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1.1 Introduction
Internet Service Providers (ISPs) provide their customers with communication ser-
vices that are easily abused by cyber-criminals. The major ISPs are interested in
reducing malicious activity and detecting it is often a first step towards that goal.
However, these organizations now run backbones with bandwidths in the order of
1 to 10 or even 100 Gbps [1], which support communication services that were not
possible in the past, but also make detection a difficult challenge.

A particular pernicious case of network abuse are botnets. These networks of
compromised hosts (zombies or bots) are platforms for a large set of illegal activi-
ties, e.g., for executing distributed denial of service (DDoS) attacks, disseminating
malware, running phishing attacks, and supporting click fraud [12]. ISPs have neces-
sarily a role to play in the mitigation of botnets, as they are key traffic intermediates
[36]. Therefore, ISPs have to be able to detect them.

ISPs often use Network Intrusion Detection Systems (NIDSs) for identifying ma-
licious activity. Classical NIDSs do Deep Packet Inspection (DPI), i.e., they analyze
the payload of the packets passing through specific points of the network (e.g., an
edge or border router), looking for a certain signature or behavioral pattern. Classi-
cal NIDSs also fall in one of two categories: signature-based NIDSs and behaviour-
based NIDSs. These approaches require, respectively, knowledge about existing at-
tacks (signatures) and traffic without attacks (normal behavior) for training purposes,
neither of which is simple to obtain [2]. This kind of analysis is feasible in reason-
ably slow link connections, but not in modern high-speed backbones. Furthermore,
nowadays most of the traffic payload is encrypted due to the adoption of secure pro-
tocols such as TLS, HTTPS, SSH, and IPSec, which makes this kind of inspection
even harder and less useful [28].

The difficulty of monitoring high speed traffic has led Cisco to introduce the con-
cept of network flows in the context of the NetFlow router feature [4]. The concept
was later adopted by all major router vendors and standardized by the IETF [5]. A
flow can be defined as a sequence of packets with a common set of features, passing
through an observation point, in a given interval of time. Flows are a way of mon-
itoring communication in a summarized way, without inspecting the content of the
packets, using instead high-level information about connections (source/destination
IP address, source/destination port, etc.) but not the data transferred itself. Analyzing
this information is more efficient than doing DPI in terms of protection of the pri-
vacy of users and consumption of computational resources, once flows do not carry
payload content, requiring thus less processing to be analyzed.

Network flows, or simply flows, are an option to the previously-mentioned ap-
proaches for network intrusion detection. Network flow analysis allows, e.g., detect-
ing internal and external actions like network misconfiguration and policy violation



Detecting Botnets and Unknown Network Attacks in Big Traffic Data ⌅ 5

[20]. Flows allow detecting many network layer and transport layer attacks. They also
allow detecting botnets, because bots perform identifiable network activity such as
contacting command and control (C&C) servers or DDoS attacks. Flows generically
do not allow detecting application layer attacks such as SQL injection, cross-site
scripting, buffer overflows, races, etc.

The use of Machine Learning (ML) in the context of NIDS is far from new.
A major application of ML is behaviour-based (network) intrusion detection, also
called anomaly detection [18, 8]. Both traditional signature-based NIDSs and NIDSs
based on flows can also use ML techniques, but the precision and accuracy of these
systems depend on the completeness of the knowledge they have about the threats
that they will detect, as they need to be fed and trained with that knowledge. ML
techniques aim to provide knowledge to such systems, allowing them to discover
hidden patterns in input data based on the knowledge they learned, and classify that
data. However, even using ML, there are challenges in analyzing network flow data,
such as the huge amount of traffic flow becoming from larger and faster networks as,
for instance, connection links of ISPs.

This chapter presents a new approach to detect malicious traffic, even if as part of
new attacks, and to identify the malicious hosts involved by inspecting network flows.
The approach uses a combination of unsupervised ML techniques, without a priori
knowledge, and threat intelligence information to achieve its goal. The approach is
based on the following key insights:

⌅ there is much more normal traffic than malicious traffic;

⌅ malicious traffic is qualitatively different from normal traffic;

⌅ and similar traffic within each category (normal, malicious) can be summa-
rized using unsupervised ML.

Out approach involves dividing traffic (flows) in clusters. The larger clusters typ-
ically correspond to normal traffic, so the smaller clusters are the ones we have to
worry about. For the latter, we propose a classification method based on unsuper-
vised ML to classify them as malicious or benign, so detecting malicious traffic and
identify malicious hosts. This classification allows reducing drastically the amount
of time spent in analyzing the flows, reducing the size of the problem of processing
the amount of traffic at the speed of ISP networks.

The approach works in loop, iteratively and continuously detecting network at-
tacks and malicious hosts. Between iterations, clusters are classified and learned, so
that this knowledge can be used in the following iterations. This form of learning
provides increasing autonomy to the system and may significantly reduce the net-
work managers’ constant need for intervention, although not being completely free
from human intervention, as no NIDS is. In fact human intervention is unavoidable
when the goal is to detect attacks without requiring either previous knowledge about
attacks (signatures) or traffic without attacks (clean traffic for training).

The chapter also presents the FLOWHACKER NIDS that implements our ap-
proach. This tool uses the Hadoop MapReduce platform [7, 30] to summarize net-
works flows and a set of ML algorithms to process these summaries, besides pro-
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viding visual tools for human analysis. We evaluated the FLOWHACKER NIDS with
two kinds of traffic and it identified botnet C&C servers, SSH brute-force attacks,
and denial of service events. For validating the system we used a synthetic traf-
fic flow data set [29]. For testing the system we used real data from a ISP, a large
Portuguese telecommunications company with a few million customers, which pro-
vides Internet, TV-over-IP, phone-over-IP, and GSM/3G/4G cellular phone services.
FLOWHACKER was able to detect several cases of botnet activity.

The main contributions of the chapter are: (1) an approach for improving network
security based on the inspection of network flows by using a combination of unsu-
pervised ML techniques to detect intrusions; (2) an iterative learning process; (3) a
NIDS that implements the approach; (4) an experimental evaluation that shows the
ability of the system to detect intrusions in computers communication using network
flows.

The remaining of the chapter is organized as follows. Section 1.2 presents back-
ground on network flow field and discusses related work. Section 1.3 presents the
approach, Sections 1.4 and 1.5 present more details about it, and Section 1.6 its im-
plementation. Section 1.7 presents and discusses the evaluations results, and Section
1.8 concludes the chapter.

1.2 Context and Related Work
This section provides an overview of intrusion detection using network flows. Section
1.2.1 provides some insight on some of the existing tools to perform flow analysis.
Section 1.2.2 gives an overview of some of the most addressed network intrusions
and respective works/tools that show how to detect them using a flow-level analysis
rather than payload inspection.

1.2.1 Network Flows and Basic Flow Tools

The first network protocol to handle network flows was NetFlow, developed by Cisco
[4]. It consists in a built-in feature in the Cisco routers, and is used to collect and
export flow records. Since then, it has been evolved and its recent version – NetFlow
v9 – already includes integration with other protocols, such as MPLS (Multiprotocol
Label Switching).

