From Crash to Byzantine Consensus with 2 f + 1 Processes *

Giuliana Santos Veronese!, Miguel Correia', Lau Cheuk Lung?
YUniversidade de Lisboa, Faculdade de Ciéncias, LASIGE
2Dep. de Informdtica e Estatistica, Centro Tecnolégico, Universidade Federal de Santa Catarina
giuliana@1lasige.di.fc.ul.pt, mpc @di.fc.ul.pt, lau.lung @inf.ufsc.br

Introduction Consensus is an important distributed com-
puting problem that consists in making a set of processes
agree on one of the values that each one of them proposes.
Consensus in the asynchronous Byzantine message-passing
model (the model we consider in the abstract) has been
shown to require n > 3f + 1 processes to be solvable in
several variations of the basic system model, where f is the
maximum number of faulty processes. Reducing the ratio
n/f is important both theoretically, since achieving lower
bounds has been always a goal in distributed computing,
and in practice, as reducing the number of processes re-
duces the cost of a real system. Recently a few solutions
to implement Byzantine fault-tolerant state machine repli-
cation, which involves solving consensus, with only 2f 41
replicas have appeared [3, 2]. This reduction from 3f + 1
to 2f 4 1 is possible by extending the system model with a
trusted/trustworthy component that constrains the power of
faulty processes to have certain behaviors. These compo-
nents have been called wormholes [6].

State machine replication consists in replicating a ser-
vice in a set of n servers, f of which may be faulty. Cor-
reia et al. use a wormhole called TTCB to help define an
order for the execution of the clients’ requests with only
2f + 1 servers [3]. More recently, Chun et al. used an
attested append-only memory (A2M) abstraction with the
same purpose [2].

The main objective of this work is to contribute to a bet-
ter understanding of the problem of consensus with only
2f + 1 processes. Despite these important results, the
problem of solving asynchronous Byzantine consensus with
only 2f + 1 processes is still far from being well under-
stood. There are several reasons for this state of affairs: the
related works we cited are only two and very recent; they
solve consensus but have the solution for this problem sub-
merged in the complications of a larger problem (state ma-
chine replication); they are based on special-purpose, rea-
sonably complex, abstractions/wormholes (TTCB, A2M)

*This work was supported by the EC through Alban scholarship
E05D057126BR, by the FCT through the Multiannual and the CMU-
Portugal Programmes, and by CAPES/FCT through project TISD.

that researchers other than the authors of those papers are
probably not familiarized with.

2f + 1 Reliable Broadcast with a Wormhole The reli-
able broadcast problem consists basically in making all cor-
rect processes deliver the same messages [1]. Furthermore,
if the process that broadcasts the message is correct, then
all correct processes deliver the message, and no two mes-
sages with the same identifier are delivered by any correct
process. Bracha presented a reliable broadcast algorithm
that needs n > 3 f + 1 processes [1]. He does not provide a
proof that 3f + 1 is the minimum number of processes but
it is simple to understand that the algorithm can not work
withn = 2f + 1.

With a wormhole it becomes possible to do reliable
broadcast with n = 2f + 1. Consider that there is a set of
trusted/trustworthy wormholes {w1, ...w,, } and that process
p; has access exclusively to wormhole w;. Each wormhole
w; has a public-private key pair. The private key K, ; is
known only by w; and is used to produce digital signatures.
Every correct process knows the correct public key K,; of
every wormhole w;, so it can verify signatures produced
by the wormholes using their private keys. The wormholes
provide a single service that can be abstracted as a function
that is called by the processes: ¢ « sign;(id, msg) (for
wormhole w;). The function takes as parameters a mes-
sage identifier ¢d and a message msg. It returns either the
signature o of (id,msg) or L. The signature is returned if
id > id', where id’ is the identifier given as parameter in the

Algorithm 1 Reliable broadcast algorithm

Function RELIABLE_BROADCAST(id, msg)
Task T1:

1: o «— sign;(id, msg)
2: Vj # i : SEND INITIAL(%, id, msg) o to p;

Task T2:{exec only once per msg broadcasted }

3: when (message INITIAL(J, id, msg), or ECHO(j, id, msg, o) is received)
and (verify(id, msg, o, K,;) do

4: Vk # j : SEND ECHO(j, id, msg, o) to pi

5: RETURN(:id, msg)

6: end when

previous call to the function; otherwise _L is returned. This
service is very simple but it precludes a faulty process from
obtaining two different messages with the same identifier
correctly signed.

Algorithm 1 uses this service to solve reliable broadcast
with any number of faulty processes. It is a variation of
Bracha’s but it has one less communication step due to the
use of the wormhole and requires no bounds on the number
of faulty processes.

Solvability of 2 f +1 Consensus We do not present a con-
sensus algorithm designed from scratch, but modify Moste-
faoui and Raynal’s crash fault-tolerant consensus algorithm
(MR-Consensus for short) [5]. Algorithm 2 is the modified
algorithm, 2FBC.

