propose the same. The second lets

the value decided be a value proposed by a faulty process, something that constrains

the practical usage of such an algorithm. Most applications require that the value

decided is proposed by a correct process, which is always true for binary consensus.

For multi-valued consensus without further restrictions (like all correct processes

proposing the same value), it was recently shown that the number of processes

must be (|V |+1)t +1 (Bessani et al., 2006a). However, even if the strong form of

validity that can be ensured with this (high) number of processes, BGAP is more

expressive.

5.1 Practical Relevance

The practical relevance of BGAP is related to these limitations of other consensus

flavors. Notice that these other flavors do allow to solve many problems, including

the problems that can be solved with BGAP: we implemented BGAP using a varia-

tion of multi-valued consensus. However, they are less expressive, i.e., farther than

BGAP from some of the problems we want to solve.

As discussed in the introduction, BGAP takes into account the fact that processes

may have several views about what decisions/actions are acceptable and unaccept-

able. This flexibility permits the solution of several problems. An interesting ex-

ample can be taken from a recent paper that proposes cruise control algorithms to

be executed by cars in a car platoon (Moniz et al., 2007). The idea is that the cars

form a platoon and go together, in line, to a destination. Agreement has to be made

on the speed at which the cars travel, which depends on the traffic and other envi-

ronmental conditions. Agreement on the speed can be elegantly expressed in terms
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of BGAP. Whenever a new speed value has to be agreed upon, BGAP is executed.

Each process/car puts in the G set speed values it finds adequate, and in the B set

speed values at which it can not travel (e.g., because they are too fast or the en-

vironment does not allow it). The speed values in the sets can be enumerated or

defined using predicates.

The flexibility of BGAP allows also to solve the problem that was our initial mo-

tivation for studding BGAP: the implementation of Byzantine fault-tolerant tuple

spaces. Recently, we proposed several algorithms to implement fault-tolerant tuple

spaces using replication (Bessani et al., 2006b, 2007, 2008). In the three cases, a

tuple space is replicated in a set of n servers and the system remains correct as

long as no more than t servers fail. The replication algorithms we presented can

be understood as solving some of the variations of the BGAP problem or, on the

other hand, as being simple to implement using an algorithm that solves BGAP

as a building block. The read and insert operations do not involve agreement, but

the remove operation does because no tuple can be removed twice from the space

(Bessani et al., 2007). Therefore, BGAP can be used to define the result of remove

operations. The meaning of the sets is the following:

• G set: the set of acceptable results of the operation for the server, i.e., all tuples

in the space that match the template provided;

• B set: the set of possible but unacceptable results, i.e., all tuples that match the

template but were already removed from the space.

The relation of each of the algorithms with BGAP is the following:

• Tuple space based on state machine replication: in (Bessani et al., 2008) we pre-

sented a Byzantine fault-tolerant tuple space based on state machine replication

(Schneider, 1990). The servers that implement the replicated tuple space execute

the same operations in the same order so, whenever a remove operation is going

to be executed, the G sets and the B sets are equal in all correct servers. This

corresponds to variation (1) of BGAP (Algorithm 1).
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• Quorum-based tuple space: variation (3) of BGAP corresponds to the quorum-

based tuple space replication algorithm presented in (Bessani et al., 2006b). In

this solution, a mutual exclusion algorithm is used to ensure that all removals are

executed in total order in all servers so all the B sets are always equal (in correct

processes). However, insertions are done using quorum algorithms, so the G sets

can be different in distinct (correct) servers.

• Linearizable tuple space: variation (4) with Assumption 2 is used to implement

tuple removal in the tuple space replication algorithm described in (Bessani et al.,

2007). This algorithm requires n ≥ 4t + 1 replicas and is based on the idea that

a tuple is only removed if at least 2t + 1 replicas report not having removed it

before (so, a removed tuple cannot be reported by more than 2t servers).

This shows that the Byzantine Generals with Alternative Plans problem is quite

generic, and can be used to understand several practical problems in distributed

systems where Byzantine faults can happen.
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