Being network flow technology built-in in network devices, it allows to select,
from all the traffic passing through that device, the traffic that matches the set of
features that were previously defined by the network administrator, in order to obtain
what he wants to analyze. For example, by deploying this technology in a border
router, all of the traffic going in and out of that network will be filtered by NetFlow.
Upon the reception of an IP packet, the network device looks at that packet’s fields in
order to find any matching feature with those previously defined. In case the packet’s
features do match, then an entry is created in a data structure called flow cache, for
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that flow. Note that a flow may correspond to several packets, and many different
flows can be collected.

Apart from NetFlow, many other vendors have their own implementation for
flow collection and exporting. Examples of such implementations are NetFlow-lite,
sFlow, NetStream. However, due to the heterogeneous nature of these technologies
between different vendors, the Internet Engineering Task Force (IETF) created the
IPFIX (IP Flow Information eXport) protocol [5] to standardinze flow collection
and exportation, allowing thus for the clients to easily deploy their flow-based ap-
plications. As previously stated, packets that share common properties are grouped
in flows, and in the IPFIX terminology these properties are referred as flow keys.
They can form, for example, the following tuple: (IP source, IP destination,

port source, port destination, typeOfService).
In order to simplify the collection and extraction of flows, some tools were de-

veloped. The nfdump tool [23] is one of them. The tool is compatible with versions
v5, v7 and v9 of NetFlow and supports data conversion to plain text (in form of txt
files). nfdump reads the NetFlow data, stores it into binary files, and performs some
analysis on it, such as some statistics and aggregation.

SiLK (System for Internet-Level Knowledge) tool [31] is a widely-deployed flow
analysis tool developed by the CERT Network Situational Awareness Team. Its ap-
plication is more appropriated for analyzing of traffic on the backbone of a large
enterprise or mid-sized ISPs. It is compatible with both IPFIX and NetFlow (ver-
sions v5 and v9). Like nfdump, it allows to convert NetFlow data to some specific
format, and also has built-in tools to analyze these files, such as performing filtering
on the gathered flows and retrieve statistical data.

1.2.2 Intrusion Detection based on Network Flows

Several papers presented flow-based intrusion detection schemes for specific network
attacks, including botnets [21, 15, 16, 34, 12, 38], and others such as port scans [32,
17], worms [6, 10, 9], and denial of service [25, 19, 13]. Each of these approaches
was designed to detect only one of these attack types, but they are related to our work
and useful to explain how flows can be used to detect a certain attack.

An increasing trend in intrusion detection systems is the use of ML techniques
[20, 33]. ML can be defined as a collection of methods that aim to attain knowledge
by building an intelligent system through the observation of patterns in a given en-
vironment [20]. This knowledge may be refined and improved at each iteration, by
learning from previous experiences and observations. Such methods have been used
in several and different applications, in many different fields of science, such as nat-
ural language processing (NLP), speech recognition, bioinformatics, spam detection,
network intrusion detection, among many others.

ML algorithms can be divided into two major types: supervised learning and
unsupervised learning. The first one relies on a labeled training data set. The data
set consists in a set data labeled and categorized in classes by humans that aims
to train the system, making correspondences between features and their meaning or
interpretation that is expected to the system. After the training phase, the system is
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ready to classify input data based on the learning that obtained during the training.
Examples of supervised algorithms are Decision Trees, Naı̈ve Bayes, and Support
Vector Machine (SVM). For the other hand, unsupervised learning does not have
trained labeled data set. In contrast, it receives as input a unlabeled feature vector, and
then it is processed for discovering similar groups into it. Clustering is an example
of this kind of learning and K-Means is the most applied algorithm for clustering.

In the field of network intrusion detection, ML techniques has been able to clas-
sify network traffic and identify both anomalous patterns and potentially harmful
users [18, 8, 22]. When NIDS systems integrate this technique, the adopted strategy
is usually behavior-based detection (or anomaly detection), in which normal traffic
patterns are differentiated from anomalous ones. It focuses its attention on finding
patterns that would not be expected from the user’s behavior. Unlike what signature-
based NIDSs detect, these patterns are unknown to the system, as they are trained
with intrusion-free data. However, this approach requires clean traffic for training,
i.e., traffic that does not contain attacks, which is difficult to obtain in ISP networks
in production.

Portnoy et al. presented a scheme to detect intrusions based on clustering that is
neither behavior- nor signature-based [26]. However, that work does not consider the
iterative model we do and does not use flows. The Unsupervised Network Intrusion
Detection System (UNIDS) was able to detect unknown attacks without requiring
any labelling, signatures or training [3]. UNIDS uses various clustering techniques
such as sub-space clustering, density-based clustering and evidence accumulation.
However, it does not consider the iteration process we do. Goncalves et al. follow an
approach closer to ours but inspect logs, not flows [14]. That work and a few others
use open source threat intelligence in combination with other techniques [14, 35]. A
short version of the present work appeared before [27].

1.3 The FlowHacker Approach
The FLOWHACKER approach does flow processing using unsupervised ML algo-
rithms with the assistance of threat intelligence to detect unknown network attacks.
As explained in the introduction, the approach is based on the assumption that most
of the traffic is legitimate, so malicious traffic is much less, as well as that mali-
cious traffic is qualitatively different from normal traffic. Taking this into account,
the application of the unsupervised ML algorithm allows splitting the malicious traf-
fic from the clean traffic, so that the biggest clusters are those containing normal
traffic, whereas the smaller ones are those that may be malicious (although that is
not mandatory; there may small clusters of legitimate traffic). These assumptions
in combination with the use of flows allow to cover (1) the difficulty of reacting to
an unknown pattern when real traffic is analyzed, and (2) the slow processing and
analysis of the traffic payload. The first drawback may be countered by using an un-
supervised ML algorithm, and the second by performing the analysis at flow-level.

The approach works in loop, improving the knowledge that has been acquired
in previous iterations. This allows improving detection performance with time. For
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each loop iteration all phases involved in the approach are executed. Therefore, for
each set of collected flows, the tool gains insights from them, improves such insights
with threat intelligence information, applies an unsupervised algorithm on the im-
proved insights for getting clusters, and then classifies the smaller clusters as being
malicious or benign hosts by using a classifier method based on a unsupervised al-
gorithm. Lastly, these new classified clusters are added to the existing knowledge for
the unsupervised data set to be used in the next loop iterations. This learning phase
between loop iterations allows increasing knowledge gradually with every iteration.

Infrastructure
network
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collection

Features extraction

Filtering

Map & Reduce

Normalization

Online 
databases Threat 

Intelligent 
retrieving 

Vectors 
creation

Similiarity
aggregation

Learning
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labeling

Detection

Dataset
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hosts

detected

Figure 1.1: Overview of the approach and its six phrases: flows collection, fea-
tures extraction, threat intelligence retrieving, similarity aggregation, detection, and
learning.

The approach comprises six phases, as shown in Fig. 1.1:

1. Flows collection: to collect flows from different hosts or routers belonging to a
network infrastructure, corresponding to a certain period of time (e.g., a day).
Each flow summarizes a set of packets collected from a host during a period
of time.

2. Features extraction: to extract data from the collected flows in order to cre-
ate vectors of features that allow characterizing the flows. Flows are filtered
to extracting relevant data, afterwards this data goes through MapReduce for
getting statistics and summarizing their values, then they are normalized and
the vectors created (see Section 1.4.2).

