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e-mail: {fraga, jim}@das.ufsc.br

Abstract

Much research aiming to design practical algo-

rithms to support Byzantine Fault-Tolerant distributed

applications has been made in recent years. These

solutions are designed to make the applications resis-

tant to successful attacks against the system, thereby

making services tolerant to intrusions. Recently, some

of these studies have considered the use of virtual ma-

chines for building a trusted computing environment.

This paper presents SMIT (Shared Memory based

Intrusion Tolerance), an architecture for Intrusion Tol-

erance using virtual machines that benefits from a

shared memory to simplify the consensus protocol.

1. Introduction

The role that computing systems play in our society

is growing in importance in the last decades. The

trust and dependency over such systems have increased

considerably, day after day. Given the importance of

these systems to the correct operation of basic services

in our everyday life, it is necessary that they behave

properly even under the presence of faults, which can

lead to large losses, from financial to human. Recently,

operating systems faults have been frequently appeared

as intrusions (e.g. viruses, trojans, etc), which are the

result of a malicious attack that achieves success by

exploiting one or more vulnerabilities of the system

(e.g. bugs). To ensure that these systems remain avail-

able, correct and safe even in the presence of faults

and vulnerabilities, is necessary the development of

mechanisms to provide intrusion tolerance in these

environments [1].

To ensure security to these systems, solutions for the

development of fault-tolerant applications have been

researched for more than twenty five years [2], [3],

and in the last decade several studies with solutions for

Byzantine Fault-Tolerant (BFT) State Machine repli-

cation (active replication) with practical viability were

proposed [4]–[6]. The BFT protocols are, in general,

replicated services in a set of machines that communi-

cate between themselves to provide a safe and reliable

service, even under the presence of a limited number f

of malicious members (intruders) that behave out of the

protocol specification. Such protocols are designed to

allow the implementation of replicated services that are

able to meet the requirements for reliability, integrity

and availability, which are fundamental to achieving

dependability [7].

Recently, some papers have proposed the use of

virtualization technologies to implement intrusion-

tolerant systems in a single physical machine [8], [9].

In these proposals, each replica is executed in a virtual

environment, with the whole set of replicas running

in the same computer. These proposals make feasible

to implement the concept of services and operating

systems diversity at virtual machines level [10]. An

obvious advantage of such approach is the reduction of

the replication cost to implement an intrusion tolerant

service by the use of a single physical machine. But,

the drawback of such approach is that the physical

machine is a single point of failure.

It is noteworthy that despite the fact that the occur-



rence of machine failures is often due to crash faults

than to Byzantine ones (or intrusions), the damages

are usually much more severe in the occurrence of the

latter. For instance, consider the case of a malicious

intruder doing unauthorized financial operations in the

servers of a bank or, an intruder doing terrorist acts

in a computing system of a nuclear plant. Related

works has shown that, to address the problem of

malicious attacks on software, the solutions must adopt

techniques of state machine replication along with

design diversity techniques [11]. These proposals are

based on the observation that Byzantine failures with

malicious intent (intrusion) occur by the attempt to

use the vulnerabilities of the part of computer system

implemented in software (ie operating system, device

drivers, services, applications, etc.).

This paper proposes SMIT (Shared Memory based

Intrusion Tolerance), a new architecture for develop-

ment of intrusion-tolerant services using virtualiza-

tion technology, and an algorithm to perform services

over that replicated architecture. The most important

point about our paper is the application of a shared

memory abstraction between the virtual machines to

simplify the consensus protocol. Thus, we are able to

avoid point to point message passing communication

between the replicated services, what could increase

the algorithm complexity to reach consensus. In this

model, we also demonstrate that is possible to reduce

from N ≥ 3f + 1 to N ≥ 2f + 1 where N is

the total number of replicas to tolerate f byzantine

ones, reducing the replication cost. Other papers had

shown that this reduction is possible through the uti-

lization of a safe component/wormhole [12]. Our study

demonstrates that this safe component only needs to

provide a simple shared memory abstraction to reach

this reduction. Furthermore, the host machine does not

play an active role in our proposal, because it only

needs to provide a communication abstraction.

