
On the Feasibility of Byzantine Fault-Tolerant
MapReduce in Clouds-of-Clouds

Miguel Correia1, Pedro Costa2, Marcelo Pasin2, Alysson Bessani2, Fernando Ramos2, Paulo Verissimo2
1INESC-ID/IST 2FCUL/LaSIGE – Lisboa, Portugal

miguel.p.correia@ist.utl.pt, pcosta@lasige.di.fc.ul.pt, {pasin, bessani, fvramos, pjv}@di.fc.ul.pt

Abstract—MapReduce is a framework for processing large
data sets largely used in cloud computing. MapReduce imple-
mentations like Hadoop can tolerate crashes and file corruptions,
but there is evidence that general arbitrary faults do occur and
can affect the correctness of job executions. Furthermore, many
individual cloud outages have been reported, raising concerns
about depending on a single cloud.

We present a MapReduce runtime that tolerates arbitrary
faults and runs in a set of clouds at a reasonable cost in terms of
computation and execution time. The main challenge is to avoid
sending through the internet the huge amount of data that would
normally be exchanged between map and reduce tasks.

I. INTRODUCTION

MapReduce is a framework for processing large data sets
composed of a programming model and a runtime envi-
ronment [1]. Since first presented in 2004, MapReduce was
the theme of a lot of research and become widely used in
cloud computing environments. The original implementation
by Google is not available, but a few open versions appeared,
among which the very popular Hadoop [2]. Commercial ver-
sions have also appeared, e.g., Amazon’s Elastic MapReduce.

Both the original MapReduce and Hadoop include mecha-
nisms to recover from common faults, such as node crashes
and file corruption in hard disks. Specifically, data processing
tasks are monitored and restarted if they stop, and files contain
checksums that are used to detect their corruption [2], [3].

However, evidence of two other failure modes suggests the
need for further research on MapReduce fault tolerance.

Firstly, arbitrary faults that may affect the correctness of the
results of MapReduce have been known to happen. A study in
a large number of servers in Google datacenters for 2.5 years
concluded that DRAM errors are more prevalent than previ-
ously believed, with more than 8% DIMMs affected by errors
yearly, even if protected by error correcting codes (ECC) [4].
A Microsoft study of 1 million consumer PCs shown that
CPU and core chipset faults are also frequent [5]. The original
MapReduce fault tolerance mechanisms can not deal with such
faults, often called arbitrary or Byzantine faults [6]. Note that,
although the term ‘Byzantine’ often relates today to malicious
faults, we only consider arbitrary faults of accidental origin in
this work, actually remaining in the original scope of the paper
that coined the term, defining the foundations for Byzantine
Fault Tolerance (BFT) [7].

Secondly, cloud outages can interrupt the execution of
MapReduce jobs. Several cases have been recently reported,

including the disruption of the Amazon EC2 US East Region
datacenter during almost one week in April 2011, and the
disruption of the Windows Azure service for a few hours in
February 2012.

To tolerate either kind of fault, we need to add some form
of redundancy to the computations. Killing two birds with one
stone, we plan to leverage on previous work that developed
a BFT MapReduce [8] running on single clouds (see related
work in Section V), extending it to a multi-cloud environment,
thus tolerating both kinds of faults mentioned above.

This paper is thus about a Byzantine fault-tolerant (BFT)
MapReduce runtime system for clouds-of-clouds. A cloud-of-
clouds is an abstraction of a cloud environment that is formed
by a set of clouds or datacenters connected by the internet.
Unlike federated clouds, the operation of the multi-cloud
environment is under control of the user, not the providers [9].

In order to give some insight on our approach, note that an
application-agnostic way of adding redundancy consists in ex-
ecuting tasks more than once and compare their outputs. This
is essentially what is done in the state machine approach [10].
Several Byzantine fault-tolerant replication algorithms based
on this approach have been proposed [11], [12], [13]. By
running in a cloud-of-clouds, such a BFT system can tolerate
outages of some clouds and continue to run. In consequence,
it becomes possible to simultaneously ensure the integrity and
availability of MapReduce executions.

However, these algorithms typically require 3f +1 replicas
to tolerate up to f faulty ones (e.g., 4 to tolerate one faulty)
and are often inefficient if not executed in a local network.
Moreover, and specifically in MapReduce executions, map and
reduce tasks exchange data of the order of magnitude of the
input, e.g., of gigabytes. Exchanging data of this size through
the internet would make running MapReduce in a cloud-of-
clouds entirely impractical.