3. Threat intelligence retrieving: to automatically retrieve information about
threats from online databases, namely blacklists of subnets and IP addresses.
Afterwards, this information is used to complement and complete the data of
vectors of features (see Section 1.4.3).
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4. Similarity aggregation: to apply an unsupervised ML algorithm over the fea-
ture vectors in order to aggregate similar vectors (vectors with similar feature
values), resulting in clusters that represent hosts having a similar behavior. The
biggest clusters are assumed to contain clean traffic and the smaller clusters
have to be further analyzed (see Section 1.5.1).

5. Detection: to detect unknown network attacking hosts. Based on the knowl-
edge acquired in the learning phase a classification method using unsuper-
vised ML classifies the small clusters as being malicious or clean traffic. In
the first loop iteration, the classification is done manually, but automatically
subsequently when the system has already knowledge from the previous clas-
sifications (loop iterations). Clusters are labeled with its classification and the
classified data set is updated with them (see Section 1.5.2).

6. Learning: to learn the new cluster classifications resulting from the detection
phase. For each loop iteration, the clusters classified in the detection phase are
learned for later to be used as knowledge in the next loop iterations by the
classifier (see Section 1.5.3).

The following sections present the approach in detail.

1.4 Obtaining Vectors of Features
This section presents the process of extracting data from the collected flows and
retrieving threat intelligence information from online databases to create the vectors
of features with this data. This process constitutes the second and third phases of
the presented approach – extraction features and threat intelligence retrieving (see
Fig. 1.1).

As said, a flow summarizes a set of packets with similar characteristics that were
observed during a period of time. However, a flow summarizes packets coming from
different source IPs and going to different destination IPs. Therefore, to obtain in-
formation about individual hosts we must aggregate flows by source and destination
IPs. These aggregated flows summarize traffic sent or received by each host.

To use these aggregated flows in ML algorithms, we represent each of them by
a vector of features, i.e., a vector of attributes that characterize these aggregates in a
way that is useful for our purposes (intrusion detection). The features can be extracted
from the aggregated flows directly, or from external sources of threat intelligence data
(e.g., the information if a certain IP address appears in a certain blacklist of not).

The next sections present the features we defined to compose vectors of features
and these two phases in detail.

1.4.1 Features

The features have to be carefully chosen because the accuracy and precision of the
approach depend on that choice. We characterize aggregated flows using 19 features
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from 5 categories (Table 1.1): 3 to represent characteristics from layer 2, layer 3, and
layer 4 of the TCP/IP stack, one for statistics about the aggregated flow, and one for
threat intelligence data.

Feature Description #

L2

AggregationKey IP address used as identifier (to which the other features relate to)
NumSIPs / NumDIPs The number of IP addresses contacted 1
LocationCode Code for the country associated with the address

L3

NumSports The number of different source ports contacted 2
NumDport The number of different destination ports contacted 3
ICMPRate The ratio of ICMP packets, and total number of packets 13
SynRate The ratio of packets with a SYN flag and the total number of packets 14

L4

NumHTTP The number of packets to/from port 80 (HTTP) 4, 8
NumIRC The number of packets to/from ports 194 or 6667 (IRC) 5, 9
NumSMTP The number of packets to/from port 25 (SMTP) 6
NumSSH The number of packets to/from port 22 (SSH) 7, 10

St
at

ist
ic TotalNumPkts The total number of packets exchanged 11

TotalNumBytes The overall sum of bytes 15
PktRate The ratio of the number of packets sent and its duration 12
AvgPktSize The average packet size 16

TI

BadSubnet This field expresses whether the IP address belongs to a blacklisted subnet
MaliciousIP This field expresses whether the IP address is blacklisted
OpenVaultBlacklistedIP Similar to the above but from another database [24]
MaliciousASN This field signals if the IP address belongs to a blacklisted ASN

Table 1.1: Set of features that describe an aggregated flow in the form of a vector.

Layer 2, 3, and 4 features
We defined 11 features to represent characteristics from layers 2, 3, and 4, respec-
tively, 3, 4, and 4 features (lines 2 to 12 of Table 1.1).

From layer 2 are extracted the IP addresses, both source and destination. How-
ever, it is necessary to identify a vector of features uniquely, therefore, packets com-
ing from different source IPs and different destinations IPs constitute different vec-
tors of features. We defined the AggregationKey feature to have this role of identi-
fying a feature vector uniquely, which receives the IP address (source or destination).
This choice was inspired by [3] that used source and destination IP addresses to dis-
tinguish groups of 1-to-N and N-to-1 anomalies. The NumSIPs/NumDIPs features
represent the number of all different IP addresses contacted contained in the aggre-
gated flow, for that key, whereas the LocationCode feature contains the country
code of the address IP that fills the AggregationKey feature.

Features from layer 3 are related to source and destination ports, the SYN flag
from TCP, and ICMP protocol. Features NumSports and NumDports represent the
first two characteristics, containing the number of all different source ports and des-
tination ports contained in the aggregated flow, for that key. If the SYN flag is ob-
served, the SYNRate feature will be filled by the number of times that a SYN flag is
sent divided by the total number of packets in the aggregated flow for that key. For
the ICMPRate feature the same procedure is applied, i.e., the number of times the
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ICMP protocol is used divided by the total number of bytes of the aggregated flow
for that key.

Features from layer 4 are related to the application protocols that are used in
the aggregated flow for that key. Features NumHTTP, NumIRC, NumSMTP and SSH rep-
resent the number of occurrences of contacting ports 80, 194 or 6667, 25 and 22,
respectively for the HTTP, IRC, SMTP and SSH protocols.

Statistic features
Four statistic features (lines 13 to 16 of table) were defined to summarize an aggre-
gated flow for a given key, regarding its number of packets and size. TotalNumPkts
and TotalNumBytes features are defined to represent these two characteristics
which are obtained by summing all the values of them, i.e., the number of packets and
the number of bytes, respectively. From these two features we obtain another two:
PktRate and AvgPktSize. The PktRate feature gives the aggregated flow packet
rate, which is obtained by dividing TotalNumPkts by the total duration of the aggre-
gated flow for a given Key, and the AvgPktSize feature gives the aggregated flow
packet average, which is obtained by dividing TotalNumBytes by TotalNumPkts.

Threat intelligence features
The last 4 lines of Table 1.1 present the features related to evidence of threats in the
aggregated flow. The BadSubnet and MaliciousIP features indicate if the aggregation
key (AggregationKey) belongs to a subnet or malicious IP blacklist, whereas the
OpenVaultBlacklistedIP and MaliciousASN features have the same mean than Mali-
ciousIP but the threat intelligence source is different. All of these features are binary,
meaning that their content is 0 or 1, i.e., the key does not belong or belongs to such
lists.

1.4.2 Flow Feature Extraction

The first 15 features are extracted from the aggregated flows in the feature extraction
phase. This phase is composed by three tasks, namely, filtering, mapping & reducing,
and normalization (see Fig. 1.1) which are described as following.

