
XChainWatcher: Identifying Anomalies in Cross-Chain Bridges

André Augusto
INESC-ID & IST, University of Lisbon

Lisbon, Portugal

Rafael Belchior
INESC-ID & Blockdaemon

Dublin, Ireland

Jonas Pfannschmidt
Blockdaemon
Dublin, Ireland

André Vasconcelos
INESC-ID & IST, University of Lisbon

Lisbon, Portugal

Miguel Correia
INESC-ID & IST, University of Lisbon

Lisbon, Portugal

Abstract

Cross-chain bridges are a blockchain interoperability middleware

that supports the transfer of assets and data across blockchains.

However, several of these bridges have vulnerabilities that have

caused 3.2 billion dollars in losses since May 2021. Some studies

have revealed the existence of these vulnerabilities, but there is

little quantitative research available, and there are no safeguard

mechanisms to protect bridges from such attacks. Furthermore, no

studies are available on the practices of cross-chain bridges that

can cause �nancial losses. We propose XChainWatcher (Cross-

Chain Watcher), a modular and extensible logic-driven anomaly

detector for cross-chain bridges. It operates in three main phases:

(1) decoding events and transactions from multiple blockchains, (2)

building logic relations from the extracted data, and (3) evaluat-

ing these relations against a set of detection rules. Using XChain-

Watcher, we analyze data from two previously attacked bridges:

the Ronin and Nomad bridges. XChainWatcher successfully identi-

�ed the transactions that led to losses of $611M and $190M (USD)

and surpassed the results obtained by a reputable security �rm in

the latter. We not only uncover successful attacks, but also reveal

other anomalies, such as 37 cross-chain transactions (cctx) that

should not have accepted, failed attempts to exploit Nomad, over

$7.8M worth of tokens locked on one chain but never released on

Ethereum, and $200K lost by users due to inadequate interaction

with bridges. We provide the �rst open dataset of 81,000 cctxs across

three blockchains, capturing more than $4.2B in token transfers.

CCS Concepts

• Security and privacy→ Intrusion detection systems; • Com-

puter systems organization → Dependable and fault-tolerant

systems and networks.

Keywords

Blockchain, Interoperability, Cross-Chain, Anomaly Detection

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

Middleware ’25, Nashville, TN, USA

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1554-9/25/12
https://doi.org/10.1145/3721462.3770781

Attack Transaction Attack Discovered

1

10

100

1000

10000

2
0
2
2
−

0
3
−

1
3

2
0
2
2
−

0
3
−

1
4

2
0
2
2
−

0
3
−

1
5

2
0
2
2
−

0
3
−

1
6

2
0
2
2
−

0
3
−

1
7

2
0
2
2
−

0
3
−

1
8

2
0
2
2
−

0
3
−

1
9

2
0
2
2
−

0
3
−

2
0

2
0
2
2
−

0
3
−

2
1

2
0
2
2
−

0
3
−

2
2

2
0
2
2
−

0
3
−

2
3

2
0
2
2
−

0
3
−

2
4

2
0
2
2
−

0
3
−

2
5

2
0
2
2
−

0
3
−

2
6

2
0
2
2
−

0
3
−

2
7

2
0
2
2
−

0
3
−

2
8

2
0
2
2
−

0
3
−

2
9

2
0
2
2
−

0
3
−

3
0

2
0
2
2
−

0
3
−

3
1

2
0
2
2
−

0
4
−

0
1

2
0
2
2
−

0
4
−

0
2

2
0
2
2
−

0
4
−

0
3

2
0
2
2
−

0
4
−

0
4

2
0
2
2
−

0
4
−

0
5

2
0
2
2
−

0
4
−

0
6

2
0
2
2
−

0
4
−

0
7

2
0
2
2
−

0
4
−

0
8

2
0
2
2
−

0
4
−

0
9

Date

F
u
n
ct

io
n
 C

al
ls

withdrawals

deposits

Figure 1: Number of function calls to transfer funds through

the Ronin bridge. The attack was only discovered six days

later, causing deposit calls to drop to zero. Each data point

represents the total function calls in periods of 6 hours.

ACM Reference Format:

André Augusto, Rafael Belchior, Jonas Pfannschmidt, André Vasconcelos,

and Miguel Correia. 2025. XChainWatcher: Identifying Anomalies in Cross-

Chain Bridges. In 26th ACM Middleware Conference (Middleware ’25), De-

cember 15–19, 2025, Nashville, TN, USA. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3721462.3770781

1 Introduction

In recent years, there has been a remarkable adoption of blockchain

interoperability through the use of cross-chain mechanisms [8, 16].

The most popular mechanisms are cross-chain bridges (or simply

bridges). Bridges serve as an essential middleware in the blockchain

ecosystem, connecting decentralized applications across various

blockchains, and facilitating the transfer and exchange of assets.

In the Ethereum ecosystem, numerous bridges connect Ethereum

to other blockchains, such as rollups and sidechains. Native bridges

support rollups – Layer 2 solutions designed to enhance Ethereum’s

scalability while inheriting its security (e.g., [10, 30, 42, 49]). In con-

trast, non-native bridges connect Ethereum to sidechains, which

employ an independent consensus mechanism and do not inherit

Ethereum’s security guarantees. Despite these di�erences, the pri-

mary goal remains the same: enabling decentralized applications on

Ethereum to expand to faster and more cost-e�cient blockchains.

The cross-chain ecosystem is growing. During 2023, cross-chain

protocols raised more than $500 million (USD) in investment rounds

[18, 22, 24, 44, 51, 65], and processed millions of cross-chain trans-

actions (cctx) daily [23]. In November 2024, non-native cross-chain

bridges had a total value locked (TVL) of around $11 billion [67]

and native bridges $39 billion, highlighting the growing interest

in the technology, despite its numerous hacks: from May 2021 to

August 2024, hackers stole a staggering amount of $3.2 billion in

cross-chain bridges [8], and have indirectly caused losses of several

https://doi.org/10.1145/3721462.3770781
https://doi.org/10.1145/3721462.3770781

Middleware ’25, December 15–19, 2025, Nashville, TN, USA Augusto et al.

tens of millions in other Decentralized Finance (DeFi) protocols

due to on-chain activity and token valuations plummeting [56].

Not even extensively audited bridges are immune to vulnera-

bilities [23]. In fact, several bridges have been exploited multiple

times [7, 12, 43, 54, 55, 59–62, 68]. Moreover, protocols take too long

to react to an attack [11, 59, 61], suggesting that teams may not be

su�ciently prepared to address integrity breaches, possibly due to

lack of prior awareness, observability, monitoring, or good

SecOps practices [8]. In 2022, the Ronin Bridge was attacked, but

the team discovered the attack only 6 days later (cf. Figure 1). In the

most recent attack, which also targeted the Ronin bridge in August

2024, the team reported that the bridge was paused only about 40

minutes after the �rst malicious on-chain activity was detected [62].

Even if attacks cannot be reversed, it is possible to work on swift

detection and protocol stoppage to avoid further exploitation (in

Section 5.2.5 we show that there were 382 attacking transactions in

the Nomad bridge attack). Developing e�ective incident response

frameworks is crucial for e�cient attack identi�cation and response

to malicious activity, with the great potential of minimizing losses.

Some authors have studied cross-chain security, listing and sys-

tematizing vulnerabilities and attacks across the relevant cross-

chain layers [8, 25, 35, 69, 72, 73]. However, quantitative studieswith

real-world data are still lacking. Variations in contract implemen-

tations, security models [8], bridging models [13] (e.g., lock-mint,

burn-mint, lock-unlock), and token types across di�erent chains

make it di�cult to monitor and safeguard these systems consis-

tently. Additionally, the use of intermediary protocols (e.g., bridge

aggregators [41, 66]) and the extraction of data from various sources

(e.g., transaction data or events emitted by contracts) increase the

technical challenges of performing these studies.

To address this gap, we present a monitoring layer that detects

anomalies in cross-chain bridges and validates them through empir-

ical study of real-world exploits. Many works suggest that anomaly

detectors can be trained automatically from live-captured normal/-

good behavior. This approach proves impractical for cross-chain

bridges because they are inherently complex, not formally speci�ed,

often misused, and constantly attacked due to the large amounts

moved. Therefore, there is no hope of capturing a clean, labeled

dataset of cross-chain transactions to train anomaly detection mod-

els automatically – and there are no open-source alternatives. For

this reason, we rely on a manual de�nition of cross-chain rules to

characterize expected bridge behavior. These rules form the basis

of our anomaly detection, enabling detection of known and un-

documented anomalies. This paper, along with the open labeled

dataset, establishes the �rst baseline for future automated cross-

chain anomaly detection approaches.

There is a large variety of bridge solutions in the industry, so

designing an anomaly detection tool that �ts every scenario is chal-

lenging. Therefore, in this paper, we focus on modeling and evalu-

ating our solution for cross-chain bridges that connect Ethereum

to its sidechains [29], the most valuable blockchain ecosystem ex-

cept for Bitcoin (Ethereum alone has a market cap of around $200

billion). The communication between Ethereum and a sidechain

with a cross-chain bridge involves two steps: users �rst Deposit

assets transferring tokens from Ethereum to the sidechain, and

later Withdraw funds, transferring the assets back to Ethereum.

While there are some nuances and rules that may need �ne-tuning,

the rationale followed in can be applied to other interoperability

projects.

This paper provides the following contributions:

(1) XChainWatcher. The �rst open-source framework for per-

forming anomaly detection in cross-chain bridges, capable

of detecting known attacks and other anomalies that harm

users and protocol operators. XChainWatcher provides the

pipeline for decoding event and transaction data, building

logic relations, and evaluating them against the proposed

anomaly detection rules.

(2) Quantitative study on cross-chain security. We perform

an anomaly detection analysis on data extracted from bridge

contracts deployed on Ethereum, Gnosis, and Moonbeam –

3 EVM-based blockchains. We release the �rst open dataset

of cross-chain transactions, consisting of over 81,000 cctxs,

moving more than $4.2B in token transfers.

(3) New anomalies. We identify past attacks but also new

anomalies in cross-chain bridges due to unintended behavior

from users and protocols.

The paper is structured as follows. Section 2 provides background

information on blockchain, smart contracts, and cross-chain bridges.

Section 3 details the design of XChainWatcher. Sections 4 and 5

present the experimental setup and the anomaly detection results.

Section 6 outlines the discussion, limitations, and future work. Fi-

nally, the related work and conclusions are given in Sections 7 and

8. All monetary values presented in this paper are in US dollars.

2 Background

We provide an overview of the necessary background to understand

the remainder of this paper.

2.1 Blockchain and Smart Contracts

Consider a blockchain � a sequence of blocks {�1, �2, ..., �=}, where

= is the nth block such that each block is cryptographically linked

to the previous one. Each block contains a root of the current

state trie, which holds the state of the blockchain, represented as

key-value pairs ((�G) = ⟨:4~, E0;D4⟩. Each key represents an ac-

count – either an Externally Owned Account (EOA) controlled by a

cryptographic key pair or a Contract Account. The latter contains

code that enforces the so-called smart contracts that execute in

the native virtual machine of the blockchain, e.g., the Ethereum

Virtual Machine (EVM). The execution of CG in �G changes the state

((�G)
tx
→ (′ (�G). Examples of state changes include triggering

the execution of smart contracts, transferring native currency or

triggering internal transactions (which can recursively trigger addi-

tional state changes). Smart contracts enable the execution of code,

which can de�ne tokens – by following common interfaces, such

as the ERC-20 [26] or ERC-721 [27] – or arbitrary logic, such as

validating Merkle proofs or digital signatures. Code execution may

emit events that can be understood as execution logs (also called

topics in the context of transaction receipts). Events are usually

representations of state changes in a certain smart contract.

XChainWatcher: Identifying Anomalies in Cross-Chain Bridges Middleware ’25, December 15–19, 2025, Nashville, TN, USA

A

< / >

1. deposit(...)

Token
Smar t Contract

Br idge
Smar t Contracts

2. transfer(...)

Transfer Event

3. emit Transfer(...)

Deposi t Event

4. emit TokenDeposited(...)

Br idge
Smar t Contracts

7. transfer(...)

Transfer Event

8. emit Transfer(...)

Deposi t Event

9. emit TokenDeposited(...)
Validator s

l istens to

6. verifyProof(...)

10. accesses

5. deposit(...)

...

Source Blockchain () External Tx Internal Tx/Event Asycn Flows

...