The main contribution of the paper is to show that it is
possible to solve this problem, essentially by exchanging only
hashes of outputs between the clouds. More generically, the
challenge of the work is achieving efficiency in terms of four
parameters: computation (the number of replicas executed),
communication (amount of data exchanged between clouds),
latency (the time to run the job), and monetary cost (of the
service to the user). Besides the above mentioned use of
hashes, this efficiency is mainly obtained: (1) by executing one
job tracker in each cloud; (2) by executing only f +1 replicas
of the tasks when there are no faults, and one additional

replica per faulty one; and (3) by using an overlay network to
circumvent slow/faulty routes between clouds.

Note that there is a baseline cost that must be incurred
when achieving the quality of protection we propose, which
is significantly higher than that of native MapReduce and
Hadoop. For instance, a configuration with f = 1 will require
each task to be executed twice and three clouds, instead of
one execution in one cloud. We believe this is a more than
acceptable cost for applications with critical requirements with
regard to integrity and availability. Our perspective is that the
number of such applications is increasing.

II. HADOOP MAPREDUCE

In this section we briefly present the operation of Hadoop
MapReduce [2], which is similar to Google’s MapReduce [1].

The MapReduce programming model computes a job in two
phases (see Figure 1). Programmers specify two functions,
map and reduce. The input is typically large (e.g., gigabytes)
and divided in files called splits. In the first phase, each split is
processed by the map function that generates key-value pairs.
Then, these outputs are shuffled according to their keys and
passed to the reduce tasks (each reduce typically gets input
from all maps) that process them again. This simple idea has
been shown to be useful for many different applications [1].

split 0

split 1

split 2

sort
shuffle

merge

reduce

reduce

map

map

map

part 0

part 1

HDFS
output

replication

HDFS

input
HDFS

HDFS

replication

FIGURE 1: Computation of a job in MapReduce [2].

Both the splits and the outputs of the reduce tasks are stored
in a file system. Due to the typical large size of these files,
Hadoop has a specific file system for this purpose, HDFS,
similar to Google’s GFS [3]. HDFS stores files in blocks of
64 MB by default. HDFS contains a name node that manages
data storage and many data nodes, typically one per server,
which store the blocks. Blocks are usually replicated in a few
data nodes for fault tolerance.

Users submit a job by providing the map and reduce
functions, and the location of the splits in the HDFS (see
Figure 2). The processing of a job is controlled by the job
tracker, which is centralized. The map and reduce tasks are
executed by task trackers, which are executed in servers (e.g.,
one per core). Whenever possible, a map task is executed in
the server storing the split it must process (locality).

Task trackers periodically send heartbeat messages to the
job tracker. The missing of heartbeat messages allows the job

client job

tasks

cluster

map reduce input file/split

submit

task tracker

map task 1 map task 2 map task 3 reduce task 1 reduce task 2copy file
to HDFS

job
tracker

FIGURE 2: Submission of a job to Hadoop MapReduce.

tracker to figure out that a task stalled or failed. Using different
nodes, the job tracker runs extra, speculative, tasks for those
lagging behind and restarts the failed ones. Nevertheless, this
model only supports crashes, not arbitrary faults.

III. BFT MAPREDUCE FOR CLOUDS-OF-CLOUDS

The basic idea of our BFT MapReduce is to replicate every
task in a few clouds or datacenters. The challenge is doing it
efficiently.

A. System Model

The system runs in a set of clouds or cloud-of-clouds and
is composed by a set of processes. The clients request job
executions and the task trackers execute map/reduce tasks.
There is one job tracker in every cloud. There is an HDFS
instance in every cloud but we do not enter in details as it is
used only to store the job’s initial inputs and final outputs.

We consider a hybrid failure model, assuming that: (i)
there is a bound on the maximum number of clouds (and
consequently of job trackers) that can fail arbitrarily, t out
of 2t+ 1 clouds; (ii) there is no limit on the number of tasks
that fail arbitrarily, with the exception of a bound f on the
number of faulty task replicas that return the same output.
Processes/components that fail are said to be faulty and those
that do not, are said correct.

Note the reasonable weakness of our arbitrary failure as-
sumptions, i.e., we just impose that no more than f replicas of
a faulty task T can return the same wrong output o. Logically,
f and t obey the relation f ≥ t as one faulty cloud can corrupt
several map/reduce replicas.