Filtering
Upon the receiving of the gathered flows, a filtering is performed to get the charac-
teristics related with 9 features referenced above (lines 3, and 5 to 12 of Table 1.1).
Since the data of these features are contained in fields of the header protocols from
layers 2, 3, and 4, the easiest way of filtering them consists in removing some un-
necessary characteristics from the flows (e.g., its payload content and date). Each
packet is unencapsulated for accessing to the protocol header fields, extracting data
from these fields according to the defined features, creating a tuple with these data,
and storing the tuple temporarily to later be processed. Specifically, 9 characteristics
are extracted to form a tuple, namely source and destination IP addresses, source and
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destination ports, number of sent packets, which protocol was used, TCP flag (if any),
number of exchanged bytes and its duration. A representation of a tuple is <srcIP,

dstIP, srcPort, dstPort, #pkts, protocol, flag, #bytes, duration>.

MapReduce
This task processes the tuples, by first aggregating them in order to form aggregated
flows, secondly for each aggregated flow to be represented by a vector of 15 features
presented in Table 1.1 (lines 2 to 16). Aggregating flows means to merge into a sin-
gle representation all the tuples that have the same source or destination IP address
(destination and source addresses for destination and source aggregations, respec-
tively). Notice that the flows collected from a host are those that outgoing, and so
represented by the source IP address, and those that incoming, which are represented
by the destination IP address. To get the vector of features it is necessary mapping
all data inside a aggregated flow, and then reducing these data, merging it into one.

To achieve such actions, the MapReduce paradigm is used. MapReduce was first
introduced by Google [7]. It allows processing big data in parallel in large server
clusters. For that purpose, it divide processing jobs in two phases that run respectively
a mapper and a reducer function. The mapper phase involves applying the mapper
function to each of the input files and obtain a set of pairs <key;value>; the reducer
phase runs one or more reducers that receive as input the pairs generated by the
mappers, and aggregate key pairs with the same keys, performing some operation on
their respective values.

Mapper
Following the algorithm, the mapper for every tuple parses it, gets the 9 character-
istics extracted in the filtering task and creates a <key;value> pair for each one,
being the key a string in the format "S/D,feature,IPaddress" and the value

the characteristic value for the feature in question. The key is composed by three
elements that combined allow uniquely identify the origin of the feature, which is
associated to a source or a destination IP. The S/D element denotes if the tuple repre-
sents an outgoing (S) or an incoming (D) flow, being S and D representatives of source
and destination IP address, respectively. The feature element is the feature parsed
from the tuple, and the IPaddress element is the IP address of the sender host.

We defined 22 key pairs, i.e., 11 key pairs for each aggregation key. Fig. 1.2
shows the key pairs for the source IP aggregation key. The last four defined key
pairs are regarding the counters for the number of times the protocol port was used,
allowing thus calculate the layer 4 features (lines 9 to 12 of Table 1.1). The key pairs
to destination IP as aggregation key are analogous, replacing in the key the S by D,
and srcIP by dstIP.

For example, the outgoing tuple <192.168.0.105, 10.10.5.2, 80, 80, 52,

HTTP, , 1050, 31> sent by the 192.168.0.105 source IP when received by the Map-
per, the following key pairs showed in Fig. 1.3 are produced.
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<"S,dstIP,srcIP";dstIP>

<"S,srcPort,srcIP";srcPort>

<"S,dstPort,srcIP";dstPort>

<"S,pkts,srcIP";#packets>

<"S,protocol,srcIP";protocol+flag>

<"S,bytes,srcIP";#bytes>

<"S,duration,srcIP";duration>

<"S,HTTPPort,srcIP";yes/no>

<"S,IRCPort,srcIP";yes/no>

<"S,SMTPPort,srcIP";yes/no>

<"S,SSHPort,srcIP";yes/no>

Figure 1.2: Key pairs defined for the source IP as aggregation key.

Reducer
The reducer receives the key pairs of every tuple, aggregates them by key, and cal-
culates counts and sums using them in order to obtain the final values needed to
fill the vectors of features. When the reducer receives a pair with a key IP address
that has not already seen, it creates a new feature vector which the Aggregation

Key feature is filled with that IP address. On the other hand, when it receives en-
tries with key IP addresses that have already known it aggregates their values in the
respective vectors. For example, in order to summarize the number of bytes sent
by the 192.168.0.105 source IP, i.e., calculating the TotalNumBytes feature, the
mapper produces the <"S,bytes,192.168.0.105";value> pair for each tuple, be-
ing value the number of bytes sent in the tuple. The reducer, on the other hand,
receives these records, and sum the value of all the records that have the same
<"S,bytes,192.168.0.105"> key, aggregating in this way such values.

After all flows are aggregated in a single one and represented by a vector, the
reducer produces the 4 statistic features (lines 13 to 16 in Table 1.1) derived from
the other 9 features. Finally, the LocationCode feature is fetched by using the
Aggregation Key value and a IP tracker that references geographic IPs.

At the end of the MapReduce algorithm execution, the tool has two sets of feature
vectors: one representing the outgoing aggregated flows (identified by S) and another
representing the incoming aggregated flows (identified by D).

Normalization
Most features carry numeric data, but there is the need to keep every value in one
common scale. Moreover, there are some features that are not expressed in a numer-
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<"S,dstIP,192.168.0.105";10.10.5.2>

<"S,srcPort,192.168.0.105";80>

<"S,dstPort,192.168.0.105";80>

<"S,pkts,192.168.0.105";52>

<"S,protocol,192.168.0.105";HTTP>

<"S,bytes,192.168.0.105";1050>

<"S,duration,192.168.0.105";31>

<"S,HTTPPort,192.168.0.105";yes>

<"S,IRCPort,192.168.0.105";no>

<"S,SMTPPort,192.168.0.105";no>

<"S,SSHPort,192.168.0.105";no>

Figure 1.3: Key pairs of an outgoing tuple for the 192.168.0.105 source IP.

ical manner, such as the IP addresses and the country. In these cases, these features
are mapped to numerical values, which can be reversed to text. In addition, there are
other features (e.g., NumDport) that are numeric but their values must be normalized.
On the other hand, there are features that do not need to be normalized because they
already are, such as threat intelligence features in which their values are binary, i.e.,
0 or 1.

Normalizing a set of values means mapping these values to a specific range. We
want normalize the feature values to the interval [0,1], where 0 is absolute minimum,
and 1 the absolute maximum. To achieve so, given the feature values from a fea-
ture vector in the form X = (x1, ...,xn), the correspondent normalized Y = (y1, ...,yn)
vector is obtained using:

yi =
xi �min(X)

max(X)�min(X)
,yi 2 [0,1] (1.1)

1.4.3 Obtaining Threat Intelligence

In order to complement the information of aggregated flows, the feature vectors are
completed with threat intelligence about blacklisted subnets and malicious IPs. This
way, online threat intelligence repositories are accessed to retrieve these lists. After
flows were processed and feature vector created and filled by MapReduce algorithm,
the four threat intelligence features (last 4 lines of Table 1.1) are added to the vectors.
Next, for each vector is checked if the Aggregation Key value belongs to those
lists, and in such case the correspondent features are set to 1, otherwise they are set
to 0.
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1.5 Detecting Network Attacks
We propose an approach to detect unknown network attacks based on the assumption
that the majority of the observed traffic is benign rather than malicious, as well as that
malicious traffic is qualitatively different to the regular, normal traffic. To achieve so,
the proposed approach uses unsupervised ML algorithms in two fashions: to sepa-
rate both kinds of traffic, generating clusters, and to confirm if the smaller clusters
generated are actually malicious, classifying them.