Target Blockchain ()

A

< / >

A

< / >

A

< / >

Token
Smar t Contract

Figure 2: The �ow of a token transfer from a source blockchain (S) to a target blockchain (T), using a cross-chain bridge.

2.2 Cross-Chain Bridge Model

Contrary to most DeFi dApps, bridges span over two or more

blockchains, rather than being con�ned to one. Figure 2 illustrates

the components of a cross-chain bridge, showing a source chain (S)

and a target chain (T) with a one-way token deposit �ow (S → T).

To perform a cross-chain transfer depositing tokens into an-

other blockchain, a user DB issues a transaction that is added to the

blockchain at timestamp C1, CGC1, on a source chain (to escrow

tokens. This transaction can directly target a bridge contract or

an intermediary protocol that calls internally a bridge contract.

The bridge contract subsequently triggers an internal call to the

token contract gB associated with the token thatDB wishes to bridge.

This call results in the creation of a commitment c((DB , gB , @), in-

dicating that @ units (quantity) of token gB held by DB have been

escrowed. This commitment re�ects either the locking or burning

of tokens, leading to a state change in (, which will be a part of the

blockchain’s new state (C2:

(C2 ⊇ ((C1 ⊕ c((DB , gB , @))

The state change triggers an event emission from the token contract

gB . In this paper, we focus on the ERC20 token standard, thus, on

fungible tokens [6]. Depending on the bridging model, escrowing

tokens can be implemented by transferring tokens to a bridge-

controlled address (lock model) or to the null address (burn model).

The ability to handle this dichotomy allows this analysis to be

agnostic of the bridging model. Therefore, in a lock-unlock model,

the event can be represented as:

ngB ,(= Transfer(DB , bridge, @)

in the form (from, to, value). In a burn-mint model, tokens are

instead burnt – i.e., transferred to the null address (0x000) – even

though not as common, this is a more secure approach because it

avoids creating a honeypot of locked assets in S. If D is trying to

bridge native tokens in S, there is no call to the Transfer method

of an ERC20 token contract, but the commitment is in the form

of a native transfer of tokens in S – i.e., CGC1 .E0;D4 = @. Once the

commitment is created in S, the bridge contract emits an event

with commitment data and some additional parameters, such as

a unique identi�er for the deposit, the bene�ciary DC (the user to

which the tokens are intended in T), and the token in T (gC) that

represents the same token as gB :

nbridge,(=)>:4=�4?>B8C43 (deposit_id, c((DB , gB , @), DC , gC)

This event is captured by validators (or relayers) – o�-chain entities

responsible for enabling cross-chain interoperability. Upon detect-

ing an event on chain (, validators initiate a transaction on the

target chain) to trigger a state change, such that the commitment

is part of the new state)C3:

TC3 ⊇ (TC2 ⊕ cT (DC , gC , @))

This �nal commitment cT represents either the minting or unlock-

ing of tokens within gC . Similar to the source chain process, the

token contract on T emits a Transfer or Mint event. The Transfer

event can be represented as

ngC ,T = Transfer(bridge, DC , @)

where tokens are being unlocked (i.e., transferred from the bridge

contract). The bridge contract also emits an event accordingly:

nbridge,T =)>:4=�4?>B8C43 (deposit_id, cT (DC , gC , @)) .

It is crucial that this commitment in T , and subsequent emission

of events in both contracts, is only created if (1) q (c((DB , gB , @))

holds true, whereq is a commitment veri�cation function on T that

veri�es the commitment originating from (; and (2) c(was created

in a transaction, in a block that is k blocks deep into blockchain S

and the probability of being reverted is negligible. In this paper, we

abstract away the speci�c implementation details of commitments

(e.g., zero-knowledge or Merkle proofs) and focus on the observ-

able state changes. By analyzing state transitions, we can detect

anomalies in cross-chain bridges independently of their internal

logic, enabling a middleware-level system like XChainWatcher to

reason about cross-chain activity in a protocol-agnostic way.

The withdrawal �ow (T → S) is the inverse but very similar,

thus not represented. The key di�erence is that, usually, the user

triggers the �nal transaction on S, instead of being the validators

managing the process (e.g., [32]). This allows the operator to mini-

mize operational costs because validators are not required to issue

Ethereum transactions for every withdrawal request.

2.3 Attacks in Cross-Chain Bridges

Since June 2021, attackers have stolen more than 3.2 billion USD

from cross-chain bridges [8, 40]. Hackers target smart contracts

that have permission to lock, unlock, mint, or burn tokens. If an

attacker gains control of a critical contract – through a bug or

a compromised private key [8] – they can execute unauthorized

Middleware ’25, December 15–19, 2025, Nashville, TN, USA Augusto et al.

token operations. In a lock-unlock model, attackers exploit bridges

in two main ways:

(1) Steal funds held by the bridge contract on S. Those funds

represent the current total value locked by users.

(2) Steal existing funds (liquidity) on T that support the unlock-

ing process.

In the burn-mint or lock-mint models, instead of stealing existing

funds, attackers mint (create) tokens out of thin air and transfer

them to their addresses. These attacks are classi�ed in the litera-

ture into two categories based on the direction of the invalid state

changes:

(1) Forged Deposit Attack: Attackers claim funds – either un-

locking existing tokens or minting new ones – on T without

locking or burning tokens on S.

(2) Forged Withdrawal Attack: Attackers withdraw funds

on S – similarly, unlocking existing tokens or minting new

ones – without previous burn or lock operations on T .

3 XChainWatcher

XChainWatcher∗ is a logic-based monitoring system for cross-chain

bridges, built as an open-source framework using Sou�e [37] – a

high-performance Datalog-inspired engine.

The work�ow of XChainWatcher is presented in Figure 3. There

are three phases: 1) decoding event and transaction data from

blockchains, 2) building a set of logic relations based on the data

extracted, and 3) evaluating relations using a set of detection rules.

We design XChainWatcher to be generic and extensible so that any-

one can integrate support for any bridge. Additionally, the logical

rules can be �ne-tuned for each supported bridge.

3.1 Logical Relations

We model cross-chain operations by de�ning a comprehensive set

of logical relations (i.e., the cross-chain model) that capture events

emitted by smart contracts and static con�gurations common to

bridge protocols. These logical relations form the basis for our

analysis.We derived them by thoroughly reviewing the open-source

code of cross-chain bridge protocols that connect Ethereum to

sidechains, and their documentation. We also directly interacted

with some protocols and observed the di�erent state changes that

occurred – including Polygon [52], Ronin [63], Omnibridge [32],

xDAI Bridge [33], and theNomad Bridge [48]. These bridges connect

Ethereum to multiple sidechains, such as Ronin, Gnosis, Polygon,

and Moonbeam. The list of relations (Datalog facts) is in Listing 1.

Contract Events. The native_deposit relation records deposit

events of native currency on S through the wrapped version of

the native currency (e.g., Wrapped Ether contract on Ethereum).

The native_withdrawal relation logs native token transfers on the

target chain when initiating withdrawal of funds (T → S), also

using the contract representing the wrapped version of the native

currency. For bridge-speci�c events, we use sc_token_deposited

and tc_token_deposited to capture token deposits in the bridge

contract on the source and target chains, respectively. In parallel,

the tc_token_withdrew and sc_token_withdrew relations track token

withdrawal events emitted by the bridge contract from the target

∗https://github.com/AndreAugusto11/XChainWatcher

Figure 3: XChainWatcher relies on event and transaction

data decoders, logic relation builders, and a Datalog engine

to evaluate relations. TheDecoder and Logic Relation Builders

are designed to be pluggable and extensible – i.e., anyone can

extend XChainWatcher to support other protocols.

and source chains. Finally, the erc20_transfer relation logs ERC20

token transfers. We also capture mined blockchain transactions

through the transaction relation.

Static Con�gurations. The bridge_controlled_address rela-

tion lists all addresses controlled by the bridge. The token_mapping

relation links equivalent tokens across chains – a standard practice

in the �eld [38, 46]. We capture each chain’s �nality time in the

cctx_finality relation, modeling the necessary con�rmation du-

ration in seconds. Finally, the wrapped_native_token relation iden-

ti�es wrapped versions of native currencies on each chain – i.e.,

the wrapped version of Ether, the native currency of the Ethereum

blockchain, is Wrapped Ether (WETH).

3.2 Decoders and Logic Relation Builders

The Static Con�guration Loader imports static facts from the bridge

con�guration �le† – this is information that does not depend on

event or transaction data: bridge_controlled_address, token_mapping,

wrapped_native_token, and cctx_finality. On another hand, the

Event and Transaction Data Decoder is designed to be bridge-speci�c,

where the remaining relations are extracted from the data decoded

from bridge events. This component is plugin-based, allowing the

extension of XChainWatcher to more protocols.

The input for the latter component is a set of transaction receipts.

Each receipt contains the events emitted by all contracts with which

the transaction interacted. In many cases, the transaction receipt

is su�cient to extract all the facts. In other cases, however, it is

not enough, namely, when dealing with native token transfers

or when the user uses intermediary protocols to interact with a

bridge. In the �rst case, the sender transfers funds natively in a

transaction (in the tx.value �eld). In the latter, funds are transferred

in internal transactions [5]. In both cases, the transferred value is

not accessible by the transaction receipt. In this case, we obtain the

transaction data by making a request to an RPC node using the RPC

methods eth_getTransaction or the debug_traceTransaction with the

parameter {“tracer”:“callTracer”} [34] that outputs the execution

traces and transferred values.

†An example of con�guration �le is at https://github.com/AndreAugusto11/XChain
Watcher/tree/4cc1ff1/cross-chain-rules-validator/utils/ronin_env.py

https://github.com/AndreAugusto11/XChainWatcher
https://github.com/AndreAugusto11/XChainWatcher/tree/4cc1ff1/cross-chain-rules-validator/utils/ronin_env.py
https://github.com/AndreAugusto11/XChainWatcher/tree/4cc1ff1/cross-chain-rules-validator/utils/ronin_env.py

XChainWatcher: Identifying Anomalies in Cross-Chain Bridges Middleware ’25, December 15–19, 2025, Nashville, TN, USA

.decl native_deposit(tx_hash , chain_id , event_index , from , to , amount).

.decl native_withdrawal(tx_hash , chain_id , event_index , from , to , amount).

.decl sc_token_deposited(tx_hash , event_index , deposit_id , beneficiary , dst_token , orig_token , dst_chain_id , amount).

.decl tc_token_deposited(tx_hash , event_index , deposit_id , beneficiary , dst_token , amount).

.decl tc_token_withdrew(tx_hash , event_index , withdrawal_id , beneficiary , orig_token , dst_token , dst_chain_id , amount).

.decl sc_token_withdrew(tx_hash , event_index , withdrawal_id , beneficiary , dst_token , amount).

.decl erc20_transfer(tx_hash , chain_id , event_index , contract , from , to , amount).

.decl transaction(timestamp , chain_id , tx_hash , from , to , value , status , fee).

.decl bridge_controlled_address(chain_id , bridge_address).

.decl token_mapping(source_chain_id , target_chain_id , source_chain_token , target_chain_token).

.decl cctx_finality(chain_id , finality_seconds)

.decl wrapped_native_token(chain_id , token).

Listing 1: De�nition of the logical relations built by XChainWatcher.

When decoding data and building the logical relations, each

transaction is assumed to potentially emit an unlimited number of

events, e.g., when batching operations are involved. The extraction

of data from relevant events involves extracting the �rst element in

the topics list of the transaction receipt, which is equal to the hash of

the event signature. For instance, topic[0] for any event with signa-

ture Deposit(address,address,uint256) is calculated with a hash-

ing function keccak256("Deposit(address,address,uint256)").

3.3 Cross-Chain Rules

Overview.We model the expected behavior of bridges (anomaly-

based intrusion detection) instead of modeling speci�c attacks

(signature-based intrusion detection) using cross-chain rules [9].

This approach allows us to identify anomalies that have not yet

been discovered and that are under the hood of the complexity of

analyzing cross-chain data. Each rule enforces a set of validations

to determine the validity of events within one or more blockchains.

Rules are classi�ed as isolated (I) or dependent (D). An isolated rule

concerns only one blockchain, such as the deposit of tokens in S. In

contrast, a dependent rule relies on prior state changes on another

blockchain, such as the deposit of tokens in T , which depends on

tokens being deposited in S. Each rule is also pre�xed with SC, TC,

or CCTX to indicate whether it is a check on S, T , or both chains.‡.