2. System Model

Our model has three kinds of systems: the clients,

external to the virtualized environment, the host sys-

tem, which is running over the bare hardware and can

be a Virtual Machine Monitor (VMM) or an operating

system which is supporting a VMM execution, and

the guests, which are virtual systems running over the

VMM. The latter systems support the execution of

service replicas. The host system also hosts a shared

memory block, which is used by the service replicas

to exchange messages to implement a BFT protocol.

The assumptions described below are similar to the

ones adopted by the related works (section 5). We

assume that an attacker can take complete control over

the actions of f replicated servers, but the damage

that it can cause to the systems is restricted to the f

violated virtual machines. In our model, the isolation

must be provided by the VMM. We also use crypto-

graphic techniques applied to the messages exchanged

between replicas and clients to improve the isolation.

The messages exchanged have attached a Message

Authentication Code (MAC) [13] to authenticate the

messages, generated using secret keys shared between

the communicating pairs. We also assume that an

attacker has no computational power to break the

cryptographic techniques used.

Our model assumes that the host operating system

can have vulnerabilities, but these can not be exploited

by the virtual systems. To ensure this assumption, we

trust that the VMM provides the required isolation to a

safe execution of the virtual systems. This is a premise

of any virtualization technology (e.g. VirtualBox, Xen,

VMware, VirtualPC, etc). Besides, our model needs,

by construction, that the host system is not accessible

externally. This can be achieved through firewall tech-

niques (e.g. Linux iptables) and/or disabling/removing

the network drivers of the host operating system,

blocking the access to the host network address and

keeping the virtual machines IP addresses accessible.

Thus, the attacker does not have any access to the host

system. Because of this, the attacker does not even

know of its existence.

In this study, we assume an asynchronous system,

comprised by servers and clients. The clients are

connected to the servers through a reliable point-to-

point communication channel. The set of replicas,

Sn = {S0, S1, ..., Sn−1}, also known as service repli-

cas, is a set of at least n virtual systems running over a

single physical host. The service replicas do not need

to use the network to communicate between them,

because all that communication is made by a shared

memory area, which will be detailed later. Service

replicas can perform two roles in the system: (i)

primary replica, which is the responsible for defining

the order in which the requests will be processed,

and (ii) the backup replicas, which are the remaining

virtual systems, which follow the order proposed by

the primary to execute the requests. In our model,

up to f faulty replicas (Byzantine faults [2]) are

allowed, of at least 2f+1 processes. In our model, the

Byzantine behavior involves stopping the execution,

omission and sending inconsistent messages out of

protocol specification. The clients, comprised by the

set C = {C0, C1, ...}, are systems that must behave

correctly and communicate with the service replicas

through message passing over the network.



Software diversity techniques [10] are applied in

the service replicas implementation. The main idea is

that the replicas fail independently, ie, the failure of

a replica does not mean the failure of others. This

diversity can be implemented at the level of operating

system and application (programming language and

development methodologies).

Our model does not tolerate crash faults in the

physical machine, related to the host, to the VMM

and to the physical support. Remember that the main

objective of this proposal is intrusion tolerance for

the replicated service running into each VMs. A crash

fault occurred in the host implies directly in the stop

of virtual systems. The use of crash fault-tolerant

techniques, such as active replication of the physical

machine, can be applied to our model to make it also

tolerant to such faults.

2.1. The Postbox

As previously described, our architecture benefits

from a shared memory area, which will also be called

as postbox and will be used to exchange messages

between the replicas. This shared memory abstraction

must be provided by the host system to the guests.

Any replica can store values at the postbox to be read

by the other replicas. The correct replicas in the set

S read the values in the exactly same order in which

they were stored in the postbox. This component has a

simple interface, which is composed by two methods:

• append(value):boolean

• read():value

The append method stores a value at the postbox,

together with a replica identification (the VMM man-

ages it, so there is no forgery). The value is stored

immediately after the value written in the last append

operation that has been executed. The return value

is a boolean, indicating whether the operation has

been successful executed or not. It is important to the

VMM to employ a fair scheduling algorithm to manage

postbox accesses, in order to avoid denial of service

attacks. The read method returns a previously stored

value. This operation always returns the next value to

the last read.