We propose a detection process using unsupervised techniques over sets of vec-
tors of features (see Section 1.4). An unsupervised clustering algorithm is applied
on the feature vectors, aggregating groups of vectors having similar values in their
features, forming in this way various large groups of hosts, and some outliers (small
groups of hosts). Afterwards, the resulting outliers are classified as being malicious
or not by using a unsupervised algorithm, that we call a classifier. According to the
mentioned assumption, the outliers may represent an attack, although this may not
always be the case. Such outliers could also represent, for instance, some application
that are less frequently used by a host, or even a machine whose characteristics are
not very common, therefore producing flow features that are different from regular
traffic that is found in bigger clusters. So, it is of utmost importance to analyze and
classify them, in order to differentiate the actual attacks from these benign outlier
traffic patterns. This detection process regards to the similarity aggregation and de-
tection phases of the approach presented in Section 1.3, illustrated in Fig. 1.1, and
detailed in next sections.

1.5.1 Similarity Aggregation

The idea behind the unsupervised algorithms we consider – clustering – is to group
different instances of a dataset into k distinct groups, i.e., clusters, according to the
similarity of their values or characteristics. For instance, applying a clustering algo-
rithm to a dataset of network traffic, it would generate k clusters, where one would
be representative of regular DNS traffic, another one would be simple SMTP traffic,
and so on. Therefore, we want to apply the same idea of clustering to separate and
represent normal and abnormal traffic.

Depending on the algorithm used, the value of k may or may not be chosen au-
tomatically. For example, the DBSCAN algorithm [11] does not need a predefined
k value, but the K-Means and the Mini Batch K-Means algorithms [37] need it. We
opted by algorithms in which k must be specified, since we want to find out which
is the best k for dealing with diversity of data. We chosen K-Means and Mini Batch
K-Means algorithms because the former is the most used algorithm for that task due
to its simplicity and efficiency, and the latter we want to investigate if it behaves as
well as the former, and can give us other insights not given by K-Means.

Choosing the number of clusters
Both K-Means and Mini Batch K-Means algorithms require the number k of clusters
to be specified. There is no obvious value for k. However, there are some techniques
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that give us a hint of what the value of k should be. Such is the case of the Elbow
Method. These clustering algorithms converge when the variation of the distance be-
tween the data points and the clusters centers start converging to 0. With this in mind,
the Elbow Method starts by computing the error function that is used as a stopping
criterion in the algorithm, know as total within-cluster sum of square (WSS), which
is mathematically defined as follows:

WSS =
kX

i=1

X

x2ci

dist(x,ci)
2 (1.2)

Equation (1.2) produces values for k in a specified range, which it is provided
by the user. For example, for a specified k = 30 and k-means clustering algorithm,
the method calculates the WSS for different values of k, by varying k from 1 to 30
clusters. By plotting these values according to the number of clusters k, we obtain
a curve that will be decreasing with the increase of k, as we can observe in the plot
graph on the top of Fig. 1.4. Theoretically, the optimal value of the WSS would be 0,
but this value is only obtained when the number of k clusters is equal to the number
of entries in the dataset, which would mean that each data point would be in its own
clusters, and this process would not provide interesting information at all. Instead, the
Elbow Method indicates that appropriate number of clusters is when the slope of the
WSS has a sudden break. Apart from the WSS, the Elbow Method also calculates the
percentage of variance explained (PoVE) metric for each value of k (bottom graph
of Fig. 1.4) which reflects the ratio of the between-group variance (BSS) and total
variance (TSS), and indicates an optimal k when it suffers an abrupt change.

Figure 1.4: Plot of the elbow method.
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According to the method and analyzing the Fig. 1.4 as example, the optimal k
would be 2 because the biggest slope is found for k = 2 (x-axis), which is can not fit
for our case. However, there is a rule of thumb often used, which consists in starting
off with k =

p n
2 , where n is the number of entries in the data set. Applying this rule

we found that k = 10 is a number of clusters that successfully and coherently divides
the different datasets of various sizes. Observing the Fig. 1.4, we can see that around
k = 10 the KSS and PoVE values start to stabilize, and its variation is close to 0.

Describing clusters
The potential malicious aggregated flows, i.e., the aggregated flows that can corre-
spond to intrusions, are assumed to be placed in the clusters with smaller size. In
order to obtain a coarse grained overview of each cluster’s content and to classify
each cluster easily, each feature of each cluster is described by its mean value and
standard deviation. In this way, it is possible to have an idea of each cluster’s be-
havior and each cluster’s feature distribution. Also, this allows describing a cluster’s
content representing it by a single feature vector composed by the mean values of
features and the standard deviation of them.

The resulting vector, we call it descriptor vector, and for the classification task
we focus on those descriptor vectors that have higher feature values, i.e., higher mean
values and standard deviations.

1.5.2 Detection
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Figure 1.5: Detection phase data flow.

In order to automate the detection of malicious hosts, a classification method
based on unsupervised ML is applied to the descriptor vectors resulting from the
similarity aggregation phase. This method applies again an unsupervised algorithm
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to the descriptor vectors, after they are joined to a temporary dataset comprising
descriptor vectors provided from previous loop iterations and classified as being ma-
licious, and then verifies if some outlier results.

The idea behind this classification method relies in the fact that malicious hosts
have higher feature values in more than one of their features, and if a clustering
technique is applied to a set of instances with these characteristics, there will be
a resulting cluster that contains such instances. Therefore, given a set of malicious
descriptor vectors and a descriptor vector that we want to classify, if we add this
vector to the set and then apply an unsupervised algorithm for k = 2, we envisage
two possible results: 1) all instances will be put in a single cluster (i.e., resulting an
empty cluster), meaning that the descriptor vector is classified as malicious; 2) both
clusters will be populated, which one of them is considered an outlier and contains
the descriptor vector we want to classify, meaning that such vector is an unusual
normal traffic case, and then classified as normal. Figure 1.5 shows the data flow of
this classification method and the process explained above.

In this process of classification, we can say that the system runs a unsupervised
learning algorithm that is trained with the malicious labeled data produced by the
previous classifications, and will proceed to classify the traffic that was perceived as
being outlier by the first clustering algorithm application (on similarity aggregation
phase). Upon this classification, the system should be able to correctly identify the
observed malicious traffic, thus allowing the detection of the malicious hosts. This
process is to be performed on a daily basis. If the analysis period was smaller, some
attacks would not be possible to detect - as some of them last for long periods of
time; if it was longer than a day, the obtained values would become noisy, as the
flows are aggregated, some IP addresses may be reused from one day to another,
therefore achieving very high feature values, misleading us to think that it is indeed
an attack.

1.5.3 Learning

In a first run of the system, the classification module has not yet any knowledge
at all, and so there is a need for a manual intervention that will classify and label
the descriptor vectors of the outliers provided from the similarity aggregation phase.
Therefore, upon the clustering of the data resulting from the similarity aggregation
phase, a manual intervention is performed in order to analyze the characteristics of
the traffic – summarized in the form of clusters –, ultimately leading to the production
of a labeled dataset that will serve as training for the classification method of the
detection phase.