Rule 1 (I). SC_ValidNativeTokenDeposit ensures a valid deposit

of native tokens by the user in S. This rule speci�es a relationship

between the transaction issued by the user, the event emitted by the

bridge contract, and the event emitted by the contract represent-

ing the wrapped version of the native currency. In more detail, the

checks are: (1) a bridge contract must emit a Deposit event; (2) there

is a non-reverting transaction that transfers the same amount of to-

kens natively in tx.value; (3) there is an event emitted by the token

contract asserting the creation of a wrapped version of the native

currency through a deposit event (4) the token contract provided is

indeed a version of the native currency of S; (5) the validity of the

token mappings (i.e., if users are trying to deposit tokens into T

using a di�erent token than what they are using in S); and �nally

(6) the order of the events emitted by each contract (events emitted

by token contracts precede events emitted by bridge contracts –

cf. Figure 2). In check (2) we do not check whether the transaction

targets a bridge contract, as it may target an intermediary protocol

contract (e.g., a bridge aggregator [66]), which in turn issues an

internal transaction to the bridge. We only verify that the deposit

‡The complete de�nition of all rules in the form of Horn Clauses is in https://gi
thub.com/AndreAugusto11/XChainWatcher/tree/4cc1f f1/cross-chain-rules-
validator/datalog/acceptance-rules.dl

event from the token contract must escrow tokens to a valid bridge

contract, asserted using bridge_controlled_address. This rule en-

sures that bridge contracts do not emit events asserting the deposit

of tokens if the corresponding value was not e�ectively sent to the

bridge – and the other way around. An attack that would have been

identi�ed using this rule is [58].
SC_ValidNativeTokenDeposit(...args...) :-

sc_token_deposited(tx_hash, bridge_evt_idx, _, _, dst_token,

src_token, dst_chain_id, amount),(1)

sc_deposit(tx_hash, token_evt_idx, sender, bridge_addr, amount),(3)

transaction(_, src_chain_id, tx_hash, _, sender, _, amount, 1, _),(2)

token_mapping(src_chain_id, dst_chain_id, src_token, dst_token),(5)

wrapped_native_token(src_chain_id, src_token),(4)

bridge_controlled_address(src_chain_id, bridge_addr),

bridge_evt_idx > token_evt_idx.(6)

Rule 2 (I). SC_ValidERC20TokenDeposit ensures that a valid deposit

of ERC20 tokens on the bridge is subject to a series of checks.

Speci�cally, this rule de�nes a bidirectional relationship ngB ,(⇐⇒

nbridge,(for ERC20 tokens. This means that whenever a state change

involves the transfer of ERC20 tokens, the bridge contract must

emit an event corresponding to the commitment described by the

initial event, and vice versa. The remaining checks presented in

Rule 1 are also enforced.

Failure to comply with Rule 1 or 2 suggests that a user has de-

posited tokens in the bridge without the bridge recognizing the

deposit. Conversely, if a token transfer event occurs, but no corre-

sponding event is emitted by the bridge contract (or value trans-

ferred in the transaction), it could signal an attack, where an attacker

bypasses the cross-chain logic and steals funds. Examples of attacks

that would have been identi�ed using this rule are [1, 2, 68]. Rules

1 and 2 guarantee that the �ow 1 – 4 (in blue) in Figure 2 is valid

for native and ERC20 tokens, respectively.
SC_ValidERC20TokenDeposit(...args...) :-

sc_token_deposited(tx_hash, bridge_event_index, _, _, dst_token,

src_token, dst_chain_id, amount),

erc20_transfer(tx_hash, src_chain_id, token_event_index, src_token,

_, bridge_addr, amount),

transaction(timestamp, src_chain_id, tx_hash, _, from, _, "0", 1, _),

token_mapping(src_chain_id, dst_chain_id, src_token, dst_token),

bridge_controlled_addr(src_chain_id, bridge_addr),

bridge_event_index > token_event_index.

Rule 3 (I). TC_ValidERC20TokenDeposit outputs valid token de-

posits in T . It captures the valid relation between the event emitted

by the bridge contract and the respective token contract in which

tokens are being unlocked/minted. Similarly to Rules 1 and 2, there

is a bidirectional relationship ngC ,) ⇐⇒ nbridge,) . In this instance,

tokens are always transferred in the context of a token contract

and never natively, thus, we do not need a rule for native token

https://github.com/AndreAugusto11/XChainWatcher/tree/4cc1ff1/cross-chain-rules-validator/datalog/acceptance-rules.dl
https://github.com/AndreAugusto11/XChainWatcher/tree/4cc1ff1/cross-chain-rules-validator/datalog/acceptance-rules.dl
https://github.com/AndreAugusto11/XChainWatcher/tree/4cc1ff1/cross-chain-rules-validator/datalog/acceptance-rules.dl

Middleware ’25, December 15–19, 2025, Nashville, TN, USA Augusto et al.

transfers. These events must match variables such as the sender,

bene�ciary, token, amount being transferred, and order of events.

This rule guarantees that �ow 5 – 9 (in green) in Figure 2 is valid

for any token that is deposited.

TC_ValidERC20TokenDeposit(...args...) :-

tc_token_deposited(tx_hash, bridge_event_index, deposit_id,

beneficiary, dst_token, amount),

erc20_transfer(tx_hash, chain_id, token_event_index, dst_token,

bridge_addr_2, beneficiary, amount),

transaction(_, chain_id, tx_hash, _, _, bridge_addr_1, "0", 1, _),

bridge_controlled_addr(chain_id, bridge_addr_1),

bridge_controlled_addr(chain_id, bridge_addr_2),

bridge_event_index > token_event_index.

Rule 4 (D). CCTX_ValidDeposit correlates events from both S and

T , cross-referencing token deposit events across these chains to

generate a list of valid cctxs. A valid cross-chain transaction for a

deposit requires that all parameters from events on both chains be

consistent (e.g., token amounts, sender, bene�ciary). Furthermore,

the causality between these events must be preserved (e.g., the trans-

action on T occurs after the transaction on S). Formally, there is a

dependency between the commitment on T and the commitment

on S, as well as the corresponding events: nbridge,) ⇐= nbridge,(.

Since this rule spans multiple blockchains, we must consider their

�nality times, which we enforce through the cctx_finality fact.

Failure to comply with this rule indicates, for example, that tokens

were moved on only one side of the bridge, such as in the Forged

Deposit Attack. This rule would have identi�ed cross-chain hacks

such as [3, 7, 21, 54, 57]. This rule guarantees that the entire �ow

of Figure 2 is valid.

CCTX_Deposit(...args...) :-

TC_ValidERC20TokenDeposit(...args...),

(

SC_ValidERC20TokenDeposit(...args...) ;

SC_ValidNativeTokenDeposit(...args...)

),

cctx_finality(src_chain_id, src_chain_finality),

token_mapping(src_chain_id, dst_chain_id, src_token, dst_token),

src_chain_ts + src_chain_finality <= dst_chain_ts.

We also model the token withdrawal process (T → S). Given

its similarity to the deposit of tokens, we do not provide a detailed

explanation of the related rules. Instead, we brie�y overview their

goal and de�nitions. Rule 5 (I). TC_ValidNativeTokenWithdrawal en-

sures that native token withdrawals on the target chain T are

valid. Speci�cally, a withdrawal must correspond to a Withdraw

event emitted by the bridge contract and a non-reverting trans-

action locking or burning funds. This rule is essentially the in-

verse of Rule 1, applying similar checks but in the withdrawal

context. Rule 5 would have identi�ed one attack [12]. Rule 6 (I).

TC_ValidERC20TokenWithdrawal applies to ERC20 tokenwithdrawals

onT , ensuring that anywithdrawal event emitted by the bridge con-

tract matches a corresponding Transfer event for the ERC20 tokens

being withdrawn. This rule is analogous to Rule 2, and would have

identi�ed one attack [55]. Rule 7 (I). SC_ValidERC20TokenWithdrawal

extends these checks to ERC20 withdrawals on the source chain

S, mirroring Rule 3’s checks in the reverse direction. Finally, Rule

8 (D). CCTX_ValidWithdrawal links withdrawal events on T and S,

verifying that all parameters across the chains match and enforcing

the correct causal relationship between events, similar to Rule 4

for deposits but in reverse. Rule 8 would have identi�ed multiple

attacks such as the Forged Withdrawal Attack [11, 31, 59–61].

While it is impossible to design generic rules that allow for

every existing bridge, we highlight that these rules can be easily

extended/�ne-tuned to �nd anomalies in other bridges.

4 Evaluation Methodology

We evaluate XChainWatcher using the cross-chain rules presented

in the last Section and detail the anomaly detection analysis in the

Ronin and Nomad bridges.

4.1 Data Sources

We selected two previously exploited bridges to analyze the ca-

pabilities of XChainWatcher and the cross-chain rules: the No-

mad bridge and the Ronin bridge. This selection allows us to

test XChainWatcher against bridges that have su�ered attacks

and whose architecture and security assumptions di�er (§4.1.2

and §4.1.3). We used Blockdaemon’s Universal API [19] to retrieve

blockchain data from the Ethereum mainnet. We implemented a

fallback to native RPC methods when the API could not provide the

necessary data (namely eth_getLogs and eth_getTransactionReceipt).

Additionally, we used these methods to extract data from Moon-

beam and Ronin blockchains that are not supported by the API.

We gathered addresses of interest, including various versions of de-

ployed contracts through documentation and analysis of the source

code of each bridge§.

4.1.1 Time Frames. Since we adopt an anomaly-based intrusion

detection approach (instead of signature-based), which tends to

have a high false positive rate [9], we choose to evaluate protocols

over smaller time frames. This approach enables us to analyze each

�agged anomaly individually, determining whether it results from

a modeling error or represents a previously unidenti�ed anomaly

in cross-chain bridges. Additionally, we want to study particular at-

tacks and their consequences – involving bigger timeframes would

involve signi�cantly more data, without necessarily providing ad-

ditional relevant insights. Table 1 lists the timestamps used for data

extraction. We select an interval of interest for both bridges that

includes the attack dates, denoted [C1; C2]. To avoid missing cross-

chain transactions occurring near the start and end of the interval

of interest, we incorporate additional intervals before and after that

interval ([C0, C1 [and]C2, C3]). This is relevant, for example, when

there is a deposit of tokens in S near C2 and the corresponding

transaction in T falls outside [C1; C2] (within]C2; C3]).

Table 1: Timeframes of Relevance for Data Extraction

C0 C1 C2 C3

Nomad Bridge –
Jan 11, 2022
(1641905876)

Dec 15, 2022
(1671062400)

Jul 31, 2024
(1722441775)

Ronin Bridge
Sep 13, 2021
(1631491200)

Jan 1, 2022
(1640995200)

Apr 28, 2022
(1651156446)

Jul 31, 2024
(1722441775)

Note: The interval of interest is [C1, C2]. The table presents dates and corresponding
Unix timestamps in parentheses. The Nomad and Ronin bridges were attacked on
Aug 2, 2022 and Mar 22, 2022, respectively.

§an example for the Nomad bridge is in https://github.com/AndreAugusto11/XChain
Watcher/tree/4cc1ff1/cross-chain-rules-validator/utils/nomad_env.py

https://github.com/AndreAugusto11/XChainWatcher/tree/4cc1ff1/cross-chain-rules-validator/utils/nomad_env.py
https://github.com/AndreAugusto11/XChainWatcher/tree/4cc1ff1/cross-chain-rules-validator/utils/nomad_env.py

XChainWatcher: Identifying Anomalies in Cross-Chain Bridges Middleware ’25, December 15–19, 2025, Nashville, TN, USA

To analyze the Nomad bridge, we extracted 20,551 transactions

from Ethereum, 16,737 transactions from Moonbeam, and 20,308

transactions from/to other blockchains, which were only used for

data analysis. In the additional period, we collected additional 1,774

transactions on Ethereum, from the latest versions of the deployed

bridge contracts. On the Ronin bridge, we extracted 72,820 trans-

actions from Ethereum and 75,102 from Ronin. In the additional

period, we collected additional 516,657 and 151,325 transactions

on Ethereum and Ronin, respectively. The data collection totaled

875,274 transactions across the studied bridges and blockchains.

4.1.2 Nomad Bridge. The Nomad bridge supports six blockchains.

We select the most active blockchains in terms of bridge usage:

Ethereum (S) and Moonbeam (T). The bridge operates based on

fraud proofs [48] – i.e., a set of relayers transfers state proofs be-

tween blockchains, and the watchers (which are o�-chain parties)

have a prede�ned time window to challenge the relayed data. The

data is optimistically accepted if no challenge is received within

this window. According to the project documentation, this time

window was set to 30 minutes [47] during the selected time frame.