Once stored at postbox, a value can not be changed,

because the postbox must operate in append-only

mode. It avoids the situation where a malicious replica

writes a value, waits for a replica read operation, and

change that value before another replica can perform

its read operation. That situation could generate an

inconsistency in the whole replicated service. Access

and concurrency control at the postbox are a respon-

sibility of the VMM. It is important to realize that

Figure 1. SMIT Architecture

the postbox is a finite capacity component. To avoid

overflow of the shared memory, causing the shutdown

of the protocol, a garbage collection mechanism is

necessary to clean up postbox entries that already had

their requests processed by the correct replicas.

As previously described, all the correct replicas have

a homogeneous view of the postbox content. So, for

any set Wi with k write operations, containing writes

from the n-th to the (n+k)-th position in the postbox,

all the correct replicas which made a set of k read

operations from position n will get as result a set Ri

of read operations, with the same content as Wi.

Figure 1 illustrates the overview of the whole archi-

tecture.

2.2. Algorithm Properties

The algorithm proposed here follows the line of

State Machine Replication [3] algorithms. So, our algo-

rithm must ensure the following properties to provide

a correct service:

• Safety: the replicated service must behave like a

centralized one.

• Liveness: requests sent from correct clients even-

tually complete, ie, the algorithm always makes

progress, does not matter what happens.

In the state machine approach, it is necessary that

the requests issued by clients are delivered (agreement)

and executed in the same order (total order) by all the

correct service replicas. In addition, the correct replicas

must behave deterministically, ie, all of them starts its

execution in the initial state and end in the same final

state.



To ensure that the above properties match, our

algorithm must be executed in an environment where

no more than ⌈ (N−1)
2 ⌉ replicas behave incorrectly, ie,

the system needs at least N ≥ 2f + 1 replicas, where

f is the total number of tolerated faulty members.

To ensure that all replicas execute the same requests

in the same order, is needed a consensus protocol or its

equivalent, an atomic multicast protocol. In PBFT [4],

which is a protocol to support State Machine Replica-

tion, the total order and agreement aspects are defined

by a leader replica through message passing, ie, the

leader disseminates a sequence number proposal for a

client request to the other replicas. In our algorithm, the

total order is defined by the primary replica in a very

simple way. That replica writes a sequence number

to the request from the client in the postbox. The

agreement is reached through direct communication of

the correct client with all the replicas.

In our model, is possible to avoid all the communi-

cation steps that are needed in the previous agreement

protocols. This is because our model has a memory

area that is homogeneously viewed by all the replicas.

Once the primary replica has wrote his proposal in the

shared memory, the other replicas only need to read

that value and execute the corresponding request.

To ensure liveness, our study proposes a view

change protocol, triggered when the primary is sus-

pected to be faulty.

3. Algorithm

The algorithm follows a succession of configurations

called views. Each view v, the replica s is the primary

replica iff s = v mod |S|. The remaining replicas are

backups.

In normal way of operation, only the primary could

write values in the postbox and these values conform

to the format 〈 PROP, c, t, h〉, where c is the client

identification, t is the timestamp and h is the hash

calculated over the message received. If other replica

writes values in the postbox, that values are simply

ignored by all correct replicas.

The client side of the algorithm is illustrated in

Figure 2. It basically sends a multicast message m to

all replicas of the set S. After sent m, the client waits

for f+1 replies with identical content.

1: multicast send(〈REQ, content〉, S)

2: repeat

3: buffer ← buffer ∪ recv()

4: until f + 1 matching replies ∈ buffer

Figure 2. Client request invocation task

The replica side of the protocol has two concurrent

tasks. The first one (Figure 3) keeps listening for new

messages and adding them to a buffer. If the replica is

the primary of the current view, then it proposes the

received message execution, appending the message

hash to the postbox.

1: loop

2: r = receive()

3: if primary() then

4: postbox.append(〈PROP, c, t, hash(r)〉)
5: end if

6: buffer ← buffer ∪ r

7: end loop

Figure 3. Request listener task

1: while messages in buffer do

2: prop = postbox.read()

3: if type(prop) == VC then

4: buffer ← buffer ∪ prop

5: view-change()

6: else if type(prop) == PROP then

7: req = buffer.search(prop) ∧ timeout

8: if req == ∅ then

9: postbox.append(〈V C, view + 1〉)
10: view-change()

11: else

12: send(exec(req))

13: end if

14: end if

15: end while

Figure 4. Consensus task

The other one (Figure 4) is the task which ensures

that the messages are processed in the same sequence

by all the correct replicas. In this task, the replica keeps

reading the postbox while there are messages in the

buffer. If the message is found in the buffer before the

timeout expires, the replica executes it and send the

reply directly to the client. If the message read from

postbox is not in the replica’s buffer after the timeout

(lines 7 and 8), then the replica suspects of the primary

and tries to start a view-change. It will succeed only if

at least f+1 replicas are suspecting that the primary is

faulty (Figure 5). Otherwise, if less than f+1 suspects

of primary correctness, the replica does not execute the

view-change.