This initial manual classification serves as input to the unsupervised algorithm
deployed in the detection phase. In the following runs of the system, the dataset will
be increasing with the previous classifications made. So, over time, there may not be
a need for manual intervention since the classification method will come more and
more capable of classifying on its own, which is based on the previous classifications
made and learned by the method (see Section 1.5.2). However, we recall that only
descriptor vectors classified as malicious are used to compose the dataset used on
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clustering task of the detection phase. Therefore, the vectors classified as normal,
manually and automatically, are discarded.

1.6 FlowHacker Implementation
To evaluate our approach we implemented it in the FLOWHACKER NIDS, which we
developed in Python. The system is composed by two modules – similarity and clas-
sification –, for aggregating the feature vectors in clusters and detecting malicious
hosts, respectively. In addition, FLOWHACKER interacts with the Hadoop frame-
work for running MapReduce over the flows, obtaining aggregated flows and vectors
of features.

Before using FLOWHACKER, the first step is to gather the flow collection, ob-
tained using NetFlow-enabled routers placed at the border routers between the core
network and the connection to the ISP. For the sake of analyzing and treating these
flows, all of this data is converted to the SiLK format. Next, a filtering to the
flows is performed for getting the nine features needed to compose the feature vec-
tors (see as Section 1.4.2). Afterwards, these filtered features are processed by the
Hadoop framework. Hadoop is an open-source framework that features both dis-
tributed storage and parallel processing of Big Data, making it very scalable to very
large amounts of data. To support the parallel data processing, Hadoop implements
Google’s MapReduce algorithm [7]. This model operates on a virtual environment
called HDFS, which has both Mapper and Reducer nodes. This model can be di-
vided in two main steps, Mapping and Reducing that realize the operations described
in Section 1.4.2.

FLOWHACKER starts with the similarity module which allows the users man-
aging the clusters, such as change or calculate the number of clusters (k), generate
the clusters, and visualize their contents, and then the classification module gets the
smaller clusters resulting of the first module, verifies if they are malicious or not,
classifying them, and updates the dataset with the malicious ones for further classi-
fications. Moreover, the tool has a terminal interface that was developed to facilitate
the similarity aggregation tasks and visualize the outcomes.

1.7 Experimental Evaluation
In order to validate our approach, we evaluated FLOWHACKER experimentally with
two datasets: the ISCX synthetic dataset1 (Section 1.7.1), and real data provided by
the large Portuguese ISP (Section 1.7.2).

The objective of the experimental evaluation was to obtain answers for the fol-
lowing questions:

1. Is FLOWHACKER able to detect attacks against synthetic data and real data?

1http://www.unb.ca/research/iscx/dataset/iscx-IDS-dataset.html
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2. Is FLOWHACKER able to identify the type of attacks performed?

3. How does it perform in terms of false positives and false negatives?

4. Is FLOWHACKER able to detect botnet activity?

1.7.1 Evaluation with Synthetic Data

The ISCX dataset consists in flows corresponding to one week, and aims to provide a
complete test dataset for IDSs [29]. The dataset contains attacks of four classes (Table
1.2): probing, to gather information about the network; denial of service (DoS), to
compromise system availability; user to root (U2R), in which the attacker leverages
access to a normal account to gain root privileges; and remove to login (R2L), in
which the attacker exploits some vulnerability to gain access. Moreover, there is a
train dataset and a test dataset, whereas the second is a superset of the first, as shown
in the table.

Class Train dataset attacks Test dataset only attacks
Probing portsweep, ipsweep, satan, guesspasswd,

spy, nmap
snmpguess, saint, mscan, xsnoop

DoS back, smurf, neptune, land, pod, teardrop,
buffer overflow, warezclient, warezmaster

apache2, worm, udpstorm, xterm

R2L imap, phf, multihop snmpget, httptunnel, xlock, sendmail, ps
U2R loadmodule, ftp write, rootkit sqlattack, mailbomb, processtable, perl

Table 1.2: Attacks in the UNB ISCX train and test datasets (all attacks from the first
exist also in the second).

All of the flows in the ISCX dataset are labeled, therefore allowing for a vali-
dation of the accuracy of the FLOWHACKER. Upon the cluster generation and re-
spective manual labeling of this data, the results were compared to the ground truth
provided by the original dataset. After the data that was labeled, we proceeded to
train our classifier, which is the classifier for further flows to be analyzed.

Cluster Analysis
The dataset is divided in 6 subsets, each one representing a weekday, from Satur-
day to Thursday (no Friday). Attacks were detected in all of these days, except for
Wednesday, that was found to be attack-free. For the data of each day, we did fil-
tering, extraction, and normalization. Next, it was processed by Hadoop, and then
we used FLOWHACKER configured for 10 clusters. Next we present the clustering
results.

Saturday: By analyzing the contents of the clusters corresponding to this day, we



22 ⌅ Saunders Template

found one cluster that presented features that are rather alarming. In this one, the
number of different source ports used and number of connections through the SSH
port are highlighted, being the number of connections through the SSH port at its
absolute maximum value. A study on Brute-Force SSH attacks [17] has shown that
these two features together are representative of a Brute-Force SSH attack. Given
that the rest of the traffic presents feature values that are rather normal (i.e., none of
them is indicting the presence of an intrusion), we considered that the flow present
in this cluster was performing such an attack, therefore highlighting it as an intrusion
flow, as the remainder of the traffic was considered to be normal.

Sunday: The results for Sunday have shown a very different pattern. Unlike the pre-
vious day, almost every cluster presents very high feature values. Features such as the
average packet size, the number of source ports and the number of HTTP connection
are high in the great majority of the clusters. Also, the number of SMTP connections
was also found to be very high in two different clusters. This behavior shows us that
something is not right, as the SMTP connections are usually grouped together in a
single cluster, and this analysis shows us that two different clusters have these char-
acteristics. Taking this into account we assume that these flows, although having this
feature with very high values, were grouped into different clusters because they have
a different behavior, and therefore showing us that these flows are not normal. As for
the remaining clusters, we found 4 that have very high values for the the number of
HTTP connections, alongside with the number of different source ports and average
packet sizes. These three features together may indicate that a large volume attack is
being perpetrated, exploring the HTTP protocol, therefore also labeling these clusters
as attacks.

Monday: On Monday, we found two clusters that immediately distinguish themselves
from the rest. The first one has a mean value of 0.998 for the ICMP Rate, being it
the cluster with the biggest dimension (it contains 375 different flows); the second
one has the number of destination ports and number of SMTP and IRC connections
at its highest value possible. However, this is not considered an alarming behavior,
because even though the value for ICMP Rate in indeed at a very high value, no
other feature in that cluster was showing a high value; as for the second cluster,
throughout the whole evaluation of the system, there was always one cluster with
such characteristics, and we can infer that this cluster corresponds only to regular
clients using email services. Apart from these two, other four clusters also present
an alarming pattern. All these clusters share high values for the number of different
source ports, number of HTTP connection and also for the average packet sizes.
Such pattern may be attributed to a DoS attack, as each host is send a great amount
of packets from many different ports, all direct to the port 80 (or port 8080, in some
cases), with an high average packet size. This is the case of the DoS HTTP Flood
attack. However, this is an attack that is easily identifiable by inspecting its payload,
and this flow-based approach does no allow us to perform such an analysis, being
these features our only way to hint the presence of such an attack.