Furthermore, we assume that the client that submits the job
does not fail, as it is not part of MapReduce. We also do
not care about HDFS failures, since a Byzantine fault-tolerant
HDFS exists [12].

The system is asynchronous, i.e., we make no assumptions
about bounds on processing and communication delays for our
mechanisms, although the original Hadoop mechanisms make
assumptions about such times for termination.

B. Basic approach

In the beginning, the splits are stored in HDFS. The differ-
ence in relation to the original MapReduce is that we assume
that there is a copy of each split in every cloud. Moving data

to a different cloud is expensive, but MapReduce is often used
to process data in the servers where it is already stored (e.g.,
indices of web sites are computed in the servers where the
data returned by the web crawler is stored). The difference
here is that the data would be stored in a few clouds, instead
of a single one, but this is an obvious requirement when the
objective is availability despite cloud outages.

The basic approach consists in creating 2f + 1 replicas of
each map and reduce task, spread through the 2t + 1 clouds
(i.e., between

⌊
2f+1
2t+1

⌋
and

⌈
2f+1
2t+1

⌉
replicas per cloud). The

job tracker schedules the execution of tasks in task trackers in
all the clouds.

In the original MapReduce, each reduce task fetches the
output of every map task. In the basic BFT MapReduce [8],
each reduce task replica fetches the output of every map
task replica. Whenever a reduce replica fetches the outputs
o1, ..., o2f+1 of replicas of a map task ri1, ..., r

i
2f+1, it com-

pares these outputs and picks the output provided by f + 1
replicas (no more than f faulty replicas produce the same
output). If no f + 1 outputs match, more replicas of the map
task ri are executed (ri2f+2, ...). Each reduce replica stores its
output in HDFS and it is up to the client to compare the outputs
and pick the correct outputs. These two votes – of map and
reduce task outputs – prevent faulty replicas or faulty clouds
from corrupting the result of the job.

This basic approach has the following problems, when
directly applied to a cloud-of-clouds:

• communication cost: each reduce task replica fetches the
output of every map task replica, most of these fetches
being made between different clouds through the internet;

• computation cost: every task is executed 2f + 1 times, a
minimum of 3 times, even if there are no faults;

• centralized job execution control: the job tracker is in
one of the clouds so it has to control task trackers in
other clouds remotely and use large timeouts in the failure
detection mechanism. It is also a single point of failure.

C. BFT MapReduce scheme

Our proposal for BFT MapReduce for clouds-of-clouds
can be thought of as the basic approach enhanced with four
mechanisms: distributed job tracker, deferred execution, digest
communication, and overlaid communication. Next we explain
each of these mechanisms.

a) Distributed job tracker: In the original MapReduce,
there is a single job tracker that controls the execution of tasks
in the available task trackers, whereas in our BFT MapReduce
there is one job tracker per cloud that controls the execution
of tasks in that cloud, but not in the other clouds (namely,
heartbeats are exchanged only inside clouds, not between
clouds).

Reduce tasks obtain information about the map tasks that
finished processing, from the job tracker. In the BFT version,
each job tracker periodically sends the other tracker replicas,
information about finished map tasks. Therefore, reduce tasks
can obtain that information from their local job tracker. Faulty
job trackers or faulty clouds can stop collaborating in the

execution of the job or return wrong information about the
status of the task replicas they execute. Nevertheless, the
existence of redundancy and the voting scheme allows job
execution to progress and finish, in the presence of up to t
faulty clouds.

b) Deferred execution: This mechanism consists in exe-
cuting only f+1 replicas of every task in t+1 clouds. In fact,
arbitrary faults tend to be rare so there is no need to execute
2f + 1 replicas of every task. The job trackers in the other t
clouds still collaborate in the execution of the job but run no
tasks. We call these t clouds standby clouds because they do
not perform task computations in the absence of faults.