Some of the modifications to MR-Consensus are obvious
and do not need much discussion: reliable channels are sub-
stituted by authenticated reliable channels and message dis-
seminations are substituted by the reliable broadcast primi-
tive (lines 5, 8). The identifier of a message is composed by
the process identifier, the message type and the round num-
ber. Another modification is that we use Bracha’s message
validation mechanism to prevent some of the attacks that
might be done by faulty processes [1]. In several places the
algorithm only takes into account messages that are valid
(lines 7, 9, 10, 14). Informally, a message is said to be valid
if it is justified by the messages previously received by the
process.

Another difference of 2FBC in relation to MR-
Consensus is line 9. In MR-Consensus, processes wait until
they receive messages from n — f processes, but there is a
crucial difference between the crash and the Byzantine fault
models: while in the crash fault model (MR-Consensus) all
messages in that n— f quorum are sent by processes that fol-
low the algorithm, in the Byzantine fault model (2FBC) f of
those messages can be sent by faulty processes. In fact, in
the worst case, withn = 2f + 1 and f Byzantine processes,
in every round that quorum of n— f messages contains f+1
messages, f of which sent by Byzantine processes. To deal
with this problem, line 9 must “know about” all processes
before continuing, i.e., we need an eventually perfect mute-
ness FD — QMP 4 [4]. Line 9 waits for messages from
n — f processes, but also either for messages or to suspect
of the rest of the processes. This ensures that eventually
p; receives messages from all correct processes, as there is
a time after which correct processes are not suspected by
any correct process (eventual strong A4-accuracy). This is
also the reason why we need a stronger FD than previous
Byzantine consensus algorithms, that require only eventual
weak A-accuracy. While those algorithms require only that
the coordinator is eventually not suspected, 2FBC requires
that eventually no correct process is suspected, i.e., eventual
strong A-accuracy.

Final Remarks This work shows that it is possible to im-
plement a 2f + 1 asynchronous Byzantine consensus al-
gorithm using simple wormholes and an eventually perfect
muteness failure detector. This is an interesting result due
to practical importance of reducing the number of processes
in real fault-tolerant systems.

Algorithm 2 2FBC Byzantine consensus algorithm

Function 2FBC_CONSENSUS(v;)
Task T1:

1: r; < 0 {r; is p;’s round number}

2: est; «— v; {est; is p;’s current estimate of the value to be decided }

3: while true do

4: ¢ — (r;modn)+1; r;«—r;+1 {c; = current coordinator}

- phase 1: coordinator to all ——— }
if (c; =) then RELIABLE_.BROADCAST PHASEI(7;,est;) end if
wait until (message PHASE1(r;, —) is received from Pe; OF De; is sus-
pected by p;’s FD module)
7. if (valid message PHASEL(r;, v) received from p.,) then auz; «— v
else auzr; «— L endif

{————phase2: alltoall ————-}

8: RELIABLE_BROADCAST PHASE2(r;, aux;)

9: wait until (valid messages PHASE2(r;, —) are received from at least n — f
processes)

and (Vj : valid message PHASE2(r;, —) is received from p; or

p; is suspected by p;’s FD module)

10: Vj :if (valid message PHASE2(r;, v) received) then R;[j] < v else
R;[j] — L endif

11: if (3v : #,(R;) > n — f) then est; <« v;Vj # i : SEND DECI-
SION(7;, est;) to pj; RETURN(est;) else

12: if (3v:#,(R;)>n—2f) then est; «— v endif end if

13: end while

Task T2:

14: when valid message DECISION(r, est) is received do
15: Vj # ¢ : SEND DECISION(r, est) to p;; RETURN(est)
16: end when

SAR

References

[1] G.Bracha. An asynchronous | (n — 1)/3]-resilient consensus
protocol. In Proceedings of the 3rd ACM Symposium on Prin-
ciples of Distributed Computing, pages 154-162, Aug. 1984.

[2] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. At-
tested append-only memory: making adversaries stick to their
word. In Proceedings of the 21st ACM Symposium on Operat-
ing Systems Principles, October 2007.

[3] M. Correia, N. F. Neves, and P. Verissimo. How to tolerate
half less one Byzantine nodes in practical distributed systems.
In Proceedings of the 23rd IEEE Symposium on Reliable Dis-
tributed Systems, pages 174—183, Oct. 2004.

[4] A. Doudou, B. Garbinato, and R. Guerraoui. Tolerating ar-
bitrary failures with state machine replication. In H. B. Diab
and A. Y. Zomaya, editors, Dependable Computing Systems
Paradigms, Performance Issues, and Applications, chapter 2.
Wiley, 2005.

[S] A. Mostefaoui and M. Raynal. Solving consensus us-
ing Chandra-Toueg’s unreliable failure detectors: A general
quorum-based approach. In Proceedings of the 13th Inter-
national Symposium on Distributed Computing, pages 49—63,
1999.

[6] P. Verissimo. Travelling through wormholes: A new look at
distributed systems models. SIGACT News, 37(1):66-81, 2006.