Tuesday: For Tuesday, we observed that there were multiple clusters with a very high
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value for the ICMP Rate. However, this feature appear alone, i.e., it is the only feature
in these clusters that has a relevant high value, no other features show up, apart from
one cluster that also has a high value for the average packet size, which also does
not correspond to a recognizable pattern. From all these clusters, the one that grabs
our attention is the tenth, which features a high value for the number of source ports,
HTTP connections and average packet size. Also, it has a high packet rate, average
packet size and total number of bytes. From what we have seen so far, this can only
correspond to an attack, and therefore the content of this cluster was labeled as being
an attack.

Wednesday: As mentioned, no attacks were identified for Wednesday.

Thursday: For Thursday, just like for Saturday, there is one cluster that was found to
have an absolute maximum value for the number of SSH connection alongside with
a high value of number of different source ports, thus indicating us the presence of a
Brute-Force SSH attack. Also, three other clusters have high values for the number of
different source ports, number of HTTP connections and also a high average packet
size, also possibly indicating the presence of an attack. Therefore, these two clusters
were also labeled as malicious.

Unsupervised Classification
In parallel with the daily analysis, FLOWHACKER may also autonomously identify
malicious activities using the classification method implemented, which classifies
the smaller clusters resulting from the similarity module based on an unsupervised
algorithm and a training dataset. Before the FLOWHACKER is able to classify data
it is needed, at least, malicious labeled data from the first day, which results from
the manual intervention described in Section 1.5.3. From this day on, the classifier
is able to produce results on its own, and these results may be refined with every
iteration of the system (for the purposes of this work, an iteration corresponds to the
period of one day), by training the system again, as new patterns are identified and
manually labeled.

The classifier was trained for the first day with data from the analysis for Satur-
day, as seen in Section 1.7.1. As expected when the system processed the clusters for
that day, it correctly identified the malicious flow. However, when trying to classify
the results for Sunday, the classifier did not found any sort of malicious activity. This
was due to the fact that the system’s only knowledge about the intrusions observed
during Saturday, which does not give sufficient information to the system to detect
other attacks. After training the system once again with the analysis done for Sunday,
the classifier was now able to identify the malicious activities, although it could not
identify them all. This same behavior was found when classifying the remainder of
dataset throughout the rest of the days.

Table 1.3 shows the results with more detail. Along the system iterations,
FLOWHACKER detected 7 attacks, which correspond to flows whose were perpetrat-
ing the attack with greater intensity, i.e., producing large volumes of traffic, whereas
the remainder of the attacks were not successfully identified. Although we observed
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Saturday Sunday Monday Tuesday Wednesday Thursday
True Positive 1 3 2 0 0 1
False Positive 0 1 0 1 5 4
False Negative 0 17 4 3 0 0

Table 1.3: FLOWHACKER results with the synthetic dataset, showing how results
improve with the number of iterations.

24 false negatives, it is visible that they were decreased during the iterations, which
is justified by increasing of knowledge that the system was learned. Regarding the
Wednesday, the system misclassified 5 flows (i.e., false positives) as being malicious,
when the traffic relative to Wednesday is all normal, intrusion-free traffic. This is due
to the fact that Wednesday was one of the day that had the largest amount of traffic,
and therefore the flows that belong to it also produced higher features values, leading
to it being perceived as malicious. At the end the system misclassified 11 flows as
being malicious. This means that it needs some refine in the classification method.
However, we prefer to have a system giving false positives than unreported attacks,
i.e., with false negatives.

Result Validation
The ISCX dataset is a dataset with known attacks put in a database containing infor-
mation about them. The dataset is used as the ground truth validation, so we com-
pared the FLOWHACKER results with this ground truth to validate them and find out
the accuracy and precision of our system. Each flow belonging to ISCX is identified
by a unique ID, meaning that the flows contained in our clusters have this ID. There-
fore, through this ID we were able to traceback it to its IP address (which is stored in
the database), and this way we were able to identify the malicious hosts.

We were able to verify that all clusters containing malicious flows identified by
our system actually such flows are malicious, meaning thus that our system is able
to detect and classify correctly attacks under traffic analysis. Also, we observe that
correctly we identify the type of attack evolved in such flows. However, we also
verified that our system generates some false positives and misses some malicious
flows, i.e., has some false negatives, such as is evidenced by results in Table 1.3.

These results suggest a positive answer to questions 1 to 3.

1.7.2 Evaluation with Real Data

The following results were obtained from data provided by the above-mentioned ISP.
Our NIDS approach assumes that data is collected using NetFlow-enabled routers,
e.g., placed at the border routers between the core network and the connection to the
ISP. All the data that reaches the Portuguese company network arises from the ISP,
that connects to Portuguese company via routers that are placed at the borders of the
core network. These routers are NetFlow-enabled, and are protected by firewalls, in
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order to filter any wanted data, according to their security policies, therefore ensuring
that only supposedly clean data reaches its clients. However, not all bad traffic is
filtered, which is why there are needed extra security measures, such as NIDSs. So,
the data that reaches these routers from the outside (i.e. the data incoming from the
ISP) is collected by NetFlow, for further analysis. For the purpose of this evaluation,
a data sample was collected for a few hours. The dataset was obtained without a
priori knowledge about the existence of attacks, so we had no data to validate our
results, unlike what happened with the synthetic dataset (Section 1.7.1).

After performing the filtering and MapReduce phases, we obtained two sub-
datasets comprising the source flows and the destination flows, respectively. There-
fore, the following analysis reports to each of these subdatasets. The clustering was
performed with the number of clusters set to 30 (i.e., k = 30).

Source aggregation key clustering
In the content of the source aggregation key clustering, we observe five clusters that
present high feature values, as shown in Table 1.5 (clusters 13, 15, 17, 21 and 30).

The first presents a high number of different source ports, as well as a high num-
ber of total bytes sent. However, such pattern was not found to be suspicious, as the
number of source ports itself does not represent an alarming network threat, as op-
posed to the number of destination ports, and no address found in this cluster was
found to be in any IP blacklist.

When analyzing the second one, we see that is presents a high connectivity to
various users, under various ports, receiving communication on an IRC port, and
communicating through HTTP, with a high number of packets sent, as well as a high
number of bytes. This leads us to assume that this machine is either a major spammer,
or it could be a DoS attack, given its traffic pattern, and it was thus labeled as being
a malicious host.

Moving on the third cluster, it was found to have a high number of SSH com-
munications alone, which could represent a Brute-Force SSH attack, in just like had
observed in the previous section, thus also being labeled as malicious hosts.

The fourth presented a high number of IRC (which is used as a portal for bot-
net’s C&C communications) communications, alongside with a high average packet
size. This feature distribution led us to consider that this could a botnet communi-
cating, and thus labeling it as malicious hosts. Moreover, we decided to track the
IP addresses, and check them against a number of public available blacklists, which
confirmed and categorized the IP addresses as sources of Botnets/Spam. One of the
IP addresses lead us directly to an authentication page of a C&C.