Typically there will be f + 1 matching outputs for every
task so this degree of replication is enough. If there are less
than f + 1 matching outputs, more replicas of the same task
(map or reduce) are executed until a match is found. First the
standby clouds are used to run these extra tasks, but if more
are needed then replicas start to be executed in all clouds until
a match is found.

c) Digest communication: In MapReduce, each reduce
task fetches the output of each map task. In our BFT MapRe-
duce tasks are replicated f +1 times (with deferred execution
and no faults), therefore the number of fetches is multiplied
by (f +1)2, most of them done between different clouds. The
digest communication mechanism plays the extremely impor-
tant role of reducing the overhead of this communication. The
mechanism consists in dividing fetches in two cases:

• intra-cloud fetch: a fetch of the output of a map task by
a reduce task of the same cloud is done normally, i.e.,
the output is moved from the map to the reduce task;

• inter-cloud fetch: if the map and reduce tasks are in
different clouds, only a cryptographic hash of the output
is moved (e.g., an SHA-1 hash).

This mechanism replaces the transmission of a possibly-
large output, by the transmission of a small, fixed-size, hash
(e.g., 20 bytes in the case of SHA-1), thus drastically reducing
the communication through the internet. Instead of comparing
the outputs of the map replicas, a reduce task calculates the
hash of the local outputs and compares all the hashes. Again,
since arbitrary faults are rare, the values obtained from local
replicas are usually correct, making this a viable mechanism.

d) Overlaid communication: The communication be-
tween clouds can be delayed by temporary failures of links,
router ports, switches, etc. Layer-3 routing is able to recover
from these faults but can take some time, depending on the
extension of the fault. A solution to this problem consists in
doing application-layer routing, i.e., in constructing an overlay
network composed by a set of gateways [14]. In our case, each
cloud (or datacenter) contains a gateway. A reduce task sends
a request for fetching an output outside its cloud by sending it
to its local gateway (i.e., the gateway in its cloud). The latter
sends it to the other gateways, which deliver it in turn to their
local map tasks. The map tasks reply, also by sending to their
local gateway.

This mechanism allows circumventing slow or faulty routes
between gateways by sending the message through an alter-

native application-layer route. The gateways monitor the state
of the communication with other gateways. If, for instance,
gateway g1 is unable to communicate with g2, it sends the mes-
sage to g3 requesting it to be delivered to g2 (an application-
layer route). Several routing schemes can be implemented
by the gateways, exploiting redundancy in time (i.e., doing
retransmissions) and in space (sending by more than one
overlay channel). Research about the best approach is left as
future work.

IV. EVALUATION

This section evaluates our BFT MapReduce for clouds-of-
clouds. We aim to answer two questions:

• What is the computation cost in terms of number of
tasks executed and how does it compare to alternative
approaches?

• What is the time needed to run a given job (makespan)
and how does it compare to alternative approaches?

A. Number of tasks executed

This section evaluates the computation cost analytically, by
calculating the number of tasks executed. Besides the BFT
MapReduce, we consider three other approaches. The first is
the original MapReduce, which does not tolerate Byzantine
faults, but executes every task only once when there are no
faults (Original MR). The second consists in using state ma-
chine replication (SMR MR) to run MapReduce in a cloud-of-
clouds. Byzantine fault-tolerant SMR requires 3f+1 replicas,
although only 2f+1 have to do the computation [15]. The third
approach consists in using a simple result comparison scheme
(Result-cmp MR): f+1 full executions of the job are done; the
results are compared; if they differ, more job executions are
done until there are f+1 equal results, which give the correct
result. This scheme executes every job f+1 times when there
are no faults and one more time per faulty result. Finally, our
own solution executes every task f + 1 times when there are
no faults, and one task more per fault.

Figure 3 compares the number of map replicas executed
when there are no faults and t = f = 1 for different numbers
of input splits. We consider only map tasks because the number
of reduce tasks is constant, whereas the number of map tasks
is equal to the number of splits in the original MapReduce.
Figure 3 shows that our approach and Result-cmp MR have
twice the cost of the original MapReduce, whereas SMR MR
is three times more expensive.

The graph would change if there were faults. For each faulty
task out, BFT MapReduce would execute an additional task
replica. This would be unnoticeable in the graph if the number
of faults would be small. On the contrary, another job would be
executed for each fault that affected a job execution in Result-
cmp MR. If there was a single fault, the line for Result-cmp
MR in the graph would fall above the SMR MR line. The
latter would not be affected by a fault, but it can only tolerate
f faulty replicas, not an unlimited number as BFT MR and
Result-cmp MR.