The main bridge contract on Moonbeam was deployed on Janu-

ary 11, 2022 (C1). Since we start our analysis on this date, there

is no C0 (C0 = C1). The Nomad bridge was exploited on August 2,

2022, causing the bridge contracts to be paused until December 15,

2022. After this date, new transactions depositing tokens into the

bridge on Ethereum started being reissued. In]C2; C3] we only col-

lect withdrawals in Ethereum to match all the withdrawal requests

performed on Moonbeam in [C1; C2] that did not complete.

4.1.3 Ronin Bridge. The Ronin bridge connects Ethereum (S) and

the Ronin blockchain (T) and operates based on amulti-signature of

trusted validators [63] – i.e., deposits and withdrawals are executed

when a threshold of validators attests the validity of the action on

the origin blockchain (be it a lock or burn of tokens). The Ronin

bridgewas deployed in early 2021, and the attack occurred onMarch

22, 2022. The interval of interest spans approximately four months,

from the start of 2022 to April 28, 2022, when the main bridge

contract on Roninwas paused (0xe806...19fd). To capture incomplete

withdrawals on T before the attack, we analyze additional data on

Ethereum between]C2; C3]. This required scanning for events in the

newer version of the main bridge contract (0x6419...af08), which

was deployed on Ethereum after the attack on June 22, 2022. Finally,

based on the same logic as above, we also captured additional

deposits in Ethereum to capture cross-chain transactions initiated

in [C0; C1 [, whose deposit in Ronin is at the beginning of [C1; C2].

4.2 Experiment Setup

We present the performance analysis of XChainWatcher, using the

rules de�ned in Section 3.3, in �nding anomalies in the Nomad and

Ronin bridges. We divide the analysis into two main processes: 1)

decoding data and building the Datalog facts, and 2) running the

cross-chain rules to �nd anomalies. We computed the results on a

MacBook Pro with a 14-core M3 Max processor and 36GB of RAM.

4.2.1 Decoding and Extracting Data. Figure 4 illustrates the cumula-

tive distribution of transaction receipts processing time, di�erentiat-

ing between transfers of native and non-native funds in each bridge.

Table 2: Facts extraction latency (in seconds) per token type

Bridge Token type size min max avg median std

Ronin
native 468, 997 0.18 138.15 1.82 0.35 4.70

non-native 347, 580 3.81x10−6 3.65 0.28 0.23 0.26

Nomad
native 7, 656 0.16 8.78 0.89 0.78 0.46

non-native 51, 702 3.81x10−6 5.83 0.26 0.19 0.28

Additional metrics are provided in Table 2. Transactions transfer-

ring native tokens take longer because the transaction receipt is

not enough to get tx.value, thus requiring at least one extra time-

consuming RPC call. Furthermore, for native value transfers, some

transactions exhibited unusually high latencies (e.g., 6.5% exceeded

10 seconds, with one instance reaching 138.15 seconds). This delay

mainly results from the high latency of the debug_traceTransaction

method when making RPC requests to an Ethereum node [4]. Not

only is this a resource-intensive method, but multiple timeouts

caused various retries to retrieve the data. A more stable RPC node

connection – ideally hosting one alongside XChainWatcher – and

extending the timeout period for these resource-intensive meth-

ods would signi�cantly reduce the latency, dropping towards the

median (0.35 and 0.78 seconds, for Ronin and Nomad, respectively).

0.00

0.25

0.50

0.75

1.00

0.01 0.10 1.00 10.00 100.00

Transaction Receipt Processing Time (seconds)

C
u

m
u

la
ti

v
e

D
is

tr
ib

u
ti

o
n

Nomad (Native): N = 7,656

Ronin (Native): N = 468,997

Nomad (Non−Native): N = 51,702

Ronin (Non−Native): N = 347,580

Figure 4: Cumulative distribution of transaction receipt pro-

cessing time, re�ecting the latency of extracting all facts

from a transaction receipt for native and non-native token

transfers.

4.2.2 Executing the Cross-Chain Rules. Based on the data extracted,

we run the detection rules to identify anomalies. In addition to the

rules presented in Section 2.2, we implemented additional Datalog

rules to compare datasets and perform a more �ne-grained analysis

– 30 logical rules in total, available in the linked repository. The total

time consists of decoding the data and building the logic relations,

plus the execution of the detection rules. For Ronin, the model

processed more than 1,570,000 data tuples, producing results, on

average, in 3.58 seconds, while for Nomad, it analyzed more than

200,000 data tuples and generated results in 0.51 seconds¶.

4.2.3 Preliminary Findings of Cross-Chain Transactions. A byprod-

uct of our work is a dataset of cross-chain transactions captured

by rules 4 and 8 – i.e., data from two blockchains that are linkable

and represent valid cross-chain token transfers. Figure 5 presents

the latency associated with each cross-chain transaction identi�ed

¶detailed results can be found in https://github.com/AndreAugusto11/XChainWatche
r/tree/4cc1ff1/pro�ler_html/ronin.html

https://app.roninchain.com/tx/0xe806b36b9f337e8512dd806a5845451232a0da52c66f2921c4f7e222bd5e19fd
https://etherscan.io/address/0x64192819ac13ef72bf6b5ae239ac672b43a9af08
https://github.com/AndreAugusto11/XChainWatcher/tree/4cc1ff1/profiler_html/ronin.html
https://github.com/AndreAugusto11/XChainWatcher/tree/4cc1ff1/profiler_html/ronin.html

Middleware ’25, December 15–19, 2025, Nashville, TN, USA Augusto et al.

on the Nomad bridge (the Ronin bridge data was omitted for the

sake of space but provides the same insights).We call out two main

insights: 1) the dispersion of the latency of withdrawals is much

higher, which is due to the users being the ones responsible for

issuing the �nal transaction on the destination blockchain, contrary

to the deposit process (cf. Section 2.2) – the slowest cctx took more

than 5 months to complete (0x8afe...85bb in T and 0xdfaa...e3cb in

S); 2) all cctxs identi�ed by XChainWatcher start at the 30-minute

mark, which alignswith our expectations, as the Nomad fraud-proof

window is set for this period enforced by cctx_finality;

Finality Time (30 mins)

$0.000001

$0.000100

$0.010000

$1

$100

$10,000

$1,000,000

$100,000,000

$10,000,000,000

1,000
(16.67 minutes)

10,000
(2.78 hours)

100,000
(1.16 days)

1,000,000
(11.57 days)

10,000,000
(115.74 days)

CCTX Latency (seconds)

C
C

T
X

 V
a

lu
e

(U
S

D
)

Datalog Rule

CCTX_ValidWithdrawal

CCTX_ValidDeposit

CCTX Latency vs. CCTX Value Transferred (Nomad Bridge)

Figure 5: Correlation between the latency and value trans-

ferred in each cctx completed before the attack.

5 Anomaly Detection Results

Hereafter, we present the results of the anomaly detection rules.

Table 3 shows the number of detected anomalies and the reasons

behind each one. Section 5.1 discusses the anomalies found by

isolated rules (1-3 and 5-7), and Section 5.2 presents and discusses

the anomalies found by dependent rules (4 and 8).

5.1 Isolated Rules (Rules 1-3 and 5-7)

We start by analyzing the anomalies detected by rules 1-3 and 5-7.

5.1.1 Depositing onS. On the Nomad bridge, we detected 7,187 na-

tive value transfers (sc_deposit), 4,263 token deposits (erc20_transfer),

and 11,411 TokenDeposited events emitted by the bridge contract

(sc_token_deposited), which reveals that 39 value transfers did not

have a corresponding bridge event emitted. Further analysis showed

that 14 of these transactions are phishing attempts, characterized

by numerous events emitted by tokens marked on block explorers

as having a bad reputation (e.g., 0x88fc...864a). The remaining 25

transactions were single-event transactions that called the Transfer

function of multiple reputable ERC20 tokens, with a total of approx-

imately $93.86K sent to the bridge without triggering a cross-chain

transfer (e.g., 0x7e4e...8d88). On the Ronin bridge, we identi�ed 83

unmatched value transfers, in which 3 were related to phishing

attempts and 80 were also random transfers of value to the bridge

contract, which accounts for $113.00K (e.g., 0xe898...148d).

Finding 1. Attackers use low-value tokens, usually with the name of known
tokens, to interact with bridge contracts. These are phishing attacks, in which
users can be misled into using fake tokens to increase their trading value.
Finding 2. Over $206K worth of reputable ERC-20 tokens were sent directly
to bridge addresses without using protocol contracts. Despite warnings from
DeFi platforms about irreversible losses, this risky behavior appears common.

5.1.2 Depositing on T . We found no anomaly in the process of

depositing tokens in T .

5.1.3 Withdrawals on T . In the Nomad bridge, we identi�ed three

transactions accepted by the bridge where funds were withdrawn

to unintended Ethereum addresses due to being wrongly formatted

– they interacted with the Nomad bridge contract using a 32-byte

string instead of a 20-byte Ethereum address in the bene�ciary ad-

dress �eld. Therefore, this leads to unparseable data from our tool

(the parser is programmed to parse only valid 20-byte addresses).

We further discuss this anomaly in Section 5.2.2 Invalid Bene�-

ciary Addresses. Beyond these three anomalies, we discovered seven

transactions from a single address attempting to exploit the bridge

using di�erent inputs in the “token” �eld. The attacker �rst at-

tempted to provide the address of a malicious smart contract as a

token, probably to gain control over the bridge (0x56e6...afe1). In

the following 3 transactions, the attacker tried to withdraw funds

using a newly created contract that was not mapped to a token

in S (e.g., 0xebd6...bfa9 with token 0x2422...Aefb), in an attempt

to have tokens minted on S. Finally, in the latter two, the user

attempted to withdraw funds from a (fake) token contract called

Wrapped ETH (0xcbb4...b91F), to unlock real ETH on Ethereum

(e.g., 0x7cd7...03f1). Fortunately, these transactions reverted and

all attempts failed. On the Ronin bridge, we identi�ed two events

emitted by the bridge contract without a match on erc20_transfer

or sc_withdrawal. These were trying to withdraw unmapped tokens

from T to S, and therefore no tokens were moved, even though

the bridge emitted aWithdraw event.

Finding 3. Attackers interact with bridge contracts providing fake tokens with
symbols or names equal to reputable tokens, in an attempt to deceive the bridge
to unlock real funds on the destination blockchain.

5.1.4 Withdrawals on S. The analysis highlights 3 events where

funds were transferred from a bridge address without emitting cor-

responding bridge events: 2 in Nomad and 1 in the Ronin bridge.

These instances were linked to phishing attempts and marked ac-

cordingly in block explorers (e.g., 0x3587...39ca and 0x78b6...2766).