1: if f+1 matching VC in buffer then

2: view = view + 1

3: process each remaining request from view-1

4: end if

Figure 5. View Change Algorithm

A correct execution of the algorithm is summarized

in figure 6. In the first phase (request) of the algorithm,

the client c multicasts a request req to the replicas from

the set S. The second phase is executed by the replicas

to ensure the consensus in the message execution. After

received the message, the primary replica r0 writes its

sequence proposal for req in the postbox. The backup

replicas read that proposal. Once defined the sequence

to req execution, the replicas execute it and send the

reply to c in the third phase of the protocol.

Figure 6. SMIT algorithm steps sequence

There are some important details that are not explicit

in the algorithms listed above. For each message

received, each backup replica starts a timer if there is

not another active timer already running for another

message. While there is a message waiting to be

executed, there is a timer running. If the timer expires,

the primary is then suspected by the replica. It avoids

a primary postponing indefinitely the order proposal.

A similar mechanism was proposed in PBFT [4].

Another important implicit detail about the proposed

algorithms is concerned to the timeout at line 7 in

Figure 4. When that timeout expires, the replica tries

to start a view-change, which will succeed only if at

least f + 1 view-change proposals have been made

by different replicas for that message. Otherwise, the

replica will back to the step at line 7, restarting the

timeout, waiting for the delivery of the message related

to the proposal made by the primary. The replica

repeats those steps (waiting for the message delivery

with a timeout and trying a view-change if the message

is still not received) until either of the conditions below

hold:

1) The message related to the proposal is finally

delivered to the replica.

2) f + 1 different replicas are in the same situation

and start a view-change.

Since our assumptions about the channel consider

this as a reliable point-to-point channel, once the

message is sent by the client, it will be eventually

delivered to all the correct replicas.

4. Implementation

This section presents details about the prototype

implementation of the algorithm and model described

in the previous sections. To evaluate the prototype

performance, we have used micro-benchmarks similar

to those used in PBFT [4]. In these micro-benchmarks,

we have executed null operations at the service repli-

cas, ranging the argument and result size from 0 kB

to 4 kB. For example, an operation named as 00 has

0 kB in messages of both argument and result. A

operation 04 has a 0 kB message as argument and

4 kB message as result. We evaluate system response

time and throughput, as described below.

The algorithm proposed in this paper has been

implemented in Python, using the 2.6.2 version of the

interpreter. We built a test environment, as described

below:

• Host system: a Core 2 Quad CPU, with 8 GB

of RAM, running Debian GNU/Linux 5.0, kernel

2.6.26-2.

• VMM: Sun VirtualBox 2.2.4 running over the

operating system above.

• Postbox: a file in the host system, shared by

VirtualBox to the guests through a mechanism

called Shared Folders.

• 3 VMs: each with 1 GB of RAM, running Ubuntu

GNU/Linux 9.04 Server, kernel 2.6.28-11.

• Clients: running in a Core 2 Duo CPU, with 2

GB of RAM, running Ubuntu GNU/Linux 9.04

Desktop, kernel 2.6.28-15.

The clients are connected to the servers through a

100 Mb/s network switch.

4.1. Response Time

The prototype response time has been measured

in our system by the clients, reading its local clock

immediately before send the request and immediately

after receiving the reply. For each kind of operation

tested (varying the argument and result size), we have



tested 10000 requests, in two separated executions. We

have created three distinct scenarios to evaluate the

response time from our prototype:

1) SMIT: Our prototype with the service replicated

over 3 VMs, each running the algorithm pro-

posed.

2) Single: a single service (no replicated).

3) Single-VM: a single service running over a

Virtual Machine.