Number of map tasks executedp
(no faults, t=1)

3000

3500

d

2000

2500

s
ex
ec
ut
ed

SMR MR

1000

1500

m
ap

 ta
sk
s

Result‐cmp MR
BFT MR

500

1000

m Original MR

0
100 200 300 400 500 600 700 800 900 1000

Number of input splits

33
FIGURE 3: Number of map tasks executed vs. number of splits
(no faults, t = f = 1).

B. Makespan

We do not have an operational prototype of our BFT
MapReduce yet, so we evaluate the makespan analytically.
However, we have produced some experimental data to vali-
date the estimated results.

We derived a formula to assess the time to execute both
the original MapReduce and the BFT MapReduce analytically.
Then, we validated this formula by comparing the time values
it produced, with executions of the applications of Hadoop’s
Gridmix2 benchmark.1 We obtained a deviation below 15%
between the real values measured and those given by the
formula. These experiments were made both with the original
Hadoop MapReduce and with a previous BFT Hadoop MapRe-
duce [8] , which, albeit with some differences from the BFT
MapReduce presented in this paper (see Section V) is close
enough to provide useful data from a controlled experiment.

The rationale for the formula is that the time to execute
a MapReduce job has three main components: the time to
execute the map tasks, which depends on the number of map
tasks that can be executed in parallel; the time to do the shuffle,
i.e., to send the map task outputs to the reduce tasks (Ts); and
the time to execute the reduce tasks, which depends on the
number of reduce tasks executed in parallel. The formula that
gives the makespan for a job (Tj) when there are no faults is
the following:

Tj = α

⌈
Nm

Pm×N ×Nc

⌉
Tm+Ts+α

⌈
Nr

Pr ×N ×Nc

⌉
Tr

(1)
where N is the number of task trackers per cloud, Nc the
number of clouds not in standby (1 for the original MapRe-
duce), Pm the number of map tasks that can be executed in
parallel per task tracker, Pr the number of reduce tasks that
can be executed in parallel per task tracker, Tm is the average
time to execute a map task (which depends on the job), Tr
is the average time to execute a reduce task (also dependent
of the job), Nm is the number of map tasks (or input splits)
not counting replicas, Nr is the number of reduce tasks not

1http://hadoop.apache.org/mapreduce/docs/current/gridmix.html

counting replicas, and α is the number of replicas (1 for the
original MapReduce, f + 1 for the BFT MapReduce). Notice
that Tr and Tm are independent from the MapReduce version
executed, but Ts is higher with the BFT MapReduce than with
the original one.

This formula deserves a further comment. When Hadoop
starts a job it launches not only Pm map tasks but also Pr
reduce tasks. However, these Pr reduces are essentially idle
until the map tasks finish. Therefore, the parameter Tr is in
fact the average of the reduce task execution time not counting
that idle time.

Figure 4 depicts the variation of the makespan (Tj) with the
number of maps and reduces executed in parallel (Pm×N ×
Nc = Pr ×N ×Nc) for the Gridmix combiner application,
which essentially counts occurrences of words in the split files.
The figure presents both estimated (estim) and real executions
(real). The parameters used in the estimations were obtained
from the real execution of the original MapReduce: Tm =
16s, Tr = 12s, Nm = 400, Nr = 100. The input splits
had 64 MB. In both cases we had f = t = 1. For the BFT
MapReduce, Nc = t+ 1 = 2. In the estimations we consider
that Ts = 0 (later we discuss the impact of this parameter).

The experimental values were measured with the original
MapReduce and the above-mentioned previously existing BFT
MapReduce. The differences of the latter system to our BFT
MapReduce were minimized in the experiment: it was exe-
cuted in a LAN, so we are considering Ts = 0 in the estimates,
and it also runs f + 1 copies of each task with no faults,
therefore the values are comparable. The figure shows that they
are indeed comparable: the estimated and real makespan for
both the original and BFT MapReduce executions are similar.

The figure allows us to conclude that the BFT MapReduce
takes approximately twice the time to run in comparison to the
original Hadoop with the same degree of parallelism. It also
shows that the makespan gets lower with more parallelism and
the times become closer.

Makespan varying parallelismMakespan varying parallelism

1600
1800
2000

1200
1400

pa
n
(s
)

Original(estim)

600
800
1000

M
ak
es
p g ()

BFT(estim)
Original(real)

200
400

BFT(real)

0
10 20 30 40 50

Max. number of map/reduce tasks executed in parallel

38
Estim – estimated using the formula
Real – real execution (but BFT MR not exactly this one)

FIGURE 4: Makespan as a function of the degree of paral-
lelism (no faults, t = f = 1).