5.2 Dependent Rules (Rules 4 and 8)

Now, we analyze the results of the Dependent rules (4 and 8). Recall

from Section 3.3 that Rules 4 and 8 capture linked state changes

across blockchains – i.e., for a record to be accepted by these rules,

there must be a set of events on both sides of the bridge that are

matched. In addition, cctx_finality and token_mapping must be

guaranteed. For example, there may be a valid deposit of tokens

in S captured by SC_ValidERC20ValidDeposit. However, no corre-

spondence is found on T , which signals that the protocol is not

working as intended (e.g., no availability). In this case, the record

of SC_ValidERC20ValidDeposit is said to be “unmatched”, since it

did not match any event on the other blockchain that complies

with Rule 4 CCTX_Deposit. Table 4 dissects the anomalies detected

in Table 3 for CCTX_ValidDeposit and CCTX_ValidWithdrawal. As an

example, Table 3 shows that 19 anomalies have been detected using

CCTX_ValidDeposit. Table 4 clari�es that 6 of these anomalies are

deposits of tokens on S that did not have a correspondence on T ,

and 13 are the opposite – deposits of tokens on T that did not have

any prior correspondence on S.

https://moonscan.io/tx/0x8afeeea543a4516c279bff2748b3bbede9cc916cc535524d62433368119a85bb
https://etherscan.io/tx/0xdfaaeecb7f0dda43f02966997039b2b75169a3faa3ae5063d74a348ceb98e3cb
https://etherscan.io/tx/0x88fc3c5e05aae4d898fc92eb93c64ee71dcbbb2a4e5e3715f994adcbce72864a
https://etherscan.io/tx/0x7e4e62f98d4c3194e5b3fbef79cf5fda3330287d489dffd6252634f3f6208d88
https://etherscan.io/tx/0xe898f40fa2fe5c8d89df3a2e4f2496bd11daceedce1523afabfbf144b32d148d
https://moonscan.io/tx/0x56e6c554169c0b6e99d744416c04c11926c3a867ae2ffd3125aa5ba0eaf6afe1
https://moonscan.io/tx/0xebd68eaaa20de3066cf3f53c26777c38d62251ca13c9d6e0d3a991e011babfa9
https://moonscan.io/address/0x24229bf80425c27DB54fB3E4340251Dd5C16Aefb
https://moonscan.io/address/0xcbb4825CF7Cf72a88d1BDdd494c1A251CF21b91F
https://moonscan.io/tx/0x7cd7d1a4feceeaa14b6c347488229707fa710daeab2e1e5d707d43a720a703f1
https://etherscan.io/tx/0x358788e319dcd2a0afd03102cc944ffda0bf6a68abbd2d84734affcb07d739ca
https://etherscan.io/tx/0x78b643a338afa5bd56aa2eeccd5c2381a5e5a921986a6ccf7b678958b7d62766

XChainWatcher: Identifying Anomalies in Cross-Chain Bridges Middleware ’25, December 15–19, 2025, Nashville, TN, USA

Table 3: Anomaly detection results, within [C1; C2], using the cross-chain rules de�ned in Section 3.3

Nomad Bridge Ronin Bridge

Logical Rule (cf. Section 3.3) Captured Records Anomalies Detected Captured Records Anomalies Detected

1. SC_ValidNativeTokenDeposit 7,187 0 38,462 0
2. SC_ValidERC20TokenDeposit 4,223 39 (14 phishing attempts + 25 transfers to bridge) 5527 83 (3 phishing attempts + 80 transfers to bridge)

Total Value in Transfers to Bridge $93.86K $113.00K
3. TC_ValidERC20TokenDeposit 11,417 0 43,990 0

4. CCTX_ValidDeposit 11,404 19* 43,979 10*

5. TC_ValidNativeTokenWithdrawal 464 0 0 0
6. TC_ValidERC20TokenWithdrawal 4,846 10 (3 unparseable addresses + 7 attack attempts) 35,413 0
7. SC_ValidERC20TokenWithdrawal 4,869 2 (2 phishing attempts) 25,470 1 (1 phishing attempt)

8. CCTX_ValidWithdrawal 4,482 729* 22,830 12,546*

Recall that the rules capture expected behavior. Therefore, the anomalies presented are the result of comparing each event emitted by each contract, with being captured or
not by the corresponding rule that should have captured it.

* Table 4 presents a detailed explanation of these anomalies. Each anomaly is categorized based on the underlying reasons that led to its occurrence.

5.2.1 Cross-Chain Finality Violations. One of the most intriguing

�ndings in this paper is the identi�cation of 37 violations of cross-

chain rules – 5 on the Nomad bridge and 32 on the Ronin bridge

– which were accepted by both bridges at the time, transferring a

total value of $1.3K and $667K, respectively. In the Nomad bridge,

5 instances from SC_ValidERC20TokenDeposit and 5 instances from

TC_ValidERC20TokenDeposit matched each other but were not cap-

tured by CCTX_ValidDeposit – i.e., even though there were valid

commitments on both sides of the bridge, XChainWatcher did not

consider this a valid deposit. Similarly, on the Ronin bridge, 10

events were emitted on each side that did not comply with a valid

deposit (failed CCTX_ValidDeposit), and 22 events on each side that

did not comply with a valid withdrawal (CCTX_ValidWithdrawal).

Figure 6 for the Nomad bridge demonstrates why these events

were not captured by CCTX_ValidDeposit and CCTX_ValidWithdrawal.

When depositing tokens using Nomad, in the fastest cctx, the time

di�erence between the initial deposit in S (0xeb06...0fea) and the

corresponding deposit on T (0x2cdc...ef0c) was as short as 87 sec-

onds, approximately 20 times less than the required fraud-proof

window. This �nding is particularly concerning because it implies

that the security mechanisms of the bridge were bypassed. Not only

did it fail to comply with the fraud-proof time window, but it was

very close to the �nality period of the source chain (Ethereum) at

the time of the attack – before “The Merge” [28] was around 78

seconds. On the Ronin bridge, the fastest deposit took 66 seconds

(0x4688...cdf3 and 0xc299...279d), which was less than Ethereum’s

�nality period. However, the fastest withdrawal took 11 seconds

(11 < 45, where 45 seconds was Ronin’s �nality period at the

time). These practices pose a considerable risk to cctx validation,

creating multiple potential attack vectors, particularly for smaller

blockchains or those more susceptible to forks.

Finding 4.We identi�ed 37 instances where the protocol-de�ned �nality was
not satis�ed. In Nomad, this was due to smart contract enforcement issues of
the fraud-proof window; in Ronin, o�-chain validators failed to enforce the
source chain’s �nality period.

5.2.2 Invalid Beneficiary Addresses. In Nomad, users must specify

a bene�ciary address when transferring funds. To accommodate

multiple destination blockchains, Nomad uses a 32-byte �eld for

the bene�ciary address instead of a 20-byte address, since some

Fraud Proof Window Time (30 mins)

5 invalid CCTXs accepted

by the Nomad Bridge

$0.0001

$0.0100

$1

$100

$10,000

$1,000,000

$100,000,000

100 1,000 10,000
(2.78 hours)

100,000
(1.16 days)

1,000,000
(11.57 days)

10,000,000
(115.74 days)

CCTX Latency (seconds)

C
C

T
X

 V
a
lu

e
(U

S
D

)

Unmatched SC_ValidERC20TokenDeposit CCTX_ValidDeposit

Fraud Proof Window Violation (Deposits in the Nomad Bridge)

Figure 6: Cross-chain �nality violation in Nomad due to non-

compliancewith the fraud-proof timewindow–we identi�ed

5 unmatched events on both SC_ValidERC20TokenDeposit and

TC_ValidERC20TokenDeposit not captured by CCTX_ValidDeposit.

blockchains (e.g., Solana) require 32 bytes. When transferring funds

to an EVM-based blockchain, users must left-pad the address with

zeros, and the bridge contract extracts the last 20 bytes.

We identi�ed an anomaly when a user submitted a transaction

(0x7941...1393) inS that deposited 10 DAI into a bene�ciary address

that was right padded instead of left-padded. The contract extracted

the last 20 bytes (mainly 0s) and expected a left-padded address;

our tool, which accepted both left and right padding, parsed the

address “correctly”, i.e., without the padding. The user provided

an incorrect input. However, we could not determine whether the

error resulted from user misuse or a malfunction in the bridge’s UI.

We also detected three anomalies when withdrawing funds in

S (e.g., 0xfcc6...7c5f). These involved events we could not decode

earlier (in Section 5.1.3) because the destination Ethereum address

is represented as an unpadded 32-byte string, and therefore invalid.

The bridge contract simply extracted the last 20 bytes, whereas

our tool throws an error. Interestingly, none of the destination

addresses extracted by the bridge contract showed activity after

these transactions, revealing that the addresses computed were not

the ones intended by the users – i.e., users mistakenly provided

a wrongly formatted address and lost funds. While these 4 cases

can be considered false positives from our tool – i.e., not protocol

anomalies – they still reveal genuine anomalies in user behavior.

https://etherscan.io/tx/0xeb06aa1e251555ac1e4f58b04987d37f87cf407266a5b528f6de235a45590fea
https://moonscan.io/tx/0x2cdc80f24ae1c65b88d956c5709514269c76a911002fca7d1efc7cb87e84ef0c
https://etherscan.io/tx/0x468868506b014b5729f9926ff8bce17823842747828d9a82b23767a5b408cdf3
https://app.roninchain.com/tx/0xc2997f0a2e14c7db69cafbc6e58839299d8130a4c3310e49dbf5fb62f707279d
https://etherscan.io/tx/0x794135750db90cf346b08dc3de668cb19ea69f59bc59e7f158759508ed9a1393
https://moonscan.io/tx/0xfcc6d0775cb1cbb2dc4654b563a9b9881b5972e1dd213b0e8b7535bd5b8e7c5f

Middleware ’25, December 15–19, 2025, Nashville, TN, USA Augusto et al.

Table 4: Identi�cation of the origin of all anomalies identi�ed by CCTX_ValidDeposit and CCTX_ValidWithdrawal within [C0; C3]

Nomad Bridge Ronin Bridge

Logical Rule (cf. Section 3.3) Captured Unmatched Anomaly Explanation Captured Unmatched Anomaly Explanation

1. SC_ValidNativeTokenDeposit 7,187 0 38,462 10 10 do not comply with cctx_finality

2. SC_ValidERC20TokenDeposit 4,223 6
5 do not comply with cctx_finality

5,527 0
1 contains an invalid bene�ciary address (FP)

3. TC_ValidERC20TokenDeposit 11,417 13
5 do not comply with cctx_finality

43,990 10 10 do not comply with cctx_finality7 do not comply with token_mapping

1 contains an invalid bene�ciary address (FP)

5. TC_ValidNativeTokenWithdrawal 464 238 238 events do not have correspondence on S 0 0

6. TC_ValidERC20TokenWithdrawal 4,846 491 491 events do not have correspondence on S 35,411 11,814
22 do not comply with cctx_finality

11,792 events do not have correspondence on S

7. SC_ValidERC20TokenWithdrawal 4,869 387
3 contains an invalid bene�ciary address (FP)

25,470 732
708 matched events on T before C0 (FP)1

2 do not comply with token_mapping 22 do not comply with cctx_finality

382 events do not have correspondence on T 2 events do not have correspondence on T

Example: there were 11,417 records captured by TC_ValidERC20TokenDeposit (Rule 3), however, only 11,404 were matched by a transaction on S (counted in
CCTX_ValidDeposit – cf. Table 3), which indicates there are 13 events emitted by the bridge contract on T without a corresponding action on S, which is an anomaly.
Note: we mark in red the events that caused loss of funds to the protocol (i.e., attacks identi�ed by XChainWatcher)

1 false positives (FP) due to the impossibility of extracting data in the Ronin blockchain (T) before C0 , which caused the events to not being matched

Finding 5. Protocols do not safeguard users against incorrectly formatted inputs,
as bridge contracts are often blockchain-agnostic and may lack validation.

5.2.3 Invalid Token Mappings. We identi�ed 9 anomalies in Rules

4 and 8 due to records not complying with the token_mapping pred-

icate, 7 when depositing tokens in T using Nomad, and 2 when

withdrawing tokens in S. According to Nomad bridge documenta-

tion [46], anyone can deploy a new token on Moonbeam and ask

the bridge to link it to the contract representing the same token on

Ethereum. We found 5 transactions involving the Nomad operator

deploying new ERC20 tokens on Moonbeam. One of the transac-

tions 0x7fe7...bf27 deployed a new token contract on Moonbeam

mapped to a token contract in S called WRAPPED GLMR (e.g.,

0x92C3...7178). This token is the native token of the Moonbeam

blockchain, which already exists in S and is already mapped by

the bridge (0xba8d...A663) – and therefore, this mapping should

not have been validated by the bridge operator. Our hypothesis

is that these may be users creating fake tokens with the name of

real tokens (e.g., WRAPPED GLMR), in an attempt to later on with-

draw real funds on Ethereum. This vulnerability was the cause of

an attack on the Thorchain bridge in 2022 [71], where attackers

created a fake contract calledWrapped Ether and tricked the bridge

contract into accepting the withdrawal of real Ether. The 4 subse-

quent transactions tried depositing di�erent amounts of di�erent

tokens to multiple addresses in T . Strangely, no activity was found

on S in the mapped contracts – i.e., the tokens were never used

by anyone previously (e.g., 0xda3f...5c72). This activity is unusual,

especially since transactions mapping tokens across blockchains

were issued by the Nomad operator, suggesting a lack of contract

veri�cation between blockchains by the operator.

Finding 6. The Nomad bridge operator linked fake or duplicate tokens between
Moonbeam and Ethereum, including an already existingmapping forWRAPPED
GLMR. This highlights a lack of rigorous token contract veri�cation, leaving
the protocol vulnerable to spoo�ng attacks.