When analyzing the last alarming cluster, we observed that it presented a high
number of SMTP communications, but when analyzing its IP addresses, we found
that these were only mail servers communication, and we found no harm in it. Prior
to this analysis, all of the IP addresses present in the malicious clusters, were found
to be present in several blacklist, thus confirming our suspicion.
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Clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

# Flows

16
05

51
77

3
64

85
13

30
5

52
9

17
30

17
29

21
50

7
85

23
85

22

14
98

46
86 10 56
53 1 82
4 5

46
06

18
64

16
76 12 10
7

13 22
33

22
64

80
91 10

23
89

7

16
84

3

35

Features
1 - - - - - - - - - - - - - - 1.00 - - - - - - - - - - - - - - -
2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 - - - - - - - - - - - - 0.37 - 1.00 - - - - - - - - - - - - - - -
4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - 0.67 - - - - - - - 0.38; 0.18 - - - - - - -
6 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0.24; 0.16
7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
8 - - - - - - - - - - - - - - 1.00 - - - - - - - - - - - - - - -
9 - - - - - - - - - - - - - - - - - - - - 0.54; 0.18 - - - - - - - - -
10 - - - - - - - - - - - - - - - - 0.63; 0.21 - - - - - - - - - - - - -
11 - - - - - - - - - - - - - - 1.00 - - - - - - - - - - - - - - -
12 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
13 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
14 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
15 - - - - - - - - - - - - 0.61; 0.21 - 0.84 - - - - - - - - - - - - - - -
16 - - - - - - - - - - - - - - - - - - - 0.26 - - - - - - - - -
17 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Table 1.4: Source key clustering content using K-Means.

Destination aggregation key clustering
In relation to the destination aggregation key clustering, we observe that there are 5
clusters (16, 20, 22, 25, 29) with alarming features (Table 1.5).

Analyzing cluster 16, we see that it has a feature distribution that is similar to
what we had understood as a DoS HTTP Flood attack when analyzing the ISCX data,
except that this cluster is missing a high value for the number of HTTP connections.
Therefore, this could also represent a DoS attack, but directed to other applications,
e.g., DNS. We cannot be sure of this attack, because none of the monitored ports are
presenting high values, and so we cannot infer anything more about it.

Cluster 20 presents a high number of different source IP addresses, destination
ports and number of bytes. Because these flows do not have a high average packet
size, it could possibly indicate that this a network scan, as these flow contacted many
different port of many different IP addresses, resulting in a high value of bytes sent
throughout this process.

Cluster 22, on the other hand, presents a feature distribution that is similar to
what had previously perceived as a DoS attack: it has a high number of different
source IP addresses, number of source ports, number of HTTP connections, and a
number of bytes sent. However, it still lacks a high value for the average packet size.
Therefore, this may be, just like cluster 20, a network scan, but this time directed to
the HTTP application, i.e. it may be a probing of a website in order to locate some
vulnerability, for example.

Cluster 25 presents a high number of different IP addresses, average packet sizes
and number of bytes sent. These features alone do not seem to correspond to a mali-
cious behavior, as we interpreted them a simple burst of traffic.

At last, cluster 29 hold a have number of source IP addresses, number of destina-
tion ports, number of source HTTP connections, average packet sizes and number of
bytes sent. This pattern very similar to what we have seen for the DDoS IRC botnet
attacks, expect for the number of IRC connections. Therefore, this may also corre-
spond to infected hosts that are being used as a third party for attacks, but contacting
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Clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

# Flows

34
56

5
14

47
77

34
88

8
31

2
17

18
0

53
76

7
49

7 7

24
42

21
77

30
89

23
2

62
51

5
64

4

12 12
42

16
99

49
87 84 93 23

10
88

3
75

4

36

22
54

3

16 50
3 3

86
80

Features
1 - - - - - - - - 0.84; 0.11 - - - - - - 0.41; 0.07 - - - 0.16; 0.07 - 0.21; 0.05 - - 0.15; 0.09 - - - 0.16; 0.09 -
2 - - - - - - - - - - - - - - - - - - - 0.22; 0.01 - - - - - - - - 0.24; 0.09 -
3 - - - - - - - - 0.86; 0.16 - - - - - - 0.59; 0.18 - - - - - 0.52; 0.14 - - - - - - - -
4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0.84; 0.15 -
5 - - - - - - - - - - - - - - - - - - - - - - - - - - 0.40; 0.18 - - -
6 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
8 - - - - - - - - 0.26; 0.16 - - - - - - - - - - - - 0.12; 0.11 - - - - - - - -
9 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
11 - - - - - - - - 0.85; 0.17 - - - - - - 0.45; 0.11 - - - - - - - - 0.12; 0.05 - - - 0.10; 0.01 -
12 - - - - - - - - - - - - - - – - - - - 0.23; 0.01 - - - - - - - - -
13 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
14 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
15 - - - - - - - - 0.26; 0.07 - - - - - - - - - - 0.15 - 0.21; 0.07 - - 0.45; 0.18 - - - 0.40; 0.05 -
16 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
17 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Table 1.5 Destination key clustering content using K-Means.

its botmaster through a C&C server other than an IRC, or they could be victims of
an attacker who is using spoofed IP addresses to use them as a third party.

Discussion
Table 1.6 summarizes the information regarding the intrusions detected throughout
this analysis, emphasizing those related to botnet activity. For the feature numbers,
refer to the last column of Table 1.1. The table shows that FLOWHACKER was able to
detect and identify attacks in real traffic of a company, both in incoming and outgoing
traffic. Such results allow us to verify that real threats are effective and a concern for
companies. Also, they allow us to verify that our system is effective in detection of
such threats, including botnets, and can be used by companies for avoiding them.
This allow us to answer positively to questions 1 to 4.

Cluster # Aggregation Key Highlighted Features Type of Attack
15 Source 1, 3, 5, 8, 11, 15 Spam / DoS
16 Destination 1, 3, 6 DoS
17 Source 10 Brute-force SSH
20 Destination 1, 2, 15 Network scan
21 Source 9, 16 Botnet communication
22 Destination 1, 3, 8, 15 Web application probing
27 Source 1, 2, 5, 8, 11, 15 DDoS IRC botnet
29 Destination 1, 2, 4, 11, 15 DDoS botnet

Table 1.6: Real data analysis results with botnet cases emphasized.
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1.8 Conclusion
This chapter presents an approach and a system to analyze traffic from fast networks,
such as the fast connection links of Internet Service Providers (ISPs), in which tra-
ditional IDSs are limited due their incapacity to analyze big amounts of traffic that
circulates in these links and to analyze encrypted data.

The system is based on analysis of network flows, which turns it capable of an-
alyzing such connection links. The approach behind of the system allows detecting
malicious hosts without requiring previous knowledge about what we were looking
for or clean training data . A combination of data mining techniques for the feature
extraction from netflows, and ML techniques for data analysis allows the detection
of malicious behaviors without requiring specific training, except for the inevitable
human intervention in a first run of the system.

The FLOWHACKER NIDS implements the approach and it was evaluated with
both synthetic and real data, being the real data provided by a large Portuguese
ISP. The results of both analysis suggest that the system can be used in detection
of threats, such as DDoS command by botnet’s C&C communications detected in
the real data analysis.
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