Figure 5 shows only estimates, obtained using Formula 1.
It shows the makespan varying the number of splits, thus also
Nm, with Pm×N = Pr×N = 20 and Nr = 100. The figure
shows that the makespan grows linearly with the number of

splits, which was to be expected as the size of the input is
proportional to this number (every split had 64 MB).Makespan varying number of splitsMakespan varying number of splits

1600
1800
2000

1200
1400

pa
n
(s
)

600
800
1000

M
ak
es
p

Original(estim)
BFT(estim)

200
400

0
100 200 300 400 500 600 700 800 900 1000

Number of splits

40Pm x N = Pr x N = 20 Nr=100FIGURE 5: Makespan varying the number of splits (no faults,
t = f = 1).

Let us now discuss the shuffle time, Ts. An important
component of this time is the latency in the internet. In
2010 we measured the average communication delay be-
tween 20 pairs of nodes in different countries in PlanetLab,
both in North America and Europe. We obtained average
delays (half round-trip times) between 27.3s (France-Italy) and
94.57s (Vancouver-Pennsylvania) [13]. These measurements
were made with small messages. One of the key aspects of
our BFT MapReduce is that the messages exchanged between
clouds contain only hashes, not complete outputs, therefore
they are also small and we expect delays in this range. These
values are almost insignificant when compared with the time
to execute a complete job as observed, e.g., in Figure 4.

A second factor that impacts Ts is contention: in the
original Hadoop there are Nm×Nr map output fetches, but
in the BFT Hadoop there are (f +1)×Nm× (f +1)×Nr.
However, these fetches are not simultaneous. Consider for
simplicity that all reduces start fetching map outputs whenever
the maps finish. If there are many more map tasks than task
trackers to execute them (which is the normal case) and all
map tasks take the same time to run, the fetches will be
performed

⌈
Nm

Pm×N

⌉
times, thus dividing the contention along

time.
This discussion does not allow us to estimate the value of

Ts when the BFT MapReduce runs in a cloud-of-clouds, with
clouds interconnected by a wide-area network. However, it
leads us to the conclusion that the three mechanisms used have
a beneficial impact: deferred execution reduces the contention
(a factor of (f + 1)2 messages instead of (2f + 1)2), digest
communication reduces the data sent, and overlaid communi-
cation reduces the data sent and allows quicker recovery from
network faults in the internet.

V. RELATED WORK

There has been much research on MapReduce since the
paper that originally presented it in 2004 [1]. For instance,
there has been significant work on running MapReduce ef-
ficiently in different environments: multi-core/multiprocessor

systems [16], heterogeneous environments [17], high-latency
eventual-consistent environments [18], and others. These
works show the popularity of MapReduce, yet from the fault
tolerance point of view, they do not advance the original
platform.

Algorithms to tolerate Byzantine or arbitrary faults were
first introduced some 30 years ago [7]. State machine replica-
tion is a generic solution to make a service crash or Byzantine
fault-tolerant [10]. Since the practicality of implementing ef-
ficient Byzantine fault-tolerant replication was demonstrated
in [11], many other algorithms appeared [12], [13], [15], [19].
Some of these algorithms were specifically designed with
wide-area networks in mind [13], [19]. However, as already
argued, state machine replication is not an efficient solution
to implement BFT MapReduce.

The basic idea of executing each task more than once to
tolerate arbitrary faults has been proposed in the context of vol-
unteer computing to tolerate malicious volunteers, that return
false results of the tasks they were supposed to execute [20].
That work, however, considered bag-of-tasks applications,
which are simpler than MapReduce jobs. Furthermore that
work focused mostly on scheduling the workers in a way that
no more than a number of false results are obtained.

The work presented in this paper builds on previous work
of the same authors on BFT MapReduce [8]. That first BFT
MapReduce runtime was, however, designed to run in a single
cloud / datacenter, not in clouds-of-clouds. Therefore, it was
not able to tolerate cloud outages. In theory it would be pos-
sible to execute it in several clouds, but it would be extremely
inefficient because it would exchange huge amounts of data
between maps and reduces over the internet. Furthermore, that
first system used a single job tracker, which was a single point
of failure and, again, would cause a poor performance in a
cloud-of-clouds.