5.2.4 Withdrawals in T with no Correspondence in S. We found

729 (= 238 + 491) withdrawals on T , in which no corresponding

transaction was found in S. A �rst hypothesis to explain the high

0

50

100

150

200

250

300

2022−02 2022−04 2022−06 2022−08
Date

N
u

m
b

er
 o

f
E

v
en

ts

Transferred Value (USD)

$1M

$5M

$10M

$15M

$20M

Matched

Unmatched

Matched vs. Unmatched Withdrawal Events in T (Nomad Bridge)

Figure 7:Withdrawal events emitted onT matched (N = 4,482)

or unmatched (N = 828) with another event on S (through

CCTX_ValidWithdrawal) in the Nomad bridge.

number of anomalies is whether these values are a consequence of

the attack, i.e., multiple users tried (unsuccessfully) to withdraw

funds as the bridge was paused. To test this hypothesis, Figure 7

shows the comparison between the matched and unmatched with-

drawal events emitted on T on the Nomad bridge (the results for

the Ronin bridge are similar but not shown for the sake of space).

As expected, close to when the hack happened in August 2022, there

were many unmatched withdrawal events emitted in T – there

were 313 events trying to withdraw $24.7M worth of tokens in the

24 hours prior to the attack. In Ronin, we identi�ed 468 events with-

drawing $24.3M in the same period. Not surprisingly, in the event

of an attack, it is di�cult to withdraw tokens, due to the bridge

being paused after the attack. However, it is also noticeable that

throughout the entire period in which the bridge was functioning,

there were always multiple low-value unmatched events, following

the same trend as the matched ones. These are funds escrowed in

T in which the corresponding tokens were never unlocked on S

within [C1; C2] – and the bridge still holds the escrowed assets in T .

A manual analysis of these anomalies revealed that many of the

destination addresses (bene�ciaries on Ethereum) targeted by these

events on T had no funds or had not made any transactions to

date. Table 5 illustrates these �ndings, separating metrics extracted

before and after (i.e., as a consequence of) the attack. Our analysis

https://moonscan.io/tx/0x7fe7e6ea905831d135514fd665d9867349b24134f0dd1217fb7d55a88204bf27
https://etherscan.io/address/0x92C3A05B5CC7613E8A461968AD8616BAE3C47178
https://etherscan.io/address/0xba8d75BAcCC4d5c4bD814FDe69267213052EA663
https://moonscan.io/tx/0xda3f048e50e8e4df1d5726fb3ea6839e95ed15e49b4d7daf3c91a5b44b3f5c72

XChainWatcher: Identifying Anomalies in Cross-Chain Bridges Middleware ’25, December 15–19, 2025, Nashville, TN, USA

Table 5: Analysis of the balance of destination addresses on Ethereum targeted by withdrawals on T

Nomad Bridge Ronin Bridge

Before Attack After Attack Total Before Attack After Attack Total

Unmatched withdrawal events in T 541 188 729 11,574 220 11,794
Addresses with balance 0 at withdrawal date 95 26 121 5,988 66 6,054
Addresses with balance 0 at withdrawal date and still today 55 17 72 5,212 49 5,261
Addresses with balance < 0.0011 at withdrawal date 185 46 231 7,381 88 7,469

Total Value (in million of USD) $0.34M $3.27M 1 $3.62M 1 $1.09M $0.09M $1.18M
Addresses that tried withdrawing more than once 34 23 58 932 21 956
Addresses that tried withdrawing exactly once 460 136 592 9,490 176 9,657

1 A single address is responsible for $3M.

revealed that, spanning both bridges, 6,175 addresses on Ethereum

(≈ 49%) had a zero balance at the time of the withdrawal event, in

which 5,333 (≈ 43%) are still holding a zero balance at the time of

writing. As a result, users cannot withdraw their assets due to not

having funds to cover gas fees. According to the Ronin documen-

tation, users should have a minimum of 0.0011 ETH to cover gas

fees for issuing a transaction on Ethereum to withdraw funds [64].

7,700 addresses (≈ 61) did not have su�cient funds to meet this

requirement. The total value of unwithdrawn funds amounts to

$4.8M, in which a single transaction attempted to withdraw $3M.

Excluding this outlier, the amount not withdrawn is $1.8M. Figure 8

shows the distribution of balances of bene�ciary addresses with

non-zero balances when the withdrawal event was triggered in T .

To assess the impact of the attack on these values, we divided

the analysis into pre-attack and post-attack periods. The attack

had no observed in�uence. The number of data points before the

attack is much higher (≈97%), suggesting that this is a common

practice when the bridge is operating normally. Interestingly, even

users with many funds, including those with over 10 or 200 ETH,

were involved in this behavior (cf. Figure 8). Another �nding is

the di�erence between addresses withdrawing once and those try-

ing multiple times. Some repeatedly attempted withdrawals, while

others gave up – likely due to lost funds, inexperience, or poor

UI/UX [15]. The Pearson correlation between the number of with-

drawal attempts and the amount withdrawn is negligible (−0.017)

showing no meaningful relationship between both variables.

Finding 7.We found 729 cases where users tried to withdraw funds from the
destination blockchain (T), but the bridge never completed the corresponding
transaction on the source blockchain (S). This left up to $4.8M stuck in the
bridge.Whilemany of these happened around the time of the attack, themajority
occurred during normal use. Moreover, nearly half of the users didn’t have
enough ETH to pay gas fees on the destination blockchain, preventing them
from claiming their funds, and pointing to serious usability issues.

5.2.5 Withdrawals in S with no Correspondence in T . Both bridges

analyzed in this paper su�ered a Forged Withdrawal Attack,

where funds were stolen from S (Ethereum). As shown in Table 4,

382 unmatched events, under SC_ValidERC20TokenWithdrawal, were

identi�ed because they were not matched on T on the Nomad

bridge. Analyzing the timestamp of the transactions in which these

events were emitted, we conclude that all 382 events were part of

the attack, involving 382 transactions and 279 unique addresses.

These totaled $159, 577, 598 of stolen funds. These events had only

14 unique withdrawal IDs, indicating that attackers copy-pasted

data from other transactions, exploiting the bridge’s acceptance of

0.0011 ETH

1

10

100

1000

10000

0.00000010.000001 0.00001 0.00010 0.00100 0.01000 0.10000 1 10 100 1,000

Balance (Ether)

F
re

q
u

en
cy

(a) distribution of balances of non−zero destination addresses in withdrawals before attack

0.0011 ETH

1

10

100

0.00000010.000001 0.00001 0.00010 0.00100 0.01000 0.10000 1 10 100 1,000

Balance (Ether)

F
re

q
u

en
cy

Bridge Nomad: (a) N=446 | (b) N=162 Ronin: (a) N=5608 | (b) N=154

(b) distribution of balances of non−zero destination addresses in withdrawals after attack

Figure 8: Distribution of the balance of all addresses to which

funds are being sent in S when withdrawing funds from T .

any data as valid proof [56]. Our analysis identi�ed 279 addresses

that exploited the protocol, the majority of which were contracts

deployed in bulk to scatter funds across multiple addresses. We

traced the transactions and identi�ed 45 unique EOAs responsible

for deploying these contracts. We cross-referenced our �ndings

with data from Peckshield, a reputable security �rm, which provided

a list of addresses involved in exploiting the bridge at the time of

the attack [50]. We identi�ed 9 more EOAs than Peckshield in the

same blockchains (36 EOAs). We also found a dataset related to

the attack on GitHub [45], which includes 246 transactions, less

136 than ours. To eliminate the possibility of false positives, we

manually checked all anomalies not identi�ed by the other datasets.

In the Ronin data, we identi�ed 710 anomalies related to events

emitted on S without correspondence on T . Unfortunately, due

to rate limits for extracting data from the Ronin blockchain, we

could not decrease C0 to the date on which the contracts were de-

ployed. This caused our tool to identify anomalies in transactions

that would match events emitted well before the period of analy-

sis. We captured over 500k additional transactions in [C0; C1 [, more

than 3.5 months taking into account the maximum latency of with-

drawals in the Ronin bridge (cf. Figure 5), of around 3 months, and

added some margin, but it did not prove to be enough. To exclude

withdrawals before C0, we based ourselves on the withdrawal_id –

a counter incremented for each withdrawal event emitted in the

Middleware ’25, December 15–19, 2025, Nashville, TN, USA Augusto et al.

bridge contract. Of the unmatched 710 events, 708 had a withdrawal

ID less than withdrawal_id of the �rst event included in [C0; C1 [, sug-

gesting that they were emitted before our collection data interval.

We are left with 2 unmatched withdrawal events in the selected in-

terval. These events were emitted by transactions moving $565.64M

issued by the same address (0x098b...2f96) on Mar 23, 2022, 13:29

(0xc28f...d0b7) and 13:31 (0xed2c...9b08). These are the transactions

identi�ed in the industry as pertaining to the Ronin bridge hack.

When comparing the results, no false negatives were found.

Finding 8. XChainWatcher successfully identi�ed malicious transactions in the
Nomad and Ronin bridges. The Nomad analysis overcame previous analyses by
uncovering 9 additional attacker EOAs not reported by security �rms and 136
more transactions than the largest existing public dataset of the Nomad hack.

6 Discussion and Future Work

We present the discussion and limitations of our work.

Rule modeling. Rule modeling requires exploring the semantics

of a bridge protocol, its data model, and associated contracts. While

bridges can be categorized into several classes, we analyzed bridges

that connect Ethereum to sidechains. This paper does not aim to

propose a universal cross-chain model applicable to all protocols.

Instead, we empirically demonstrate that logic-driven analysis is ef-

fective for anomaly detection on bridges. Rules are created based on

the current behavior of the protocol. If event signatures are changed,

XChainWatcher needs to be updated by the bridge operator.

Timeframes and Selected Bridges.We focus on (1) short peri-

ods and (2) timeframes with veri�ed attacks. We modelled expected

behavior rather than relying on signature-based detection. Since

there are no prior anomaly datasets, manually analyzing large vol-

umes of anomalies would be impractical. We selected the Ronin

bridge as it is the most pro�table cross-chain attack to date, and the

Nomad bridge because of the high number of attacking transactions.

Extensibility of XChainWatcher. The framework is extensible

and easy to use. To add support for other protocols, users must (1)

analyze the protocol and add protocol-speci�c cross-chain rules,

(2) extract transaction receipts for analysis, (3) create an Event

Data Decoder and Extractor that decodes event data and creates

logical relations, and (4) populate a con�guration �le (cf. Figure 3)

with RCP connection URLs, bridge contract addresses, and tokens

mappings. XChainWatcher is agnostic to state validation logic –

whether Trusted Third Parties (Ronin) or Native State Veri�cation

(Nomad) [8] – since it relies solely on contract events.

Event-based Analysis. We use event-based analysis because

protocols involve more transactions than asset transfers. Analyzing

all transactions, including those unrelated to actual state changes,

would be ine�cient and resource-intensive. Moreover, capturing

all transactions that target bridge contracts is not enough to extract

the relevant data, as users can issue transactions to intermediary

protocols [66] that make internal transaction calls to bridge con-

tracts. When events are not emitted (e.g., due to a bug in a contract

or even a malicious upgrade in amulti-transaction attack), our

tool detects this behavior as abnormal because a state change will

be missing in the cross-chain �ow (cf. Section 2.2).

Future Work. Future work is threefold: (1) extend analysis pe-

riods to detect anomalies, such as salami slicing attacks [17], (2)

support additional bridges, (3) using the clean and labeled dataset to

train anomaly detection models for large-scale cross-chain analysis,

and (4) extend the analysis to non-EVM-based blockchains.

7 Related Work

Despite the extensive research corpus on interoperability [15, 16,

70], there is little related work available on monitoring and protect-

ing interoperability solutions. The concept of a cross-chain model

and the de�nition of cross-chain rules to identify misbehavior was

introduced in Hephaestus [14]. XScope [71] uses three static rules

to detect three types of attacks (signature-based detection) on cross-

chain bridges, speci�cally targeting smaller chains with limited

datasets. XScope’s detection capabilities are limited to three spe-

ci�c anomalies, and it focuses exclusively on token deposits (not

covering the withdrawal process – equivalent to our rules 1, 2, 3,

and 4). Unfortunately, XScope is not open-source, limiting a deeper

empirical comparison. In the industry, Hyperlane [36], Range [53],

and Layer Zero’s Precrime [39] provide analysis tools for bridges.

However, these are proprietary and lack technical documentation,

evaluation, and datasets, making it challenging to compare directly

with our work. Finally, while post-attack analyses typically trace

the �ow of funds using tools such as Chainalysis [20], our tool

enables the retrieval of more data by applying cross-chain rules.

8 Conclusion

This paper proposes amonitoring framework for cross-chain bridges

powered by a cross-chain model supported by a Datalog engine.