The values in Table 1 are represented in milliseconds

and correspond to the average calculated over the re-

sults obtained in each kind of execution. Our prototype

incurs in a substantial increment in the response time

of operations. It was expected, because our prototype

offers a safe execution of the request, while the remain-

ing two environments (Single and Single-VM) are just

single executions of the service, without replication

and the operations that are required to safely execute

a replicated operation. Also noticeable is the fact that

the reply size has more effect over the response time

than the request size, because the client must receive

and vote over at least f+1 replies to complete the

request execution. Then, operations that require large

amounts of data as its replies, leads to larger response

times. As in PBFT [4], it can be optimized by letting

the client choose just one of the replicas to send the

entire reply message. The other ones send only the

message digest. Then, as in the normal case, the client

waits for f+1 matching replies. If the entire message

received does not match the digests sent, the client

requests to the replicas to send its entire messages

too. Furthermore, is worth noting that the response

times from the Single-VM scenario execution also

presents a substantial increment compared to the values

obtained in scenario Single, showing that the execution

in a virtualized environment incurs in a substantial

overhead in the response time.

Table 1. Response Time (milliseconds)

Operation SMIT Single Single-VM

00 3.504 0.2223 0.5553

02 3.6873 0.6056 0.8930

20 3.7835 0.6037 0.8674

04 4.019 0.8049 1.0895

40 3.9631 0.8274 1.1344

4.2. Throughput

To evaluate the throughput of our prototype, we

executed operations with both argument and result of

0 kB, varying from 0 to 20 the number of clients

sending requests concurrently. Figure 7 shows the

results obtained in this experiment. The throughput

keeps growing as the number of clients is increased

until reach around 600 operations per second, when it

stabilizes. It can be explained by the overhead that exist

in accessing the postbox in the current implementation,

which is the component through which the replicas

execute all the message exchange to reach consensus.

As described above, postbox is implemented as a file

shared by the host system to the guests, requiring the

overhead generated by file system. Optimizations in

such component can bring us better results related to

the scalability for large number of concurrent accesses.

Figure 7. Throughput under different loads

5. Related Work

The concept and virtualization technologies to add

Byzantine Fault Tolerance to computing systems has

been recently studied. The VM-FIT architecture [9]

is one of the first proposals to apply virtualization to

Byzantine fault tolerance. The basic idea behind that

architecture is the redundant execution of a service in

many virtual machines over a single physical host. It

allows a significant cost reduction to deploy a BFT

system, because it avoids the requirement for hardware

replication to create the service redundancy. The VM-

FIT architecture requires a trusted component, which is

the algorithm coordinator, being responsible to multi-

cast the request from the clients to the service replicas

and to vote over the replies from the replicas, to deliver

only the correct value to the client.

There are other proposals that replicate a service

through virtual machines over a single physical host.

In the LBFT1 and LBFT2 [14] proposed approaches,



there is a trusted system, which is the protocol coordi-

nator, responsible for the sequence number assignment

to the message from the client. In this proposal, the

coordinator is a special system, in the sense that it does

not act like a service replica. The coordinator is only

responsible for coordinate the requests sent by clients.

Thus, both algorithms tolerates f faulty replicas using

at least 2f+2 systems, where one of them is the trusted

coordinator, and the rest of them are services replica.

In SMIT, we need 2f+1 virtual machines to tolerate

f faulty replicas and the consensus is obtained with

only one step of communication between the replicas.

In some active replication systems, the communica-

tion time between replicas does not grows indefinitely,

even in asynchronous systems. This assumption is

made, for example, in the original PBFT protocol and

in other BFT protocols [4]–[6]. That assumption is

required to circumvent the FLP impossibility [15]. In

our case, this assumption is not too impressive, because

encompasses only the communication between clients

and replicas. The other ways of communication are

made through the shared memory.

6. Conclusion

This paper have presented an architecture and an

algorithm for BFT replication, using virtualization to

deploy replication and service diversity to provide as

a result an Intrusion Tolerance System less expensive

than previous proposals. To evaluate the practical vi-

ability of the model, we have developed a prototype,

running micro-benchmarks over it to measure the re-

sponse time and the throughput obtained. The future

works are focused on architectural and algorithmic

improvements to support malicious clients, on the

architecture implementation using another VMM (like

KVM, Xen, etc.), on the possibility of create a postbox

in main memory and on a distributed version, in order

to also tolerate crash faults in the host system.
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