VI. CONCLUSION

We presented a Byzantine fault-tolerant MapReduce for
clouds-of-clouds. The motivation is twofold: to tolerate ar-
bitrary faults that may corrupt the result of MapReduce jobs,
and to tolerate outages and other severe faults in clouds. The
main challenge of our design is achieving efficiency in terms
of computation, communication, latency, and monetary cost,
vis-a-vis the nature of the MapReduce programming model,
the need to replicate tasks and the limited bandwidth and high
latency of the wide-area network that interconnects the clouds.
Our solution achieves an interesting level of efficiency by
exploiting four mechanisms: distributed job tracker, deferred
execution, digest communication, and overlaid communica-
tion.

ACKNOWLEDGMENT

This work was partially supported by the European Commission FP7
through project ICT-257243 (TClouds), and by the Fundação para a Ciência
e a Tecnologia through project PTDC/EIA-EIA/115211/2009 (RC-Clouds),
the Multi-annual Program (LaSIGE), and project PEst-OE/EEI/LA0021/2011
(INESC-ID).

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: simplified data processing
on large clusters,” in Proceedings of the 6th Symposium on Operating
Systems Design & Implementation, Dec. 2004.

[2] T. White, Hadoop: The Definitive Guide. O’Reilly, 2009.
[3] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”

in Proceedings of the 19th ACM Symposium on Operating Systems
Principles, 2003, pp. 29–43.

[4] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the wild:
a large-scale field study,” in Proceedings of the 11th International Joint
Conference on Measurement and Modeling of Computer Systems, 2009,
pp. 193–204.

[5] E. B. Nightingale, J. R. Douceur, and V. Orgovan, “Cycles, cells and
platters: an empirical analysisof hardware failures on a million consumer
PCs,” in Proceedings of the EuroSys 2011 Conference, 2011, pp. 343–
356.

[6] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, Mar.
2004.

[7] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals prob-
lem,” ACM Transactions on Programing Languages and Systems, vol. 4,
no. 3, pp. 382–401, Jul. 1982.

[8] P. Costa, M. Pasin, A. Bessani, and M. Correia, “Byzantine fault-tolerant
MapReduce: Faults are not just crashes,” in Proceedings of the 3rd IEEE
International Conference on Cloud Computing Technology and Science,
2011, pp. 32–39.

[9] P. Verissimo, A. Bessani, and M. Pasin, “The TCLOUDS architecture:
Open and resilient cloud-of-clouds computing,” in Proceedings of the
2nd International Workshop on Dependability of Clouds, Data Centers
and Virtual Machine Technology, Jun. 2012.

[10] F. B. Schneider, “Implementing fault-tolerant service using the state
machine aproach: A tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp. 299–319, Dec. 1990.

[11] M. Castro and B. Liskov, “Practical Byzantine fault-tolerance and
proactive recovery,” ACM Transactions Computer Systems, vol. 20, no. 4,
pp. 398–461, Nov. 2002.

[12] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and
T. Riché, “UpRight cluster services,” in Proceedings of the 22nd ACM
Symposium on Operating Systems Principles, Oct. 2009.

[13] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “EBAWA:
Efficient Byzantine agreement for wide-area networks,” in Proceedings
of the IEEE 12th International Symposium on High-Assurance Systems
Engineering, Nov. 2010, pp. 10–19.

[14] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
overlay networks,” in Proc. of the 18th ACM Symposium on Operating
Systems Principles, 2001, pp. 131–145.

[15] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin, “Sep-
arating agreement form execution for Byzantine fault tolerant services,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles, Oct. 2003, pp. 253–267.

[16] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,
“Evaluating MapReduce for multi-core and multiprocessor systems,” in
Proceedings of the 2007 IEEE 13th International Symposium on High
Performance Computer Architecture, 2007, pp. 13–24.

[17] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environments,”
in Proceedings of the 8th USENIX Symposium on Operating Systems
Design and Implementation, 2008, pp. 29–42.

[18] T. Gunarathne, T.-L. Wu, J. Qiu, and G. Fox, “MapReduce in the clouds
for science,” in Proceedings of the 2nd IEEE International Conference
on Cloud Computing Technology and Science, 2010, pp. 565–572.

[19] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru,
J. Olsen, and D. Zage, “Scaling Byzantine fault-tolerant replication to
wide area networks,” in Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks, jun 2006.

[20] L. F. G. Sarmenta, “Sabotage-tolerance mechanisms for volunteer com-
puting systems,” Future Generation Computer Systems, vol. 18, pp. 561–
572, Mar. 2002.