We uncover signi�cant attacks within cross-chain bridges, such as 1)

transactions accepted in one chain before the �nality time of the orig-

inal one elapsed, breaking the safety of the bridge protocol; 2) users

trying to exploit a protocol through the creation of fake versions of

wrapped Ether to withdraw real ether on the Ethereum blockchain,

breaking safety; 3) bridge contract implementations handling un-

expected inputs di�erently across chains, hindering a good UX and

leading to the loss of user funds. In addition, we identify every trans-

action involved in previous hacks on the bridges studied. Although

only 49 unique externally owned accounts (EOAs) exploited Nomad,

there were 380 exploit events, with each address deploying multiple

exploit contracts to obscure the �ow of funds. Finally, we highlight

a critical user awareness gap – many users struggle to withdraw

funds due to the highly manual nature of the process, contrast-

ing with the more streamlined deposit process managed by bridge

operators. This user error has led to over $4.8M in unwithdrawn

funds due to users mistakenly sending funds to addresses they do

not control. We present the �rst empirical analysis of cross-chain

bridge vulnerabilities and release an open-source dataset.

Acknowledgments

This work was �nancially supported by Project Blockchain.PT -

Decentralize Portugal with Blockchain Agenda (Project no 51), WP

7: Interoperability, with reference C632734434-00467077, funded by

the Portuguese Recovery and Resilience Program (PRR), The Por-

tuguese Republic and The European Union (EU) under the frame-

work of Next Generation EU Program. This work was also sup-

ported by national funds through Fundação para a Ciência e a Tec-

nologia (FCT)with references UID/50021/2025 e UID/PRR/50021/2025.

https://etherscan.io/address/0x098b716b8aaf21512996dc57eb0615e2383e2f96
https://etherscan.io/tx/0xc28fad5e8d5e0ce6a2eaf67b6687be5d58113e16be590824d6cfa1a94467d0b7
https://etherscan.io/tx/0xed2c72ef1a552ddaec6dd1f5cddf0b59a8f37f82bdda5257d9c7c37db7bb9b08

XChainWatcher: Identifying Anomalies in Cross-Chain Bridges Middleware ’25, December 15–19, 2025, Nashville, TN, USA

References
[1] 2022. Multichain Contract Vulnerability Post Mortem | by Multichain (Previously

Anyswap) | Medium. https://medium.com/multichainorg/multichain-contract-
vulnerability-post-mortem-d37bfab237c8

[2] 2022. Rekt - Qubit Finance. https://rekt.news/qubit-rekt/
[3] 2022. Rekt - Wormhole. https://rekt.news/wormhole-rekt/
[4] 2024. JSON-RPC API | ethereum.org. https://ethereum.org/en/developers/docs/

apis/json-rpc/
[5] Raja Amir. 2023. Etherscan Information Center | Understanding and Ethereum

Transaction. https://info.etherscan.com/understanding-an-ethereum-
transaction/

[6] Andreas M Antonopoulos and Gavin Wood. 2018. Mastering Ethereum: building
smart contracts and dapps. O’Reilly Media.

[7] Multichain (Previously Anyswap). 2021. Anyswap Multichain Router V3 Exploit
Statement. https://medium.com/multichainorg/anyswap-multichain-router-v3-
exploit-statement-6833f1b7e6fb

[8] A. Augusto, R. Belchior, M. Correia, A. Vasconcelos, L. Zhang, and T. Hardjono.
2024. SoK: Security and Privacy of Blockchain Interoperability. In 2024 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos,
CA, USA, 234–234. https://doi.org/10.1109/SP54263.2024.00182

[9] Rebecca Gurley Bace, Peter Mell, et al. 2001. Intrusion detection systems. (2001).
[10] Base. 2025. Base. https://base.org
[11] Rob Behnke. 2021. Explained: The pNetwork Hack. https://www.halborn.com/

blog/post/explained-the-pnetwork-hack-september-2021
[12] Rob Behnke. 2021. Explained: The THORChain Hack (July 2021). https:

//www.halborn.com/blog/post/explained-the-thorchain-hack-july-2021
[13] Rafael Belchior, Luke Riley, Thomas Hardjono, André Vasconcelos, and Miguel

Correia. 2023. Do You Need a Distributed Ledger Technology Interoperability
Solution? Distrib. Ledger Technol. 2, 1, Article 1 (March 2023), 37 pages. https:
//doi.org/10.1145/3564532

[14] Rafael Belchior, Peter Somogyvari, Jonas Pfannschmidt, André Vasconcelos,
and Miguel Correia. 2024. Hephaestus: Modeling, Analysis, and Performance
Evaluation of Cross-Chain Transactions. IEEE Transactions on Reliability 73, 2
(2024), 1132–1146. https://doi.org/10.1109/TR.2023.3336246

[15] Rafael Belchior, Jan Süßenguth, Qi Feng, Thomas Hardjono, André Vasconcelos,
andMiguel Correia. 2024. A brief history of blockchain interoperability. Commun.
ACM 67, 10 (2024), 62–69.

[16] Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia. 2021.
A Survey on Blockchain Interoperability: Past, Present, and Future Trends. ACM
Comput. Surv. 54, 8, Article 168 (oct 2021), 41 pages. https://doi.org/10.1145/34
71140

[17] Rekha Bhowmik. 2008. Data Mining Techniques in Fraud Detection. Journal of
Digital Forensics, Security and Law 3, 2 (2008), 35–53. https://doi.org/10.15394/j
dfsl.2008.1040

[18] Tom Blackstone. 2023. LayerZero raises $120M to expand cross-chain messaging
e�orts. https://cointelegraph.com/news/layerzero-raises-120m-to-expand-
cross-chain-messaging-efforts

[19] Blockdaemon. 2024. Blockdaemon REST API. https://docs.blockdaemon.com/r
eference/introduction-txapi

[20] Chainalysis. 2025. Chainalysis. https://www.chainalysis.com/
[21] ChainSwap. 2021. ChainSwap Exploit 11 July 2021 Post-Mortem. https:

//chain-swap.medium.com/chainswap-exploit-11-july-2021-post-mortem-
6e4e346e5a32

[22] Vishal Chawla. 2023. Union Labs raises $4 million to develop cross-chain bridge
enabled by ZK proofs. https://www.theblock.co/post/263310/union-labs-raises-
4-million-to-develop-cross-chain-bridge-enabled-by-zk-proofs

[23] James Cirrone. 2023. $225 Million Raised in Wormhole Token Sales. https:
//www.coindesk.com/business/2023/11/29/blockchain-messaging-platform-
wormhole-raises-225m-at-25b-valuation

[24] James Cirrone. 2023. Crypto funding: A $72M week for cross-chain oracles, NFT
merchandise. https://blockworks.co/news/funding-cross-chain-oracle-nft-
merchandise

[25] Li Duan, Yangyang Sun, Wei Ni, Weiping Ding, Jiqiang Liu, and Wei Wang. 2023.
Attacks Against Cross-Chain Systems and Defense Approaches: A Contemporary
Survey. IEEE/CAA Journal of Automatica Sinica 10, 8 (2023), 1643–1663.

[26] Ethereum Foundation. 2024. ERC-20 Token Standard. https://ethereum.org/en/
developers/docs/standards/tokens/erc-20/

[27] Ethereum Foundation. 2024. ERC-721 Token Standard. https://ethereum.org/en/
developers/docs/standards/tokens/erc-721/

[28] Ethereum Foundation. 2025. The Merge | Ethereum.org. https://ethereum.org/e
n/roadmap/merge/

[29] Ethereum Foundation. 2025. Sidechains. https://ethereum.org/en/developers/d
ocs/scaling/sidechains/

[30] Arbitrum Foundation. 2025. Arbitrum — The Future of Ethereum. https:
//arbitrum.io/

[31] Eliza Gkritsi. 2021. $139M BXH Exchange Hack Was the Result of Leaked Admin
Key. https://www.coindesk.com/tech/2021/11/01/139m-bxh-exchange-hack-

was-the-result-of-leaked-admin-key/
[32] Gnosis. 2025. Deposit Contracts | Gnosis Chain. https://docs.gnosischain.com/a

bout/specs/deposit-contracts
[33] Gnosis. 2025. xDAI Bridge | Gnosis Chain. https://docs.gnosischain.com/bridges

/About%20Token%20Bridges/xdai-bridge
[34] The go-ethereum Authors. 2025. Built-in tracers | go-ethereum. https://geth.eth

ereum.org/docs/developers/evm-tracing/built-in-tracers#call-tracer
[35] Terje Haugum, Bjørnar Ho�, Mohammed Alsadi, and Jingyue Li. 2022. Security

and Privacy Challenges in Blockchain Interoperability - A Multivocal Literature
Review. In Proceedings of the International Conference on Evaluation and Assess-
ment in Software Engineering 2022 (EASE ’22). Association for Computing Ma-
chinery, New York, NY, USA, 347–356. https://doi.org/10.1145/3530019.3531345

[36] Hyperlane. 2025. Hyperlane. https://hyperlane.xyz/
[37] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Sou�é: On synthesis of

program analyzers. In Computer Aided Veri�cation: 28th International Conference,
CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II 28. Springer,
422–430.

[38] Polygon Labs. 2025. Mapped tokens – Polygon Knowledge Layer. https:
//docs.polygon.technology/pos/reference/mapped-tokens/

[39] LayerZero Labs. 2022. LayerZero Security Update – April 2022. https://medium
.com/layerzero-of�cial/layerzero-security-update-april-2022-4c27a22380b4

[40] Sung-Shine Lee, Alexandr Murashkin, Martin Derka, and Jan Gorzny. 2023. SoK:
Not Quite Water Under the Bridge: Review of Cross-Chain Bridge Hacks. In 2023
IEEE International Conference on Blockchain and Cryptocurrency (ICBC). 1–14.
https://doi.org/10.1109/ICBC56567.2023.10174993

[41] Li.Fi. 2024. LI.FI – Bridge & DEX Aggregation Protocol. https://li.f i/
[42] Mantle. [n. d.]. Mantle | Mass Adoption of Decentralized and Token-Governed

Technologies. https://www.mantle.xyz
[43] Poly Network. 2023. The Poly Network Exploit Analysis. https://polynetwork.

medium.com/the-poly-network-exploit-analysis-b0a77a�6078
[44] Margaux Nijkerk. 2023. Coinbase, Framework Venture Funds Invest $5M in

Socket Protocol, in Bet on Blockchain Interoperability. https://www.coindesk.c
om/tech/2023/09/06/coinbase-framework-venture-funds-invest-5m-in-socket-
protocol-in-bet-on-blockchain-interoperability/

[45] Nomad. 2022. https://github.com/nomad-xyz/hack-data/blob/main/data/hack/t
ransactions.json

[46] Nomad. 2022. FAQ | Nomad Docs. https://docs.nomad.xyz/token-bridge/faq
[47] Nomad. 2022. Glossary | Nomad Docs. https://docs.nomad.xyz/resources/gloss

ary
[48] Nomad. 2022. Introduction | Nomad Docs. https://docs.nomad.xyz/nomad-

101/introduction
[49] Optimism. 2025. Optimism. https://optimism.io/
[50] PeckShieldAlert. 2022. #PeckShieldAlert PeckShield has detected 41 addresses

grabbed $152M (80%) in the nomadxyz_bridge exploit, including 7 MEV Bots
($7.1M), RariCapital Arbitrum exploiter ($3.4M), and 6 White Hat ($8.2M). https:
//x.com/PeckShieldAlert/status/1554350737957998592

[51] Eli Phoenix. 2023. Supra Completes Over $24m in Early Stage Funding to Date.
https://cointelegraph.com/press-releases/supra-completes-over-24m-in-early-
stage-funding-to-date

[52] Polygon. 2024. Polygon Knowledge Center. https://stargateprotocol.gitbook.io/
stargate/v2-developer-docs/integrate-with-stargate/how-to-swap

[53] Range. 2024. Range. https://www.range.org/
[54] Rekt. 2021. POLY NETWORK - REKT. https://rekt.news/polynetwork-rekt/
[55] Rekt. 2021. THORChain - REKT 2. https://rekt.news/thorchain-rekt2/
[56] Rekt. 2022. Nomad Bridge - REKT. https://rekt.news/nomad-rekt/
[57] Rekt. 2022. Rekt - BNB Bridge. https://www.rekt.news/bnb-bridge-rekt/
[58] Rekt. 2022. Rekt - Meter. https://rekt.news/meter-rekt/
[59] Rekt. 2022. Ronin Network - REKT. https://rekt.news/ronin-rekt/
[60] Rekt. 2023. Multichain - REKT 2. https://rekt.news/multichain-rekt2/
[61] Rekt. 2023. POLY NETWORK - REKT 2. https://rekt.news/poly-network-rekt2/
[62] Ronin. 2024. Earlier today, we were noti�ed by white-hats about a potential

exploit on the Ronin bridge. After verifying the reports, the bridge was paused
approximately 40 minutes after the �rst on-chain action was spotted. https:
//x.com/ronin_network/status/1820804772917588339

[63] Ronin. 2024. Ronin Bridge | Ronin Docs. https://docs.roninchain.com/apps/ronin-
bridge

[64] Ronin. 2025. Withdraw an ERC20 token | Ronin Docs. https://docs.roninchain.
com/apps/ronin-bridge/withdraw-token#step-3-confirm-your-withdrawal

[65] Squid. 2023. Squid raises $3.5 million to build next-generation cross-chain swaps
powered by Axelar. https://medium.com/@squidrouter/squid-raises-3-5-
million-to-build-next-generation-cross-chain-swaps-powered-by-axelar-
c3284bf33b02

[66] S. Subramanian, A. Augusto, R. Belchior, A. Vasconcelos, and M. Correia. 2024.
Benchmarking Blockchain Bridge Aggregators. In 2024 IEEE International Con-
ference on Blockchain (Blockchain). IEEE Computer Society, Los Alamitos, CA,
USA, 37–45. https://doi.org/10.1109/Blockchain62396.2024.00015

[67] L2BEAT team. 2025. L2BEAT – The state of the layer two ecosystem. https:
//l2beat.com/bridges/summary

https://medium.com/multichainorg/multichain-contract-vulnerability-post-mortem-d37bfab237c8
https://medium.com/multichainorg/multichain-contract-vulnerability-post-mortem-d37bfab237c8
https://rekt.news/qubit-rekt/
https://rekt.news/wormhole-rekt/
https://ethereum.org/en/developers/docs/apis/json-rpc/
https://ethereum.org/en/developers/docs/apis/json-rpc/
https://info.etherscan.com/understanding-an-ethereum-transaction/
https://info.etherscan.com/understanding-an-ethereum-transaction/
https://medium.com/multichainorg/anyswap-multichain-router-v3-exploit-statement-6833f1b7e6fb
https://medium.com/multichainorg/anyswap-multichain-router-v3-exploit-statement-6833f1b7e6fb
https://doi.org/10.1109/SP54263.2024.00182
https://base.org
https://www.halborn.com/blog/post/explained-the-pnetwork-hack-september-2021
https://www.halborn.com/blog/post/explained-the-pnetwork-hack-september-2021
https://www.halborn.com/blog/post/explained-the-thorchain-hack-july-2021
https://www.halborn.com/blog/post/explained-the-thorchain-hack-july-2021
https://doi.org/10.1145/3564532
https://doi.org/10.1145/3564532
https://doi.org/10.1109/TR.2023.3336246
https://doi.org/10.1145/3471140
https://doi.org/10.1145/3471140
https://doi.org/10.15394/jdfsl.2008.1040
https://doi.org/10.15394/jdfsl.2008.1040
https://cointelegraph.com/news/layerzero-raises-120m-to-expand-cross-chain-messaging-efforts
https://cointelegraph.com/news/layerzero-raises-120m-to-expand-cross-chain-messaging-efforts
https://docs.blockdaemon.com/reference/introduction-txapi
https://docs.blockdaemon.com/reference/introduction-txapi
https://www.chainalysis.com/
https://chain-swap.medium.com/chainswap-exploit-11-july-2021-post-mortem-6e4e346e5a32
https://chain-swap.medium.com/chainswap-exploit-11-july-2021-post-mortem-6e4e346e5a32
https://chain-swap.medium.com/chainswap-exploit-11-july-2021-post-mortem-6e4e346e5a32
https://www.theblock.co/post/263310/union-labs-raises-4-million-to-develop-cross-chain-bridge-enabled-by-zk-proofs
https://www.theblock.co/post/263310/union-labs-raises-4-million-to-develop-cross-chain-bridge-enabled-by-zk-proofs
https://www.coindesk.com/business/2023/11/29/blockchain-messaging-platform-wormhole-raises-225m-at-25b-valuation
https://www.coindesk.com/business/2023/11/29/blockchain-messaging-platform-wormhole-raises-225m-at-25b-valuation
https://www.coindesk.com/business/2023/11/29/blockchain-messaging-platform-wormhole-raises-225m-at-25b-valuation
https://blockworks.co/news/funding-cross-chain-oracle-nft-merchandise
https://blockworks.co/news/funding-cross-chain-oracle-nft-merchandise
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://ethereum.org/en/roadmap/merge/
https://ethereum.org/en/roadmap/merge/
https://ethereum.org/en/developers/docs/scaling/sidechains/
https://ethereum.org/en/developers/docs/scaling/sidechains/
https://arbitrum.io/
https://arbitrum.io/
https://www.coindesk.com/tech/2021/11/01/139m-bxh-exchange-hack-was-the-result-of-leaked-admin-key/
https://www.coindesk.com/tech/2021/11/01/139m-bxh-exchange-hack-was-the-result-of-leaked-admin-key/
https://docs.gnosischain.com/about/specs/deposit-contracts
https://docs.gnosischain.com/about/specs/deposit-contracts
https://docs.gnosischain.com/bridges/About%20Token%20Bridges/xdai-bridge
https://docs.gnosischain.com/bridges/About%20Token%20Bridges/xdai-bridge
https://geth.ethereum.org/docs/developers/evm-tracing/built-in-tracers#call-tracer
https://geth.ethereum.org/docs/developers/evm-tracing/built-in-tracers#call-tracer
https://doi.org/10.1145/3530019.3531345
https://hyperlane.xyz/
https://docs.polygon.technology/pos/reference/mapped-tokens/
https://docs.polygon.technology/pos/reference/mapped-tokens/
https://medium.com/layerzero-official/layerzero-security-update-april-2022-4c27a22380b4
https://medium.com/layerzero-official/layerzero-security-update-april-2022-4c27a22380b4
https://doi.org/10.1109/ICBC56567.2023.10174993
https://li.fi/
https://www.mantle.xyz
https://polynetwork.medium.com/the-poly-network-exploit-analysis-b0a77aff6078
https://polynetwork.medium.com/the-poly-network-exploit-analysis-b0a77aff6078
https://www.coindesk.com/tech/2023/09/06/coinbase-framework-venture-funds-invest-5m-in-socket-protocol-in-bet-on-blockchain-interoperability/
https://www.coindesk.com/tech/2023/09/06/coinbase-framework-venture-funds-invest-5m-in-socket-protocol-in-bet-on-blockchain-interoperability/
https://www.coindesk.com/tech/2023/09/06/coinbase-framework-venture-funds-invest-5m-in-socket-protocol-in-bet-on-blockchain-interoperability/
https://github.com/nomad-xyz/hack-data/blob/main/data/hack/transactions.json
https://github.com/nomad-xyz/hack-data/blob/main/data/hack/transactions.json
https://docs.nomad.xyz/token-bridge/faq
https://docs.nomad.xyz/resources/glossary
https://docs.nomad.xyz/resources/glossary
https://docs.nomad.xyz/nomad-101/introduction
https://docs.nomad.xyz/nomad-101/introduction
https://optimism.io/
https://x.com/PeckShieldAlert/status/1554350737957998592
https://x.com/PeckShieldAlert/status/1554350737957998592
https://cointelegraph.com/press-releases/supra-completes-over-24m-in-early-stage-funding-to-date
https://cointelegraph.com/press-releases/supra-completes-over-24m-in-early-stage-funding-to-date
https://stargateprotocol.gitbook.io/stargate/v2-developer-docs/integrate-with-stargate/how-to-swap
https://stargateprotocol.gitbook.io/stargate/v2-developer-docs/integrate-with-stargate/how-to-swap
https://www.range.org/
https://rekt.news/polynetwork-rekt/
https://rekt.news/thorchain-rekt2/
https://rekt.news/nomad-rekt/
https://www.rekt.news/bnb-bridge-rekt/
https://rekt.news/meter-rekt/
https://rekt.news/ronin-rekt/
https://rekt.news/multichain-rekt2/
https://rekt.news/poly-network-rekt2/
https://x.com/ronin_network/status/1820804772917588339
https://x.com/ronin_network/status/1820804772917588339
https://docs.roninchain.com/apps/ronin-bridge
https://docs.roninchain.com/apps/ronin-bridge
https://docs.roninchain.com/apps/ronin-bridge/withdraw-token#step-3-confirm-your-withdrawal
https://docs.roninchain.com/apps/ronin-bridge/withdraw-token#step-3-confirm-your-withdrawal
https://medium.com/@squidrouter/squid-raises-3-5-million-to-build-next-generation-cross-chain-swaps-powered-by-axelar-c3284bf33b02
https://medium.com/@squidrouter/squid-raises-3-5-million-to-build-next-generation-cross-chain-swaps-powered-by-axelar-c3284bf33b02
https://medium.com/@squidrouter/squid-raises-3-5-million-to-build-next-generation-cross-chain-swaps-powered-by-axelar-c3284bf33b02
https://doi.org/10.1109/Blockchain62396.2024.00015
https://l2beat.com/bridges/summary
https://l2beat.com/bridges/summary

Middleware ’25, December 15–19, 2025, Nashville, TN, USA Augusto et al.

[68] THORChain. 2021. ETH Parsing Error and Exploit. https://medium.com/thorc
hain/eth-parsing-error-and-exploit-3b343aa6466f

[69] Ruoyu Yin, Zheng Yan, Xueqin Liang, Haomeng Xie, and Zhiguo Wan. 2023.
A survey on privacy preservation techniques for blockchain interoperability.
Journal of Systems Architecture (Apr 2023), 102892. https://doi.org/10.1016/j.sy
sarc.2023.102892

[70] Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis Panayiotou, Arthur
Gervais, and William Knottenbelt. 2019. XCLAIM: Trustless, Interoperable,
Cryptocurrency-Backed Assets. In 2019 IEEE Symposium on Security and Privacy
(SP). 193–210. https://doi.org/10.1109/SP.2019.00085

[71] Jiashuo Zhang, Jianbo Gao, Yue Li, Ziming Chen, Zhi Guan, and Zhong Chen.
2023. Xscope: Hunting for Cross-Chain Bridge Attacks. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering (ASE ’22).
Association for Computing Machinery, New York, NY, USA, Article 171, 4 pages.
https://doi.org/10.1145/3551349.3559520

[72] Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin. 2024. Secu-
rity of Cross-chain Bridges: Attack Surfaces, Defenses, and Open Problems. In
Proceedings of the 27th International Symposium on Research in Attacks, Intrusions
and Defenses (Padua, Italy) (RAID ’24). Association for Computing Machinery,
New York, NY, USA, 298–316. https://doi.org/10.1145/3678890.3678894

[73] Qianrui Zhao, Yinan Wang, Bo Yang, Ke Shang, Ming Sun, Haijun Wang, Zijiang
Yang, and Xin He. 2023. A Comprehensive Overview of Security Vulnerability
Penetration Methods in Blockchain Cross-Chain Bridges. Authorea (Authorea)
(Oct 2023). https://doi.org/10.22541/au.169760541.13864334/v1

https://medium.com/thorchain/eth-parsing-error-and-exploit-3b343aa6466f
https://medium.com/thorchain/eth-parsing-error-and-exploit-3b343aa6466f
https://doi.org/10.1016/j.sysarc.2023.102892
https://doi.org/10.1016/j.sysarc.2023.102892
https://doi.org/10.1109/SP.2019.00085
https://doi.org/10.1145/3551349.3559520
https://doi.org/10.1145/3678890.3678894
https://doi.org/10.22541/au.169760541.13864334/v1

	Abstract
	1 Introduction
	2 Background
	2.1 Blockchain and Smart Contracts
	2.2 Cross-Chain Bridge Model
	2.3 Attacks in Cross-Chain Bridges

	3 XChainWatcher
	3.1 Logical Relations
	3.2 Decoders and Logic Relation Builders
	3.3 Cross-Chain Rules

	4 Evaluation Methodology
	4.1 Data Sources
	4.2 Experiment Setup

	5 Anomaly Detection Results
	5.1 Isolated Rules (Rules 1-3 and 5-7)
	5.2 Dependent Rules (Rules 4 and 8)

	6 Discussion and Future Work
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

